Intravenous Immunoglobulin Therapy in Myocarditis

  • Amir Hossein Mansourabadi Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
  • Ladan Gol Mohammad pour Afrakoti Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
  • Abbas Shahi Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran AND Students Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
  • Reza Shabanian 3 Department of Pediatric Cardiology, Children’s Medical Center Hospital, Tehran University of Medical Sciences, Tehran, Iran
  • Aliakbar Amirzargar Mail Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
Keywords:
High dose intravenous immunoglobulin, Inflammation, Intravenous immunoglobulin, Low dose intravenous immunoglobulin, Myocarditis

Abstract

Myocarditis is an inflammatory disease of the myocardium with lymphocyte infiltration and myocyte necrosis leading to a wide range of clinical presentations including heart failure, arrhythmia, and cardiogenic shock. Infectious and noninfectious agents may trigger the disease. The fact that immunosuppressive drugs are useful in several kinds of autoimmune myocarditis is proof of the autoimmune mechanisms involved in the development of myocarditis. Pathogenic mechanisms in myocardial inflammation are including inflammasome activation followed by myocyte destruction, myocarditis, and pericarditis. Intravenous immunoglobulin (IVIG) is a serum product made up of immunoglobulins, widely used in a variety of diseases. This product is effective in several immune-mediated pathologies. As well as the determined usage of IVIG in Kawasaki disease, IVIG may be useful in several kinds of heart failure including fulminant myocarditis, acute inflammatory cardiomyopathy, Giant Cell Myocarditis, and peripartum cardiomyopathy. Generally, IVIG is used in two different doses of low dose (200 to 400 mg/kg) and high dose (2 g/kg) regimen. The exact therapeutic effects of IVIG are not clear, however over the last decades, our knowledge about its mechanism of function has greatly enhanced. IVIG administration should be based on the accepted protocols of its transfusion. In this review article, we try to provide an overview of the different kinds of myocarditis, pathologic mechanisms and their common treatments and evaluation of the administration of IVIG in these diseases. Furthermore, we will review current protocols using IVIG in each disease individually.

References

1. Maisch B. Cardio-Immunology of Myocarditis: Focus on Immune Mechanisms and Treatment Options. Front Cardiovasc Med. 2019;6(48).
2. Maisch B, Trostel-Soeder R, Stechemesser E, Berg P, Kochsiek K. Diagnostic relevance of humoral and cell-mediated immune reactions in patients with acute viral myocarditis. Clin Exp Immunol. 1982;48(3):533.
3. Schultheiss H-P, Kühl U, Cooper LT. The management of myocarditis. Eur Heart J. 2011;32(21):2616-25.
4. Maisch B, Alter P. Treatment options in myocarditis and inflammatory cardiomyopathy : Focus on i.v. immunoglobulins. Herz. 2018;43(5):423-30.
5. Kloos W, Katus HA, Meder B. Genetic cardiomyopathies. Lessons learned from humans, mice, and zebrafish. Herz. 2012;37(6):612-7.
6. Elliott P, Andersson B, Arbustini E, Bilinska Z, Cecchi F, Charron P, et al. Classification of the cardiomyopathies: a position statement from the European Society Of Cardiology Working Group on Myocardial and Pericardial Diseases. Eur Heart J. 2008;29(2):270-6.
7. Yu D-Q, Wang Y, Ma G-Z, Xu R-H, Cai Z-X, Ni C-M, et al. Intravenous immunoglobulin in the therapy of adult acute fulminant myocarditis: A retrospective study. Exp Ther Med. 2014;7(1):97-102.
8. Sen-Chowdhry S, Syrris P, Prasad SK, Hughes SE, Merrifield R, et al. Left-dominant arrhythmogenic cardiomyopathy: an under-recognized clinical entity. J Am Coll Cardiol. 2008;52(25):2175-87.
9. Burke MA, Cook SA, Seidman JG, Seidman CE. Clinical and Mechanistic Insights Into the Genetics of Cardiomyopathy. J Am Coll Cardiol. 2016;68(25):2871-86.
10. Gavazzi A, De Maria R, Renosto G, Moro A, Borgia M, Caroli A, et al. The spectrum of left ventricular size in dilated cardiomyopathy: clinical correlates and prognostic implications. SPIC (Italian Multicenter Cardiomyopathy Study) Group. Am Heart J. 1993;125(2 Pt 1):410-22.
