Articles
 

Autoantigens and Autoantibodies in Multiple Sclerosis

Abstract

Multiple Sclerosis (MS) is an autoimmune disease characterized by recurrent episodes of demyelination and axonal lesion mediated by CD4+ T cells with a proinflammatory T helper (Th)1 and Th17 phenotypes, macrophages, and soluble inflammatory mediators. The overactive  pro-inflammatory  Th1  cells  and  clonal  expansion  of  B  cells  initiate  an inflammatory cascade with several cellular and molecular immune components participating in MS pathogenic mechanisms. In this scenario, autoantibodies and autoantigens have a significant role in immunopathogenesis, diagnosis and therapeutic targets of MS. In this review, we try to introduce the autoantigens and autoantibodies and explain their roles in pathogenesis of MS.

1. Jadidi-Niaragh F, Mirshafiey A*. Histamine and Histamine Receptors in Pathogenesis and Treatment of Multiple Sclerosis. Neuropharmacology 2010;59(3):180-9.
2. Bruck W. The pathology of multiple sclerosis is the result of focal inflammatory demyelination with axonal damage. J Neurol 2005; 25)2 Suppl 5(:v3-9.
3. Mirshafiey A. Venom therapy in multiple sclerosis.Neuropharmacology 2007; 53(3):353-61.
4. Kulkarni AP, Kellaway LA, Lahiri DK, Kotwal GJ.Neuroprotection from complement-mediated inflammatory damage. Ann N Y Acad Sci 2004;1035:147-64.
5. Mirshafiey A, Mohsenzadegan M. TGF-beta as a promising option in the treatment of multiple sclerosis. Neuropharmacology 2009; 56(6-7):929-36.
6. Elong Ngono A, Pettré S, Salou M, Bahbouhi B, Soulillou JP, Brouard S, et al. Frequency of circulating autoreactive T cells committed to myelin determinants in relapsing-remitting multiple sclerosis patients. Clin Immunol 2012; 144(2):117-26.
7. Somers V, Govarts C, Somers K, Hupperts R, Medaer R, Stinissen P. Autoantibody profiling in multiple sclerosis reveals novel antigenic candidates. J Immunol 2008; 180(6):3957-63.
8. Erdağ E, Tüzün E, Uğurel E, Cavuş F, Sehitoğlu E, Giriş M, et al. Switch-associated protein 70 antibodies in multiple sclerosis: relationship between increased serum levels and clinical relapse. Inflamm Res 2012;61(9):927-30.
9. Sádaba MC, Tzartos J, Paíno C, García-Villanueva M, Alvarez-Cermeño JC, et al. Axonal and oligodendrocyte-localized IgM and IgG deposits in MS lesions. J Neuroimmunol 2012; 247(1-2):86-94.
10. Vojdani A, Vojdani E, Cooper E. Antibodies to myelin basic protein, myelin oligodendrocytes peptides, alpha- beta-crystallin, lymphocyte activation and cytokine production in patients with multiple sclerosis. J Intern Med 2003; 254(4):363-74.
11. Bruno R, Sabater L, Sospedra M, Ferrer-Francesch X, Escudero D, Martínez-Cáceres E, et al. Multiple sclerosis candidate autoantigens except myelin oligodendrocyte glycoprotein are transcribed in human thymus. Eur J Immunol 2002; 32(10):2737-47.
12. Mirshafiey A, Matsuo H, Nakane S, Rehm BH, Koh CS, Miyoshi S. Novel immunosuppressive therapy by M2000 in experimental multiple sclerosis. Immunopharmacol Immunotoxicol 2005; 27(2):255-65.
13. Mirshafiey A, Jadidi-Niaragh F.mmunopharmacological role of the leukotriene receptor antagonists and inhibitors of leukotrienes generating enzymes in multiple sclerosis. Review,Immunopharmacol Immunotoxicol 2010; 32(2):219-27.
14. Evangelou N, Jackson M, Beeson D, Palace J.Association of the APOE epsilon4 allele with disease activity in multiple sclerosis. J Neurol Neurosurg Psychiatry 1999; 67(2):203-5.
15. Haines JL, Ter-Minassian M, Bazyk A, Gusella JF, Kim DJ, Terwedow H, et al. A complete genomic screen for multiple sclerosis underscores a role for the major histocompatability complex. The Multiple Sclerosis Genetics Group. Nat Genet 1996; 13(4):469-71.
