Research Progress of Immune Mechanisms Related to Persistent HPV Infection in CIN after Cervical Conization
Abstract
Persistent human papillomavirus (HPV) infection is associated with the grading of cervical intraepithelial neoplasia (CIN), high-risk HPV infection, multiple HPV infections, high HPV load, HPV infection of surgical margin, and age in CIN after conization. The immune mechanism is complex and is primarily related to vaginal microecology disorders, immune escape, immune response impairment, and the release of regulatory cytokines. Currently, the treatment methods for postoperative persistent HPV infection include surgical treatment, antiviral treatment, vaccination, and other approaches.
2. Haring CT, Bhambhani C, Brummel C, Jewell B, Bellile E, Heft Neal ME, et al. Human papilloma virus circulating tumor DNA assay predicts treatment response in recurrent/metastatic head and neck squamous cell carcinoma. Oncotarget. 2021;12(13):1214-29.
3. Penberthy L, Rivera DR, Ward K; The Contribution of Cancer Surveillance Toward Real World Evidence in Oncology. Semin Radiat Oncol. 2019;29(4):318-22.
4. Salvadó A, Miralpeix E, Solé-Sedeno JM, Kanjou N, Lloveras B, Duran X, Mancebo G. Predictor factors for conservative management of cervical intraepithelial neoplasia grade 2: Cytology and HPV genotyping. Gynecol Oncol. 2021;162(3):569-74.
5. Ansari A, Urooj U. Study of causes behind abnormal uterine bleeding according to PALM- COEIN classification at a tertiary care hospital. J Pak Med Assoc. 2020;70(1):154-57.
6. Garland SM, Paavonen J, Jaisamrarn U, Naud P, Salmerón J, Chow SN, et al. Prior human papillomavirus-16/18 AS04-adjuvanted vaccination prevents recurrent high grade cervical intraepithelial neoplasia after definitive surgical therapy: Post-hoc analysis from a randomized controlled trial. Int J Cancer. 2016;139(12):2812-26.
7. Kim G, Taye J, Yu K, Park S, Kim J, Kim S, et al. HPV E6/E7, hTERT, and Ki67 mRNA RT-qPCR Assay for Detecting High-Grade Cervical Lesion with Microscope Slides. Anal Cell Pathol. 2019;2019:9365654.
8. Ni P, Wu M, Guan H, Yuan Y, Zhang L, Zhang F, et al. Etiology distribution of abnormal uterine bleeding according to FIGO classification system: A combined study of ultrasound and histopathology. J Obstet Gynaecol Res. 2022;48(7):1913-20
9. Mutakha GS, Mwaliko E, Kirwa P. Clinical bleeding patterns and management techniques of abnormal uterine bleeding at a teaching and referral hospital in Western Kenya. Plos One. 2020;15(12):e0243166.
10. Dueholm M, Hjorth IM; Structured imaging technique in the gynecologic office for the diagnosis of abnormal uterine bleeding. Best Pract Res Clin Obstet Gynaecol. 2017;40(9):23-43.
11. Kudoh A, Sato S, Itamochi H. Human papillomavirus type-specific persistence and reappearance after successful conization in patients with cervical intraepithelial neoplasia. Int J Clin Oncol. 2016;21(3):580-7.
12. Perkins RB, Guido RS, Castle PE, Chelmow D, Einstein MH, Garcia F, et al. 2019 ASCCP Risk-Based Management Consensus Guidelines for Abnormal Cervical Cancer Screening Tests and Cancer Precursors. J Low Genit Tract Dis. 2020;24(2):102-31.
13. Koh WJ, Abu-Rustum NR, Bean S, Bradley K, Campos SM, Cho KR, et al. Uterine Neoplasms, Version 1.2018, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw. 2018;16(2):170-99.
14. Kops NL, Caierão J, Bessel M, Horvath JDC, Domingues CM, Benzaken AS, et al. Behavioral factors associated with multiple-type HPV genital infections: data from a cross-sectional study in young women in Brazil. Reprod Health. 2021;18(1):201.
15. Ouh YT, Cho HW, Kim SM, Min KJ, Lee SH, Song JY, et al. Risk factors for type-specific persistence of high-risk human papillomavirus and residual/recurrent cervical intraepithelial neoplasia after surgical treatment. Obstet Gynecol Sci. 2020;63(5):631-42.
16. Toz E, Sanci M, Ozcan A, Beyan E, Inan AH. Comparison of classic terminology with the FIGO PALM-COEIN system for classification of the underlying causes of abnormal uterine bleeding. Int J Gynecol Obstet. 2016;133(3):325-8.
17. Munro MG. Practical aspects of the two FIGO systems for management of abnormal uterine bleeding in the reproductive years. Best Pract Res Clin Obstet Gynaecol. 2017;40(8):3-22.
18. Kawai S, Fujii T, Kukimoto I, Yamada H, Yamamoto N, Kuroda M, et al. Identification of miRNAs in cervical mucus as a novel diagnostic marker for cervical neoplasia. Sci Rep. 2018;8(1):7070.