11. Mendes LA, Picard MH, Dec GW, Hartz VL, Palacios IF, Davidoff R. Ventricular remodeling in active myocarditis. Myocarditis Treatment Trial. Am Heart J. 1999;138(2 Pt 1):303-8.
12. Emanuelsson H, Karlson BW, Herlitz J. Characteristics and prognosis of patients with acute myocardial infarction in relation to occurrence of congestive heart failure. Eur Heart J. 1994;15(6):761-8.
13. Yusuf S, Pearson M, Sterry H, Parish S, Ramsdale D, Rossi P, et al. The entry ECG in the early diagnosis and prognostic stratification of patients with suspected acute myocardial infarction. Eur Heart J. 1984;5(9):690-6.
14. Zarifa A, Kim PY, Gilchrist S, Iliescu C, Suarez-Almazor ME, Lopez-Mattei J, et al. Expression of T-cell populations and molecular markers of human myocardium with checkpoint-induced myocarditis. J Clin Oncol. 2019;37(8_suppl):79-.
15. Escher F, Tschoepe C, Lassner D, Schultheiss HP. Myocarditis and inflammatory cardiomyopathy: from diagnosis to treatment. Turk Kardiyol Dern Ars : Turk Kardiyoloji Derneginin yayin organidir. 2015;43(8):739-48.
16. Gil KE, Pawlak A, Gil RJ, Frontczak-Baniewicz M, Bil J. The role of invasive diagnostics and its impact on the treatment of dilated cardiomyopathy: A systematic review. Adv Med Sci. 2016;61(2):331-43.
17. Di Filippo S. Improving outcomes of acute myocarditis in children. Expert Rev Cardiovasc Ther. 2016;14(1):117-25.
18. Ando T, Yamasaki Y, Takakuwa Y, Iida H, Asari Y, Suzuki K, et al. Concurrent onset of acute lupus myocarditis, pulmonary arterial hypertension and digital gangrene in a lupus patient: a possible role of vasculitis to the rare disorders. Modern Rheumatology Case Reports. 2019(just-accepted):1-14.
19. Johnson N, Suri D, Gupta A, Rawat A, Singh S. 137 Myocarditis in pediatric lupus: A clinical conundrum. Arch Dis Child; 2019.
20. Meier LA, Binstadt BA. The Contribution of Autoantibodies to Inflammatory Cardiovascular Pathology. Front Immunol. 2018;9(911).
21. Caforio AL, Mahon NJ, Tona F, McKenna WJ. Circulating cardiac autoantibodies in dilated cardiomyopathy and myocarditis: pathogenetic and clinical significance. Eur J Heart Fail. 2002;4(4):411-7.
22. Neu N, Beisel K, Traystman M, Rose N, Craig S. Autoantibodies specific for the cardiac myosin isoform are found in mice susceptible to Coxsackievirus B3-induced myocarditis. J Immunol. 1987;138(8):2488-92.
23. Nagatomo Y, Tang WW. Autoantibodies and cardiovascular dysfunction: cause or consequence? Curr Heart Fail Rep. 2014;11(4):500-8.
24. Nussinovitch U, Shoenfeld Y. The clinical and diagnostic significance of anti-myosin autoantibodies in cardiac disease. Clin Rev Allergy Immunol. 2013;44(1):98-108.
25. Nagatomo Y, Tang WHW. Autoantibodies and cardiovascular dysfunction: cause or consequence? Curr Heart Fail Rep. 2014;11(4):500-8.
26. Warraich RS, Noutsias M, Kasac I, Seeberg B, Dunn MJ, Schultheiss H-P, et al. Immunoglobulin G3 cardiac myosin autoantibodies correlate with left ventricular dysfunction in patients with dilated cardiomyopathy: immunoglobulin G3 and clinical correlates. Am Heart J. 2002;143(6):1076-84.
27. Caforio AL, Tona F, Bottaro S, Vinci A, Dequal G, Daliento L, et al. Clinical implications of anti-heart autoantibodies in myocarditis and dilated cardiomyopathy. Autoimmunity. 2008;41(1):35-45.