16. Mirshafiey A, Mohsenzadegan M. Antioxidant therapy in multiple sclerosis. Immunopharmacol Immunotoxicol 2009; 31(1):13-29.
17. Myhr KM, Raknes G, Nyland H, Vedeler C.Immunoglobulin G Fc-receptor (FcgammaR) IIA and IIIB polymorphisms related to disability in MS. Neurology 1999 10; 52(9):1771-6.
18. Sadovnick AD, Dyment D, Ebers GC. Genetic epidemiology of multiple sclerosis. Epidemiol Rev 1997; 19(1):99-106.
19. Fernández O, Fernández V, Alonso A, Caballero A, Luque G, Bravo M, et al. DQB1*0602 allele shows a strong association with multiple sclerosis in patients in Malaga, Spain. J Neurol 2004; 251(4):440-4.
20. Barcellos LF, Oksenberg JR, Green AJ, Bucher P, Rimmler JB, Schmidt S, et al. Genetic basis for clinical expression in multiple sclerosis. Brain 2002; 125(Pt1):150-8.
21. Schmidt H, Williamson D, shley-Koch A. HLA-DR15 haplotype and multiple sclerosis: a HuGE review. Am J Epidemiol 2007; 165(10):1097-109.
22. Sospedra M, Muraro PA, Stefanová I, Zhao Y, Chung K, Li Y, et al. Redundancy in antigen-presenting function of the HLA-DR and -DQ molecules in the multiple sclerosis-associated HLA-DR2 haplotype. J Immunol 2006; 176(3):1951-61.
23. DeLuca GC, Ramagopalan SV, Herrera BM, Dyment DA, Lincoln MR, Montpetit A, et al. An extremes of outcome strategy provides evidence that multiple sclerosis severity is determined by alleles at the HLA- DRB1 locus. Proc Natl Acad Sci U S A 2007;104(52):20896-901.
24. Mirshafiey A, Mohsenzadegan M. Antioxidant therapy in multiple sclerosis. Immunopharmacol Immunotoxicol 2009; 31(1):13-29.
25. F Jadidi-Niaragh, A Mirshafiey . Th17 cell, the New Player of Neuroinflammatory Process in Multiple Sclerosis . Scand J Immunol 2011; 74(1):1-13.
26. Morales Y, Parisi JE, Lucchinetti CF. The pathology of multiple sclerosis: evidence for heterogeneity. Adv Neurol 2006; 98:27-45.
27. Bar-Or A. Immunology of multiple sclerosis. Neurol Clin 2005; 23(1):149-75.
28. Bjartmar C, Wujek JR, Trapp BD. Axonal loss in the pathology of MS: consequences for understanding the progressive phase of the disease. J Neurol Sci 2003;206(2):165-71.
29. Goldman MD, Cohen JA, Fox RJ, Bethoux FA.Multiple sclerosis: treating symptoms, and other general medical issues. Cleve Clin J Med 2006;73(2):177-86.
30. Lucchinetti C, Bruck W, Parisi J, Scheithauer B, Rodriguez M, Lassmann H. Heterogeneity of multiple sclerosis lesions: implications for the pathogenesis of demyelination. Ann Neurol 2000; 47(6):707-17.
31. Inglese M. Multiple sclerosis: new insights and trends.AJNR Am J Neuroradiol 2006; 27(5):954-7.
32. Noseworthy JH, Lucchinetti C, Rodriguez M, Weinshenker BG. Multiple sclerosis. N Engl J Med 2000; 343(13):938-52.
33. Nicot A. Gender and sex hormones in multiple sclerosis pathology and therapy. Front Biosci 2009; 14:4477-515.
34. Mirshafiey A, Mohsenzadegan M. immunotoxicological effects of reactive oxygen species in multiple sclerosis. Journal on Chinese Clinical Medicine 2008; 3(7):405-11.
35. Frohman EM, Racke MK, Raine CS. Multiple sclerosis--the plaque and its pathogenesis. N Engl J Med 2006;354(9):942-55.
36. Neumann H, Medana IM, Bauer J, Lassmann H.Cytotoxic T lymphocytes in autoimmune and degenerative CNS diseases. Trends Neurosci 2002;25(6):313-9.
37. Lucchinetti CF, Mandler RN, McGavern D, Bruck W, Gleich G, Ransohoff RM, et al. A role for humoral mechanisms in the pathogenesis of Devic's neuromyelitis optica. Brain 2002; 125(Pt 7):1450-61.