19. Lili E, Chatzistamatiou K, Kalpaktsidou-Vakiani A, Moysiadis T, Agorastos T. Low recurrence rate of high-grade cervical intraepithelial neoplasia after successful excision and routine colposcopy during follow-up. Medicine. 2018;97(4):e9719.
20. de Sanjose S, Brotons M, Pavon MA. The natural history of human papillomavirus infection. Best Pract Res Clin Obstet Gynaecol. 2018;47(3):2-13.
21. Liu Y, Xu C, Pan J, Sun C, Zhou H, Meng Y. Significance of the viral load of high-risk HPV in the diagnosis and prediction of cervical lesions: a retrospective study. Bmc Womens Health. 2021;21(1):353.
22. Simoes RB, Campaner AB. Post-cervical conization outcomes in patients with high-grade intraepithelial lesions. APMIS. 2013;121(12):1153-61.
23. Abdulaziz AMA, You X, Liu L, Sun Y, Zhang J, Sun S, et al. Management of high-grade squamous intraepithelial lesion patients with positive margin after LEEP conization: A retrospective study. Medicine. 2021;100(20):e26030.
24. Vänskä S, Luostarinen T, Lagheden C, Eklund C, Kleppe SN, Andrae B, et al. Differing Age-Specific Cervical Cancer Incidence Between Different Types of Human Papillomavirus: Implications for Predicting the Impact of Elimination Programs. Am J Epidemiol. 2021;190(4):506-14.
25. Liao G, Jiang X, She B, Tang H, Wang Z, Zhou H, et al. Multi-Infection Patterns and Co-infection Preference of 27 Human Papillomavirus Types Among 137,943 Gynecological Outpatients Across China. Front Oncol. 2020;1049.
26. R SJ. The Immune Microenvironment in Human Papilloma Virus-Induced Cervical Lesions-Evidence for Estrogen as an Immunomodulator. Front Cell Infect Microbiol. 2021;11:649815.
27. Wang J, Li Z, Ma X, Du L, Jia Z, Cui X, et al. Translocation of vaginal microbiota is involved in impairment and protection of uterine health. Nat Commun. 2021;12(1):4191.
28. Woodman CB, Collins SI, Young LS. The natural history of cervical HPV infection: unresolved issues. Nat Rev Cancer. 2007;7(1):11-22.
29. Qingqing B, Jie Z, Songben Q, Juan C, Lei Z, Mu X. Cervicovaginal microbiota dysbiosis correlates with HPV persistent infection. Microb Pathogenesis. 2021;152:104617.
30. Zhai Q, Zhang W, Zhang Z, Fu Y, Li Y, Wang X, Li L, et al. Characteristics of the Cervicovaginal Microenvironment in Childbearing-Age Women with Different Degrees of Cervical Lesions and HR-HPV Positivity. Pol J Microbiol. 2021;70(4):489-500.
31. Li Y, Yu T, Yan H, Li D, Yu T, Yuan T, et al. Vaginal Microbiota and HPV Infection: Novel Mechanistic Insights and Therapeutic Strategies. Infect Drug Resist. 2020;13(9):1213-20.
32. Barrios DTJ, Opata MM, Mowa CN. Immunity in the Cervix: Interphase between Immune and Cervical Epithelial Cells. J Immunol Res. 2019;2019(7693183).
33. Anahtar MN, Gootenberg DB, Mitchell CM, Kwon DS. Cervicovaginal Microbiota and Reproductive Health: The Virtue of Simplicity. Cell Host Microbe. 2018;23(2):159-68.
34. Du GH, Wang JK, Richards JR, Wang JJ. Genetic polymorphisms in tumor necrosis factor alpha and interleukin-10 are associated with an increased risk of cervical cancer. Int Immunopharmacol. 2019;66(8):154-61.
35. Monin L, Whettlock EM, Male V. Immune responses in the human female reproductive tract. Immunology. 2020;160(2):106-15.
36. Osiagwu DD, Azenabor AE, Osijirin AA, Awopetu PI, Oyegbami FR. Evaluation of interleukin 8 and interleukin 10 cytokines in liquid based cervical cytology samples. Pan Afr Med J. 2019;32:148.
37. Gulati NM, Miyagi M, Wiens ME, Smith JG, Stewart PL. alpha-Defensin HD5 Stabilizes Human Papillomavirus 16 Capsid/Core Interactions. Pathog Immun. 2019;4(2):196-234.
38. Tuerxun G, Abudurexiti G, Abulizi G. Prevalence, persistence, clearance and risk factors for HPV infection in rural Uyghur women in China. Bmc Womens Health. 2023;23(1):433.
39. Boilesen DR, Nielsen KN, Holst PJ; Novel Antigenic Targets of HPV Therapeutic Vaccines. Vaccines-Basel. 2021;9(11):1262.