28. Vilela EM, Bettencourt-Silva R, da Costa JT, Barbosa AR, Silva MP, Teixeira M, et al. Anti-cardiac troponin antibodies in clinical human disease: a systematic review. Ann Transl Med. 2017;5(15):307-.
29. Shabanian R, Abozari M, Kiani A, Seifirad S, Zamani G, Nahalimoghaddam A, Kocharian A. Myocardial performance index and atrial ejection force in patients with Duchenne's muscular dystrophy. Echocardiography. 2011;28(10): 1088-1094.
30. Pettersson K, Eriksson S, Wittfooth S, Engström E, Nieminen M, Sinisalo J. Autoantibodies to cardiac troponin associate with higher initial concentrations and longer release of troponin I in acute coronary syndrome patients. Clin Chem. 2009;55(5):938-45.
31. Chen G, Chelu MG, Dobrev D, Li N. Cardiomyocyte Inflammasome Signaling in Cardiomyopathies and Atrial Fibrillation: Mechanisms and Potential Therapeutic Implications. Front Physiol. 2018;9:1115-.
32. Próchnicki T, Mangan MS, Latz E. Recent insights into the molecular mechanisms of the NLRP3 inflammasome activation. F1000Res. 2016;5:F1000 Faculty Rev-469.
33. Guo H, Callaway JB, Ting JPY. Inflammasomes: mechanism of action, role in disease, and therapeutics. Nat Med. 2015;21(7):677-87.
34. Smith SC, Ladenson JH, Mason JW, Jaffe AS. Elevations of cardiac troponin I associated with myocarditis. Experimental and clinical correlates. Circulation. 1997;95(1):163-8.
35. Gelfand EW. Intravenous Immune Globulin in Autoimmune and Inflammatory Diseases. N Engl J Med. 2012;367(21):2015-25.
36. Prasad AN, Chaudhary S. Intravenous immunoglobulin in pediatrics: A review. Med J Armed Forces India. 2014;70(3):277-80.
37. Schwab I, Nimmerjahn F. Intravenous immunoglobulin therapy: how does IgG modulate the immune system? Nat Rev Immunol. 2013;13:176.
38. Miyata K, Kaneko T, Morikawa Y, Sakakibara H, Matsushima T, Misawa M, et al. Efficacy and safety of intravenous immunoglobulin plus prednisolone therapy in patients with Kawasaki disease (Post RAISE): a multicentre, prospective cohort study. Lancet Child Adolesc Health. 2018;2(12):855-62.
39. Kim HS, Sohn S, Park JY, Seo JW. Fulminant myocarditis successfully treated with high-dose immunoglobulin. Int J Cardiol. 2004;96(3):485-6.
40. Haque A, Bhatti S, Siddiqui FJ. Intravenous immune globulin for severe acute myocarditis in children. Indian Pediatr. 2009;46(9).
41. Stouffer GA, Sheahan RG, Lenihan DJ, Patel P. The current status of immune modulating therapy for myocarditis: a case of acute parvovirus myocarditis treated with intravenous immunoglobulin. Am J Med Sci. 2003;326(6):369-74.
42. Drucker NA, Colan SD, Lewis AB, Beiser AS, Wessel DL, Takahashi M, et al. Gamma-globulin treatment of acute myocarditis in the pediatric population. Circulation. 1994;89(1):252-7.
43. Schroeder HW, Jr., Dougherty CJ. Review of intravenous immunoglobulin replacement therapy trials for primary humoral immunodeficiency patients. Infection. 2012;40(6):601-11.
44. Sewell WAC, Jolles S. Immunomodulatory action of intravenous immunoglobulin. Immunology. 2002;107(4):387-93.
45. Hartung HP, Mouthon L, Ahmed R, Jordan S, Laupland K, Jolles S. Clinical applications of intravenous immunoglobulins (IVIg)–beyond immunodeficiencies and neurology. Clin Exp Immunol. 2009;158:23-33.
46. Stangel M, Pul R. Basic principles of intravenous immunoglobulin (IVIg) treatment. J Neurol. 2006;253(5):v18-v24.
47. Steele R, Burks JA, Williams L. Intravenous immunoglobulin: new clinical applications. Ann Allergy. 1988;60(2):89-94.