38. Bettelli E, Oukka M, Kuchroo VK. T(H)-17 cells in the circle of immunity and autoimmunity. Nat Immunol 2007; 8(4):345-50.
39. Thakker P, Leach MW, Kuang W, Benoit SE, Leonard JP, Marusic S. IL-23 is critical in the induction but not in the effector phase of experimental autoimmune encephalomyelitis. J Immunol 2007; 178(4):2589-98.
40. Ivanov II, McKenzie BS, Zhou L, Tadokoro CE, Lepelley A, Lafaille JJ, et al. The Orphan Nuclear Receptor RORgammat Directs the DifferentiationProgram of Proinflammatory IL-17+ T Helper Cells. Cell 2006; 126(6):1121-33.
41. Langrish CL, Chen Y, Blumenschein WM, Mattson J, Basham B, Sedgwick JD, et al. IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J Exp Med 2005; 201(2):233-40.
42. Du C, Liu C, Kang J, Zhao G, Ye Z, Huang S, et al.MicroRNA miR-326 regulates TH-17 differentiation and is associated with the pathogenesis of multiple sclerosis. Nat Immunol 2009; 10(12):1252-9.
43. Martin AJ, Zhou L, Miller SD. MicroRNA--managing the TH-17 inflammatory response. Nat Immunol 2009;10(12):1229-31.
44. Huan J, Culbertson N, Spencer L, Bartholomew R, Burrows GG, Chou YK, et al. Decreased FOXP3 levels in multiple sclerosis patients. J Neurosci Res 2005;81(1):45-52.
45. Peterson LK, Fujinami RS. Inflammation, demyelination, neurodegeneration and neuroprotection in the pathogenesis of multiple sclerosis. J in central nervous system glia and neurons in pathologic conditions. Am J Pathol 1992; 140(2):345-56.
46. Pulizzi A, Rovaris M, Judica E, Sormani MP, Martinelli V, Comi G, et al. Determinants of disability in multiple sclerosis at various disease stages: a multiparametric magnetic resonance study. Arch Neurol 2007; 64(8):1163-8.
47. Pancholi V. Multifunctional alpha-enolase: its role in diseases. Cell Mol Life Sci 2001; 58(7):902-20.
48. Sakimura K, Kushiya E, Takahashi Y, Suzuki Y. The structure and expression of neuron-specific enolase gene. Gene 1987; 60(1):103-13.
49. Terrier B, Degand N, Guilpain P, Servettaz A, Guillevin L, Mouthon L. Alpha-enolase: A target of antibodies in infectious and autoimmune diseases. Autoimmun Rev 2007; 6(3):176-82.
50. Gitlits VM, Toh BH, Sentry JW. Disease Association, Origin, and Clinical Relevance of Autoantibodies to the Glycolytic Enzyme Enolase. J Investig Med 2001; 49(2):138-45.
51. Forooghian F, Cheung RK, Smith WC, O'Connor P, Dosch HM. Enolase and arrestin are novel nonmyelin autoantigens in multiple sclerosis. J Clin Immunol 2007; 27(4):388-96.
52. Forooghian F, Adamus G, Sproule M, Westall C, O'Connor P. Enolase autoantibodies and retinal function in multiple sclerosis patients. Graefes Arch Clin Exp Ophthalmol 2007; 245(8):1077-84.
53. Iwaki T, Wisniewski T, Iwaki A, Corbin E, Tomokane N, Tateishi J, et al. Accumulation of alpha B-crystallin in central nervous system glia and neurons in pathologic conditions. Am J Pathol 1992; 140(2):345-56.
54. Sinclair C, Mirakhur M, Kirk J, Farrell M, McQuaid S.Up-regulation of osteopontin and αΒ-crystallin in the normal-appearing white matter of multiple sclerosis: an immunohistochemical study utilizing tissue microarrays. Neuropathol App Neurobiol 2005;31(3):292-303.
55. Ousman SS, Tomooka BH, van Noort JM, Wawrousek EF, O'Connor KC, Hafler DA, et al. Protective and therapeutic role for αB-crystallin in autoimmune demyelination. Nature 2007; 448(7152); 474-9.
