Original Article
 

Dysregulation of Angiogenesis and Inflammatory Genes in Endometrial Mesenchymal Stem Cells and Their Contribution to Endometriosis

Abstract

Endometriosis is a common, chronic, inflammatory disorder in women, characterized by the presence of endometrial tissue outside the uterus cavity. The disease affects ~10% of women during their reproductive age. There is some debates on the pathogenesis of endometriosis and its mechanism among the scientists; therefore, different hypotheses have been suggested. According to Sampson theory, a possible mechanism for seeding ectopic endometriotic lesions is a dysregulation of endometrial mesenchymal stem cells (eMSCs).
In the present study, we evaluated the expression of candidate genes in eMSCs obtained from endometriosis patients and compared them with non-endometriosis female patients. In addition, a bioinformatic analysis was conducted to uncover the genes in the list of our co-expression gene network in endometriosis.
According to our results, the expression of vascular endothelial growth factor A, C-X-C-motif chemokine ligand 8, interleukin-6, and intercellular adhesion molecule-1 genes were up-regulated in the eMSCs isolated from endometriosis patients. There was no significant difference in the expression of the LaminB1 gene between the endometriosis and non-endometriosis patients. On the other hand, our bioinformatics analysis demonstrated that co-expressed genes were enriched in the cytokine signalling pathway.
Our study provides valuable insights into the gene expression dysregulation in eMSCs derived from endometriosis patients and suggests a possible function for co-expressed networks in the pathogenesis of endometriosis. To confirm the results, more investigations are required.