48. Ballow M. Mechanisms of immune regulation by
IVIG. Curr Opin Allergy Clin Immunol. 2014;14(6):509-15.
49. Bayry J, Misra N, Latry V, Prost F, et al. Mechanisms of action of intravenous immunoglobulin in autoimmune and inflammatory diseases. Transfusion clinique et biologique : journal de la Societe francaise de transfusion sanguine. 2003;10(3):165-9.
50. Tha-In T, Bayry J, Metselaar HJ, Kaveri SV, Kwekkeboom J. Modulation of the cellular immune system by intravenous immunoglobulin. Trends Immunol. 2008;29(12):608-15.
51. Samuelsson A, Towers TL, Ravetch JV. Anti-inflammatory activity of IVIG mediated through the inhibitory Fc receptor. Science. 2001;291(5503):484-6.
52. Hartung HP. Advances in the understanding of the mechanism of action of IVIg. J Neurol. 2008;255 Suppl 3:3-6.
53. Crow AR, Brinc D, Lazarus AH. New insight into the mechanism of action of IVIg: the role of dendritic cells. J Thromb Haemost. 2009;7 Suppl 1:245-8.
54. Basta M, Kirshbom P, Frank MM, Fries LF. Mechanism of therapeutic effect of high-dose intravenous immunoglobulin. Attenuation of acute, complement-dependent immune damage in a guinea pig model. J Clin Invest. 1989;84(6):1974-81.
55. Jolles S, Sewell WAC, Misbah SA. Clinical uses of intravenous immunoglobulin. Clin Exp Immunol. 2005;142(1):1-11.
56. Huang X, Sun Y, Su G, Li Y, Shuai X. Intravenous Immunoglobulin Therapy for Acute Myocarditis in Children and Adults. Int Heart J. 2019;60(2):359-65.
57. Udi N, Yehuda S. Intravenous immunoglobulin—indications and mechanisms in cardiovascular diseases. Autoimmun Rev. 2008;7(6):445-52.
58. Klassen T, Hartling L, Vandermeer B, Robinson J. Intravenous immunoglobulin for presumed viral myocarditis in children and adults. 2005.
59. Dorner A, Grunert HP, Lindig V, Chandrasekharan K, Fechner H, Knowlton KU, et al. Treatment of coxsackievirus-B3-infected BALB/c mice with the soluble coxsackie adenovirus receptor CAR4/7 aggravates cardiac injury. J Mol Med (Berlin, Germany). 2006;84(10):842-51.
60. Drucker NA, Colan SD, Lewis AB, Beiser AS, Wessel DL, Takahashi M, et al. Gamma-globulin treatment of acute myocarditis in the pediatric population. Circulation. 1994;89(1):252-7.
61. Störk S, Boivin V, Horf R, Hein L, Lohse MJ, Angermann CE, et al. Stimulating autoantibodies directed against the cardiac β1-adrenergic receptor predict increased mortality in idiopathic cardiomyopathy. Am Heart J. 2006;152(4):697-704.
62. Agarwal S, Agrawal DK. Kawasaki disease: etiopathogenesis and novel treatment strategies. Expert Rev Clin Immunol. 2017;13(3):247-58.
63. Han JW. The Efficacy and Safety of High-Dose Intravenous Immunoglobulin in the Treatment of Kawasaki Disease: How Can We Predict Resistance to Intravenous Immunoglobulin Treatment of Kawasaki Disease? Korean Circ J. 2017;47(2):179-81.
64. Furusho K, Nakano H, Shinomiya K, Tamura T, Manabe Y, Kawarano M, et al. High-dose intravenous gammaglobulin for Kawasaki disease. Lancet. 1984;324(8411):1055-8.
65. Sundel RP. Kawasaki disease. Rheum Dis Clin North Am. 2015;41(1):63-73, viii.
66. Newburger JW, Takahashi M, Beiser AS, Burns JC, Bastian J, Chung KJ, et al. A single intravenous infusion of gamma globulin as compared with four infusions in the treatment of acute Kawasaki syndrome. N Engl J Med. 1991;324(23):1633-9.
67. Newburger JW, Takahashi M, Burns JC, Beiser AS, Chung KJ, Duffy CE, et al. The treatment of Kawasaki syndrome with intravenous gamma globulin. N Engl J Med. 1986;315(6):341-7.