56. Rothbard JB, Zhao X, Sharpe O, Strohman MJ, Kurnellas M, Mellins ED, et al. Chaperone Activity of a B-Crystallin Is Responsible for Its incorrect Assignment as an Autoantigen in Multiple Sclerosis. J Immunol 2011; 186(7):4263-8.
57. van Sechel AC, Bajramovic JJ, van Stipdonk MJ,Persoon-Deen C, Geutskens SB, van Noort JM. EBV- Induced Expression and HLA-DR-Restricted Presentation by Human B Cells of αB-Crystallin, a Candidate Autoantigen in Multiple Sclerosis. J Immunol 1999; 162(1):129-35.
58. Stoevring B, Vang O, Christiansen M. (alpha)B- crystallin in cerebrospinal fluid of patients with multiple sclerosis. Clin Chim Acta 2005; 356(1-2):95- 101.
59. Bajramović JJ, Plomp AC, Goes Av, Koevoets C, Newcombe J, Cuzner ML, et al. Presentation of αB- Crystallin to T Cells in Active Multiple Sclerosis Lesions: An Early Event Following Inflammatory Demyelination. J Immunol 2000; 164(8):4359-66.
60. Steinman L. A molecular trio in relapse and remission in multiple sclerosis. Nat Rev Immunol 2009; 9(6):440- 7.
61. Xiao K, McClatchy DB, Shukla AK, Zhao Y, Chen M, Shenoy SK, et al. Functional specialization of β-arrestin interactions revealed by proteomic analysis. Proc Natl Acad Sci U S A 2007; 104(29):12011-6. 62. Han M, Gurevich VV, Vishnivetskiy SA, Sigler PB, Schubert C. Crystal Structure of β-Arrestin at 1.9 Å: Possible Mechanism of Receptor Binding and Membrane Translocation. Structure 2001; 9(9):869-80.
63. DeWire SM, Ahn S, Lefkowitz RJ, Shenoy SK. β- Arrestins and Cell Signaling. Annu Rev Physiol 2007; 69:483-510.
64. Pippig S, Andexinger S, Daniel K, Puzicha M, Caron MG, Lefkowitz RJ, et al. Overexpression of beta- arrestin and beta-adrenergic receptor kinase augment desensitization of beta 2-adrenergic receptors. J Biol Chem 1993; 268(5):3201-8.
65. Shi Y, Feng Y, Kang J, Liu C, Li Z, Li D, et al. Critical regulation of CD4+ T cell survival and autoimmunity by beta-arrestin 1. Nat Immunol 2007; 8(8):817-24.
66. Vroon A, Heijnen CJ, Kavelaars A. GRKs and arrestins: regulators of migration and inflammation1 and Annemieke Kavelaars. J Leukoc Biol 2006; 80(6):1214-21.
67. Gorczyca WA, Ejma M, Witkowska D, Misiuk-Hojło M, Kuropatwa M, Mulak M, et al. Retinal Antigens Are Recognized by Antibodies Present in Sera of Patients with Multiple Sclerosis. Ophthalmic Res 2004; 36(2):120-3.
68. Sudo A, Endo M, Saitoh S. Serum anti-arrestin antibody and disease activity of multiple sclerosis--a case report of 4-year-old child. No To Hattatsu. 2000; 32(5):415-9.
69. Ohguro H, Chiba S, Igarashi Y, Matsumoto H, Akino T, Palczewski K. Beta-arrestin and arrestin are recognized by autoantibodies in sera from multiple sclerosis patients. Proc Natl Acad Sci U S A 1993; 90(8):3241-5.
70. Drews O, Wildgruber R, Zong C, Sukop U, Nissum M, Weber G, et al. Mammalian ProteasomeSubpopulations with Distinct Molecular Compositions and Proteolytic Activities. Mol Cell Proteomics 2007;6(11):2021-31.
71. Mishto M, Bellavista E, Ligorio C, Textoris-Taube K, Santoro A, Giordano M, et al. Immunoproteasome LMP2 60HH variant alters MBP epitope generation and reduces the risk to develop multiple sclerosis in Italian female population. PLoS One 2010 18; 5(2):e9287.
72. Lisak RP, Nedelkoska L, Studzinski D, Bealmear B, Xu W, Benjamins JA. Cytokines regulate neuronal gene expression: differential effects of Th1, Th2 and monocyte/macrophage cytokines. J Neuroimmunol2011; 238(1-2):19-33.