40. Okunade KS. Human papillomavirus and cervical cancer. J Obstet Gynaecol. 2020;40(5):602-8.
41. McBride AA. Human papillomaviruses: diversity, infection and host interactions. Nat Rev Microbiol. 2022;20(2):95-108.
42. Dharmaraj N, Piotrowski SL, Huang C. Anti-tumor immunity induced by ectopic expression of viral antigens is transient and limited by immune escape. Oncoimmunology. 2019;8(4):e1568809.
43. Torres-Rojas FI, Alarcon-Romero L, Leyva-Vazquez MA, et al; Methylation of the L1 gene and integration of human papillomavirus 16 and 18 in cervical carcinoma and premalignant lesions. Oncol Lett. 2018;15(2):2278-86.
44. Huang SS, Hao DZ, Zhang Y, Liu HM, Shan WS. Progress in studies of the mechanisms and clinical diagnosis of cervical carcinoma associated with genomic integration of high-risk human papillomavirus DNA. Yi Chuan. 2017;39(9):775-83.
45. Barros MJ, de Oliveira T, de Melo C, Venuti A, de Freitas AC. Viral Modulation of TLRs and Cytokines and the Related Immunotherapies for HPV-Associated Cancers. J Immunol Res. 2018;2018:2912671.
46. Paradkar PH, Joshi JV, Mertia PN, Agashe SV, Vaidya RA. Role of cytokines in genesis, progression and prognosis of cervical cancer. Asian Pac J Cancer Prev. 2014;15(9):3851-64.
47. Westrich JA, Warren CJ, Pyeon D. Evasion of host immune defenses by human papillomavirus. Virus Res. 2017;231(9):21-33. .
48. Melamed A, Margul DJ, Chen L, Keating NL, Del Carmen MG, Yang J, et al. Survival after Minimally Invasive Radical Hysterectomy for Early-Stage Cervical Cancer. New Engl J Med. 2018;379(20):1905-14.
49. So KA, Lee IH, Kim TJ, Lee KH. Risk factors of persistent HPV infection after treatment for high-grade squamous intraepithelial lesion. Arch Gynecol Obstet. 2019;299(1):223-7.
50. Berti F, Pereira A, Cebinelli G, Trugilo KP, Brajao DOK. The role of interleukin 10 in human papilloma virus infection and progression to cervical carcinoma. Cytokine Growth Factor Rev. 2017;34:1-13.
51. Niyibizi J, Mayrand MH, Audibert F, Monnier P, Brassard P, Laporte L, et al. Risk factors for placental human papillomavirus infection. Sex Transm Infect. 2022;98(8):575-81.
52. Meng D, Song L, Qi Z, Wang J, Liu H, Lyu YJ, Jia HX, Ding L, Hao M, Tian ZQ, Wang JT. [Prognosis of high-risk HPV infection and its influences by vaginal micro-environmental factors]. Zhonghua Liu Xing Bing Xue Za Zhi. 2021 Jun 10;42(6):1103-1107.
53. Shi N, Lu Q, Zhang J. Analysis of risk factors for persistent infection of asymptomatic women with high-risk human papilloma virus. Hum Vacc Immunother. 2017;13(6):1-7.
54. Shi HJ, Song H, Zhao QY, Tao CX, Liu M, Zhu QQ. Efficacy and safety of combined high-dose interferon and red light therapy for the treatment of human papillomavirus and associated vaginitis and cervicitis: A prospective and randomized clinical study. Medicine. 2018;97(37):e12398.
55. Nikakhtar Z, Hasanzadeh M, Hamedi SS, et al. The efficacy of vaginal suppository based on myrtle in patients with cervicovaginal human papillomavirus infection: A randomized, double-blind, placebo trial. Phytother Res. 2018;32(10):2002-8.
56. Jee B, Yadav R, Pankaj S, Shahi SK; Immunology of HPV-mediated cervical cancer: current understanding. Int Rev Immunol. 2021;40(5):359-78.
57. Ragonnaud E, Andersson AC, Mariya S, et al. Therapeutic Vaccine Against Primate Papillomavirus Infections of the Cervix. J Immunother. 2017;40(2):51-61.
58. Talebi S, Bolhassani A, Sadat SM, Vahabpour R, Agi E, Shahbazi S. Hp91 immunoadjuvant: An HMGB1-derived peptide for development of therapeutic HPV vaccines. Biomed Pharmacother. 2017;85(8):148-54.
59. De Rosa N, Giampaolino P, Lavitola G, et al. Effect of Immunomodulatory Supplements Based on Echinacea Angustifolia and Echinacea Purpurea on the Posttreatment Relapse Incidence of Genital Condylomatosis: A Prospective Randomized Study. Biomed Res Int. 2019;2019:3548396.
Files | ||
Issue | Vol 23 No 5 (2024) | |
Section | Review Article(s) | |
DOI | https://doi.org/10.18502/ijaai.v23i5.16755 | |
Keywords | ||
Cervical intraepithelial neoplasia Cervical conization Immune mechanisms Persistent human papillomavirus infection Research progress |
Rights and permissions | |
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. |