68. Oates‐Whitehead RM, Baumer JH, Haines L, Love S, Maconochie IK, Gupta A, et al. Intravenous immunoglobulin for the treatment of Kawasaki disease in children. Cochrane Database Syst Rev. 2003(4).
69. Veronese G, Ammirati E, Cipriani M, Frigerio M. Fulminant myocarditis: Characteristics, treatment, and outcomes. Anatol J Cardiol. 2018;19(4):279-86.
70. Yu DQ, Wang Y, Ma GZ, Xu RH, Cai ZX, Ni CM, et al. Intravenous immunoglobulin in the therapy of adult acute fulminant myocarditis: A retrospective study. Exp Ther Med. 2014;7(1):97-102.
71. Yoshimatsu Y, Kotani T, Fujiki Y, Oda K, Kataoka T, et al. Successful treatment with intravenous high-dose immunoglobulin for cardiomyopathy in dermatomyositis complicated with rapid progressive interstitial pneumonia. Int J Rheum Dis. 2019;22(2):321-4.
72. Huang X, Sun Y, Su G, Li Y, Shuai X. Intravenous Immunoglobulin Therapy for Acute Myocarditis in Children and Adults. Int Heart J. 2019;60(2):359-65.
73. Kishimoto C, Shioji K, Kinoshita M, Iwase T, Tamaki S, Fujii M, et al. Treatment of acute inflammatory cardiomyopathy with intravenous immunoglobulin ameliorates left ventricular function associated with suppression of inflammatory cytokines and decreased oxidative stress. Int J Cardiol. 2003;91(2-3):173-8.
74. Cardiomyopathy. Am Fam Physician. 2017;96(10):Online.
75. Goland S, Czer LS, Siegel RJ, Tabak S, Jordan S, Luthringer D, et al. Intravenous immunoglobulin treatment for acute fulminant inflammatory cardiomyopathy: series of six patients and review of literature. Can J Cardiol. 2008;24(7):571-4.
76. Xu J, Brooks EG. Giant Cell Myocarditis: A Brief Review. Arch Pathol Lab Med. 2016;140(12):1429-34.
77. Laufs H, Nigrovic PA, Schneider LC, Oettgen H, del Nido P, Moskowitz IP, et al., editors. Giant cell myocarditis in a 12-year-old girl with common variable immunodeficiency. Mayo Clin Proc; 2002: Elsevier.
78. Hurst JW, Morris DC, Alexander RW. The use of the New York Heart Association's classification of cardiovascular disease as part of the patient's complete Problem List. Clin Cardiol. 1999;22(6):385-90.
79. Bozkurt B, Villaneuva FS, Holubkov R, Tokarczyk T, Alvarez RJ, Jr., et al. Intravenous immune globulin in the therapy of peripartum cardiomyopathy. J Am Coll Cardiol. 1999;34(1):177-80.
80. Felix SB, Staudt A, Dorffel WV, Stangl V, Merkel K, Pohl M, et al. Hemodynamic effects of immunoadsorption and subsequent immunoglobulin substitution in dilated cardiomyopathy: three-month results from a randomized study. J Am Coll Cardiol. 2000;35(6):1590-8.
81. McNamara DM, Holubkov R, Starling RC, Dec GW, Loh E, Torre-Amione G, et al. Controlled trial of intravenous immune globulin in recent-onset dilated cardiomyopathy. Circulation. 2001;103(18):2254-9.
82. Lin MS, Tseng YH, Chen MY, Chung CM, Tsai MH, Wang PC, et al. In-hospital and post-discharge outcomes of pediatric acute myocarditis underwent after high-dose steroid or intravenous immunoglobulin therapy. BMC Cardiovasc Disord. 2019;19(1):10.
83. Guo Y, Tian X, Wang X, Xiao Z. Adverse Effects of Immunoglobulin Therapy. Front Immunol. 2018;9:1299-.
84. Katz U, Achiron A, Sherer Y, Shoenfeld Y. Safety of intravenous immunoglobulin (IVIG) therapy. Autoimmun Rev. 2007;6(4):257-9.