73. Lee BH, Lee MJ, Park S, Oh DC, Elsasser S, Chen PC, et al. Enhancement of proteasome activity by a small- molecule inhibitor of USP14. Nature 2010;467(7312):179-84.
74. Zheng J, Bizzozero OA. Decreased activity of the 20S proteasome in the brain white matter and gray matter of patients with multiple sclerosis. J Neurochem 2011;117(1):143-53.
75. Zheng J, Bizzozero OA. Reduced proteasomal activity contributes to the accumulation of carbonylated proteins in chronic experimental autoimmune encephalomyelitis. J Neurochem 2010; 115(6):1556-67.
76. Minagar A, Ma W, Zhang X, Wang X, Zhang K, Alexander JS, et al. Plasma ubiquitin-proteasome system profile in patients with multiple sclerosis: correlation with clinical features, neuroimaging, and treatment with interferon-beta-1b. Neurol Res 2012;34(6):611-8.
77. Mayo I, Arribas J, Villoslada P, Alvarez DoForno R, Rodríguez-Vilariño S, Montalban X. The proteasome is a major autoantigen in multiple sclerosis. Brain 2002; 125(Pt 12):2658-67.
78. Berger T, Weerth S, Kojima K, Linington C, Wekerle H, Lassmann H. Experimental autoimmune encephalomyelitis: the antigen specificity of T lymphocytes determines the topography of lesions in the central and peripheral nervous system. Lab Invest 1997; 76(3):355-64.
79. Modi PK, Kanungo MS. Age-dependent expression of S100beta in the brain of mice. Cell Mol Neurobiol 2010; 30(5):709-16.
80. Kojima K, Wekerle H, Lassmann H, Berger T, Linington C. Induction of experimental autoimmune encephalomyelitis by CD4+ T cells specific for an astrocyte protein, S100 beta. J Neural Transm Suppl 1997; 49:43-51.
81. Schmidt S, Linington C, Zipp F, Sotgiu S, de Waal Malefyt R, Wekerle H, et al. Multiple sclerosis: comparison of the human T-cell response to S100 beta and myelin basic protein reveals parallels to rat experimental autoimmune panencephalitis. Brain 1997;120(Pt 8):1437-45.
82. Kojima K, Berger T, Lassmann H, Hinze-Selch D, Zhang Y, Gehrmann J, et al. Experimental autoimmune panencephalitis and uveoretinitis transferred to the Lewis rat by T lymphocytes specific for the S100 beta molecule, a calcium binding protein of astroglia. J Exp Med 1994; 180(3):817-29.
83. Petzold A, Eikelenboom MJ, Gveric D, Keir G, Chapman M, Lazeron RH, et al. Markers for different glial cell responses in multiple sclerosis: clinical and pathological correlations. Brain 2002; 125(pt7):1462-73.
84. Hinson SR, Romero MF, Popescu BF, Lucchinetti CF, Fryer JP, Wolburg H, et al. Molecular outcomes of neuromyelitis optica (NMO)-IgG binding to aquaporin-4 in astrocytes. Proc Natl Acad Sci U S A 2012;109(4):1245–50.
85. Lennon VA, Kryzer TJ, Pittock SJ, Verkman AS, Hinson SR. IgG marker of optic-spinal multiple sclerosis binds to the aquaporin-4 water channel. J Exp Med 2005; 202(4):473–7.
86. McKeon A, Lennon VA, Lotze T, Tenenbaum S, Ness JM, Rensel M, et al. CNS aquaporin-4 autoimmunity in children. Neurology 2008; 71(2):93-100.
87. Wingerchuk DM, Lennon VA, Lucchinetti CF, Pittock SJ, Weinshenker BG. The spectrum of neuromyelitis optica. Lancet Neurol 2007; 6(9):805-15.
88. Hinson SR, McKeon A, Lennon VA. Neurological autoimmunity targeting aquaporin-4. Neuroscience2010; 168(4):1009-18.
89. Misu T, Fujihara K, Kakita A, Konno H, Nakamura M, Watanabe S, et al. Loss of aquaporin 4 in lesions of neuromyelitis optica: distinction from multiple sclerosis. Brain 2007; 130(5):1224-34.
90. Kim SH, Kim W, Li XF, Jung IJ, Kim HJ. Clinical spectrum of CNS aquaporin-4 autoimmunity. Neurology 2012; 78(15):1179-85.