1. Zondervan KT, Becker CM, Koga K, Missmer SA, Taylor RN, Viganò P. Endometriosis. Nat Rev Dis Primers. 2018;4(1):9.
2. Shafrir AL, Farland LV, Shah DK, Harris HR, Kvaskoff M, Zondervan K, et al. Risk for and consequences of endometriosis: A critical epidemiologic review. Best Pract Res Clin Obstet Gynaecol. 2018;51:1-15.
3. Yusuf A, Iwanaga J. The Clinical Anatomy of Endometriosis: A Review. Cureus. 2018;10(9).
4. Sourial S, Tempest N, Hapangama DK. Theories on the Pathogenesis of Endometriosis. Int J Reprod Med. 2014;2014:179515.
5. Gargett CE, Schwab KE, Deane JA. Endometrial stem/progenitor cells: the first 10 years. Hum Reprod Update. 2016;22(2):137-63.
6. Cousins FL, O DF, Gargett CE. Endometrial stem/progenitor cells and their role in the pathogenesis of endometriosis. Best Pract Res Clin Obstet Gynaecol. 2018;50:27-38.
7. Gargett CE, Schwab KE, Brosens JJ, Puttemans P, Benagiano G, Brosens I. Potential role of endometrial stem/progenitor cells in the pathogenesis of early-onset endometriosis. Mol Hum Reprod. 2014;20(7):591-8.
8. Scutiero G, Iannone P, Bernardi G, Bonaccorsi G, Spadaro S, Volta CA, et al. Oxidative stress and endometriosis: a systematic review of the literature. Oxid Med Cell Longev. 2017;2017.
9. Narayanan K, Balakrishnan A, Miyamoto S. NF-κB is essential for induction of pro-inflammatory cytokine genes by filarial parasitic sheath proteins. Mol Immunol. 2000;37(3-4):115-23.
10. Defrère S, González-Ramos R, Lousse JC, Colette S, Donnez O, Donnez J, et al. Insights into iron and nuclear factor-kappa B (NF-kappaB) involvement in chronic inflammatory processes in peritoneal endometriosis. Histol Histopathol. 2011;26(8):1083-92.
11. Burova E, Borodkina A, Shatrova A, Nikolsky N. Sublethal oxidative stress induces the premature senescence of human mesenchymal stem cells derived from endometrium. Oxid Med Cell Longev. 2013;2013.
12. Sikora E, Arendt T, Bennett M, Narita M. Impact of cellular senescence signature on ageing research. Ageing Res Rev. 2011;10(1):146-52.
13. Zhou W-J, Yang H-L, Shao J, Mei J, Chang K-K, Zhu R, et al. Anti-inflammatory cytokines in endometriosis. Cell Mol Life Sci. 2019;76(11):2111-32.
14. Ruijter J, Ramakers C, Hoogaars W, Karlen Y, Bakker O, Van den Hoff M, et al. Amplification efficiency: linking baseline and bias in the analysis of quantitative PCR data. Nucleic Acids Res. 2009;37(6):e45-e.
15. Pfaffl MW. A new mathematical model for relative quantification in real-time RT–PCR. Nucleic Acids Res. 2001;29(9):e45-e.
16. Cousins FL, Gargett CE. Endometrial stem/progenitor cells and their role in the pathogenesis of endometriosis. Best Pract Res Clin Obstet Gynaecol. 2018;50:27-38.
17. Cabarcas SM, Mathews LA, Farrar WL. The cancer stem cell niche—there goes the neighborhood? Int J Cancer. 2011;129(10):2315-27.
18. Malvezzi H, Viana BG, Dobo C, Filippi RZ, Podgaec S, Piccinato CA. Depleted lamin B1: a possible marker of the involvement of senescence in endometriosis? Arch Gynecol Obstet. 2018;297(4):977-84.
19. Djokovic D, Calhaz-Jorge C. Angiogenesis as a therapeutic target in endometriosis. Acta Med Port. 2014;27(4):489-97.
20. Wang X-Q, Zhou W-J, Luo X-Z, Tao Y, Li D-J. Synergistic effect of regulatory T cells and proinflammatory cytokines in angiogenesis in the endometriotic milieu. Hum Reprod. 2017;32(6):1304-17.
21. Moggio A, Pittatore G, Cassoni P, Marchino GL, Revelli A, Bussolati B. Sorafenib inhibits growth, migration, and angiogenic potential of ectopic endometrial mesenchymal stem cells derived from patients with endometriosis. Fertil Steril. 2012;98(6):1521-30. e2.
22. Herington JL, Bruner-Tran KL, Lucas JA, Osteen KG. Immune interactions in endometriosis. Expert Rev Clin Immunol. 2011;7(5):611-26.
23. Sikora J, Smycz‐Kubańska M, Mielczarek‐Palacz A, Kondera‐Anasz Z. Abnormal peritoneal regulation of chemokine activation—The role of IL‐8 in pathogenesis of endometriosis. Am J Reprod Immunol. 2017;77(4):e12622.
24. Rutherford EJ, Hill AD, Hopkins AM. Adhesion in physiological, benign and malignant proliferative states of the endometrium: microenvironment and the clinical big picture. Cells. 2018;7(5):43.
25. Kuessel L, Wenzl R, Proestling K, Balendran S, Pateisky P, Yerlikaya G, et al. Soluble VCAM-1/soluble ICAM-1 ratio is a promising biomarker for diagnosing endometriosis. Hum Reprod. 2017;32(4):770-9.
26. Augoulea A, Alexandrou A, Creatsa M, Vrachnis N, Lambrinoudaki I. Pathogenesis of endometriosis: the role of genetics, inflammation and oxidative stress. Arch Gynecol Obstet. 2012;286(1):99-103.
27. Freund A, Laberge R-M, Demaria M, Campisi J. Lamin B1 loss is a senescence-associated biomarker. Mol Biol Cell. 2012;23(11):2066-75.
28. Iwabe T, Harada T, Tsudo T, Nagano Y, Yoshida S, Tanikawa M, et al. Tumor necrosis factor-α promotes proliferation of endometriotic stromal cells by inducing interleukin-8 gene and protein expression. J Clin Endocrinol Metab. 2000;85(2):824-9.
29. Chen Y-J, Wu H-H, Liau W-T, Tsai C-Y, Tsai H-W, Chao K-C, et al. A tumor necrosis factor-α inhibitor reduces the embryotoxic effects of endometriotic peritoneal fluid. Fertil Steril. 2013;100(5):1476-85. e5.
30. Heydari S, Kashani L, Noruzinia M. Gene expression analysis signifies the association of inflammatory proteins with the development of endometriosis. Gene Rep. 2020:100716.
Files
IssueVol 20 No 6 (2021) QRcode
SectionOriginal Article(s)
DOI https://doi.org/10.18502/ijaai.v20i6.8025
Keywords
Endometriosis Gene expression Inflammation Mesenchymal stem cells

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
1.
Heydari S, Kashani L, Noruzinia M. Dysregulation of Angiogenesis and Inflammatory Genes in Endometrial Mesenchymal Stem Cells and Their Contribution to Endometriosis. Iran J Allergy Asthma Immunol. 2021;20(6):740-750.