91. Takahashi T, Fujihara K, Nakashima I, Misu T, Miyazawa I, Nakamura M, et al. Anti-aquaporin-4 antibody is involved in thepathogenesis of NMO: a study on antibody titre. Brain 2007; 130(5):1235-43.
92. Wingerchuk DM. Neuromyelitis optica: new findings on pathogenesis. Int Rev Neurobiol 2007; 79:665-88.
93. Derfuss T, Meinl E. Identifying autoantigens in demyelinating diseases: valuable clues to diagnosis and treatment. Curr Opin Neurol 2012; 25(3):231-8.
94. Tanaka M, Tanaka K, Komori M, Saida T. Anti-aquaporin 4 antibody in Japanese multiple sclerosis: the presence of optic spinal multiple sclerosis without long spinal cord lesions and anti-aquaporin 4 antibody. J Neurol Neurosurg Psychiatry 2007; 78(9):990-2.
95. Mayer MC, Meinl E. Glycoproteins as targets of autoantibodies in CNS inflammation: MOG and more. Ther Adv Neurol Disord 2012; 5(3):147-59.
96. Tomassini V, De Giglio L, Reindl M, Russo P, Pestalozza I, Pantano P, et al. Anti-myelin antibodies predict the clinical outcome after a first episode suggestive of MS. Mult Scler 2007 ;13(9)1086-94.
97. Genain CP, Cannella B, Hauser SL, Raine CS.Identification of autoantibodies associated with myelin damage in multiple sclerosis. Nat Med 1999; 5(2):170-5.
98. Marta CB, Taylor CM, Coetzee T, Kim T, Winkler S, Bansal R, et al. Antibody Cross-Linking of Myelin Oligodendrocyte Glycoprotein Leads to Its Rapid Repartitioning into Detergent-Insoluble Fractions, andAltered Protein Phosphorylation and Cell Morphology.J Neurosci 2003; 23(13):5461-71.
99. Clements CS, Reid HH, Beddoe T, Tynan FE, Perugini MA, Johns TG, et al. The crystal structure of myelin oligodendrocyte glycoprotein, a key autoantigen in multiple sclerosis. Proc Natl Acad Sci U S A 2003;100(19):11059-64.
100. Sárvári M, Vágó I, Wéber CS, Nagy J, Gál P, Mák M, et al. Inhibition of C1q-h-amyloid binding protects hippocampal cells against complement mediated toxicity. J Neuroimmunol 2003; 137(1-2):12-8.
101. Cong H, Jiang Y, Tien P. Identification of the myelin oligodendrocyte glycoprotein as a cellular receptor for rubella virus. J Virol 2011; 85(21):11038-47.
102. Derfuss T, Meinl E. Identifying autoantigens in demyelinating diseases: valuable clues to diagnosis and treatment? Curr Opin Neurol 2012; 25(3):231-8.
103. de Graaf KL, Albert M, Weissert R. Autoantigen conformation influences both B- and T-cell responses and encephalitogenicity. J Biol Chem 2012;287(21):17206-13.
104. Gaertner S, de Graaf KL, Greve B, Weissert R.Antibodies against glycosylated native MOG are elevated in patients with multiple sclerosis. Neurology 2004; 63(12):2381-3.
105. Haase CG, Guggenmos J, Brehm U, Andersson M, Olsson T, Reindl M, et al. The fine specificity of the myelin oligodendrocyte glycoprotein autoantibody response in patients with multiple sclerosis and normal healthy controls. J Neuroimmunol 2001; 114(1-2):220-5.
106. Sun D, Whitaker JN, Huang Z, Liu D, Coleclough C, Wekerle H, et al. Myelin antigen-specific CD8+ T cells are encephalitogenic and produce severe disease in C57BL/6 mice. J Immunol 2001; 166(12):7579-87.
107. O'Connor KC, Appel H, Bregoli L, Call ME, Catz I, Chan JA, et al. Antibodies from Inflamed Central Nervous System Tissue Recognize Myelin Oligodendrocyte Glycoprotein. J Immunol 2005;175(3):1974-82.
108. Lalive PH. Autoantibodies in inflammatory demyelinating diseases of the central nervous system. Swiss Med Wkly 2008; 138(47–48):692–707.
109. Greenfield EA, Reddy J, Lees A, Dyer CA, Koul O, Nguyen K, et al. Monoclonal antibodies to distinct regions of human myelin proteolipid protein simultaneously recognize central nervous system myelin and neurons of many vertebrate species. J Neurosci Res 2006; 83(3):415-31.
110. Villmann C, Sandmeier B, Seeber S, Hannappel E,302/ Iran J Allergy Asthma Immunol, Pischetsrieder M, Becker CM. Myelin Proteolipid Protein (PLP) as a Marker Antigen of Central Nervous System Contaminations for Routine Food Control. J Agric Food Chem 2007; 55(17):7114-23.
111. Kondo T, Yamamura T, Inobe J, Ohashi T, Takahashi K, Tabira T. TCR repertoire to proteolipid protein (PLP) in multiple sclerosis (MS): homologies between PLP-specific T cells and MS-associated T cells in TCR junctional sequences. Int Immunol 1996; 8(1):123-30.
112. Ohashi T, Yamamura T, Inobe J, Kondo T, Kunishita T, Tabira T. Analysis of proteolipid protein (PLP)-specific T cells in multiple sclerosis: identification of PLP 95–116 as an HLA-DR2,w15-associated determinant. Int Immunol. 1995; 7(11):1771-8.
113. Zhang J, Markovic-Plese S, Lacet B, Raus J, Weiner HL, Hafler DA. Increased frequency of interleukin 2- responsive T cells specific for myelin basic protein and proteolipid protein in peripheral blood and cerebrospinal fluid of patients with multiple sclerosis. J Exp Med 1994; 179(3):973–84.
114. Kondo T, Ohashi T. T cell immunity to proteolipid protein (PLP) in multiple sclerosis (MS): identification of DR2-associated PLP determinants and conserved TCR CDR3 motifs. Nihon Rinsho 1994; 52(11):2940-5.
115. Wang E, Cambi F. Heterogeneous Nuclear Ribonucleoproteins H and F Regulate the Proteolipid Protein/DM20 Ratio by Recruiting U1 Small Nuclear Ribonucleoprotein through a Complex Array of G Runs. J Biol Chem 2009; 284(17):11194-204.
116. Greenfield EA, Reddy J, Lees A, Dyer CA, Koul O, Nguyen K, et al. Monoclonal Antibodies to Distinct Regions of Human Myelin Proteolipid Protein Simultaneously Recognize Central Nervous System Myelin and Neurons of Many Vertebrate Species. J Neurosci Res 2006; 83(3):415-31.
117. Rohowsky-Kochan C, Troiano R, Cook SD. MHC- restricted autoantigen-reactive T cell clones in multiple sclerosis. J Immunogenet 1989; 16(6):437-44.
118. Ota K, Matsui M, Milford EL, Mackin GA, Weiner HL, Hafler DA. T-cell recognition of an immuno-dominant myelin basic protein epitope in multiple sclerosis. Nature 1990 12; 346(6280):183-7.
119. Allegretta M, Nicklas JA, Sriram S, Albertini RJ. T cells responsive to myelin basic protein in patients with multiple sclerosis. Science 1990; 247(4943):718-21.
120. Pette M, Fujita K, Wilkinson D, Altmann DM, Trowsdale J, Giegerich G, et al. Myelin autoreactivity in multiple sclerosis: recognition of myelin basic protein in the context of HLA-DR2 products by T lymphocytes of multiple-sclerosis patients and healthy donors. Proc Natl Acad Sci USA 1990; 87(20):7968-72.
121. Warren KG, Catz I, Johnson E, Mielke B. Anti-myelin basic protein and anti-proteolipid protein specific forms of multiple sclerosis. Ann Neurol 1994; 35(3):280-9.
122. Derfuss T, Meinl E. Identifying autoantigens in demyelinating diseases: valuable clues to diagnosis and treatment? Curr Opin Neurol 2012; 25(3):231-8.
123. Reindl M, Linington C, Brehm U, Egg R, Dilitz E, Deisenhammer F, et al. Antibodies against the myelin oligodendrocyte glycoprotein and the myelin basic protein in multiple sclerosis and other neurological diseases: a comparative study. Brain 1999;122(11):2047-56.

Files
IssueVol 12, No 4 (2013) QRcode
SectionArticles
Keywords
Alpha B-crystallin Elonase Multiple sclerosis Myelin basic protein S100 beta Aquaporin-4

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
1.
Mirshafiey A, Kianiaslani M. Autoantigens and Autoantibodies in Multiple Sclerosis. Iran J Allergy Asthma Immunol. 1;12(4):292-303.