85. Calonge M, Perez I, Galindo S, Nieto-Miguel T, Lopez-Paniagua M, et al. A proof-of-concept clinical trial using mesenchymal stem cells for the treatment of corneal epithelial stem cell deficiency. Translational research : J Lab Clin Med. 2019;206:18-40.
86. Shojaei F, Rahmati S, Banitalebi Dehkordi M. A review on different methods to increase the efficiency of mesenchymal stem cell-based wound therapy. Wound Repair Regen: official publication of the Wound Healing Society [and] the European Tissue Repair Society. 2019.
87. Berg J, Lovrinovic M, Baltensperger N, Kissel CK, Kottwitz J, Manka R, et al. Non-steroidal anti-inflammatory drug use in acute myopericarditis: 12-month clinical follow-up. Open Heart. 2019;6(1):e000990.
88. Winter MP, Sulzgruber P, Koller L, Bartko P, Goliasch G, Niessner A. Immunomodulatory treatment for lymphocytic myocarditis-a systematic review and meta-analysis. Heart Fail Rev. 2018;23(4):573-81.
89. Mou SS, McCrory MC. 28 - Inflammatory Heart Disease: Pericardial Effusion and Tamponade, Pericarditis, and Myocarditis. In: Ungerleider RM, Meliones JN, Nelson McMillan K, Cooper DS, Jacobs JP, editors. Critical Heart Disease in Infants and Children (Third Edition). Philadelphia: Elsevier; 2019. p. 351-64.e5.
90. Vetter VL, Covington TM, Dugan NP, Haley DM, et al. Cardiovascular deaths in children: General overview from the National Center for the Review and Prevention of Child Deaths. Am Heart J. 2015;169(3):426-37.e23.
91. Milani P, Dispenzieri A, Scott CG, Gertz MA, Perlini S, Mussinelli R, et al. Independent Prognostic Value of Stroke Volume Index in Patients With Immunoglobulin Light Chain Amyloidosis. Circ Cardiovasc Imaging. 2018;11(5):e006588.
92. Riehle C, Bauersachs J. Key inflammatory mechanisms underlying heart failure. Herz. 2019;44(2):96-106.
93. Ius F, Sommer W, Verboom M, Salman J, Siemeni T, Kühn C, et al. Five-Year Results of an IgA-and IgM-Enriched Human Immunoglobulin-Based Therapy for Early anti-HLA Donor-Specific Antibodies after Lung Transplantation. Thorac Cardiovasc Surg. 2019;67(S 01):DGTHG-V222.
94. Anthony RM, Nimmerjahn F, Ashline DJ, Reinhold VN, Paulson JC, Ravetch JV. Recapitulation of IVIG anti-inflammatory activity with a recombinant IgG Fc. Science. 2008;320(5874):373-6.
95. Shah Z, Vuddanda VV, Bischoff MM, et al. Utilization and Impact of Right Heart Catheterization on In-hospital Mortality, Length of hospital Stay and 30 Day Readmission in Patients Admitted with Cardiogenic Shock - Review of Large, National, Multicenter Database. J Card Fail. 2018;24(8):S96.
96. Li S, Xu S, Li C, Ran X, Cui G, He M, et al. A life support-based comprehensive treatment regimen dramatically lowers the in-hospital mortality of patients with fulminant myocarditis: a multiple center study. Sci China Life Sci. 2019;62(3):369-80.
97. Yen CY, Hung MC, Wong YC, Chang CY, Lai CC, Wu KG. Role of intravenous immunoglobulin therapy in the survival rate of pediatric patients with acute myocarditis: A systematic review and meta-analysis. Sci Rep. 2019;9(1):10459.
98. McNamara DM, Rosenblum WD, Janosko KM, Trost MK, Villaneuva FS, Demetris A, et al. Intravenous immune globulin in the therapy of myocarditis and acute cardiomyopathy. Circulation. 1997;95(11):2476-8.
99. Kishimoto C, Fujita M, Kinoshita M, Iwase T, Fujii B, Murashige A, et al., editors. Immunoglobulin therapy for myocarditis and acute dilated cardiomyopathy. Circulation; 1999: LIPPINCOTT WILLIAMS & WILKINS 530 WALNUT ST, PHILADELPHIA, PA 19106-3621 USA.
100. Maisch B, Haake H, Schlotmann N, Pankuweit S. intermediate dose of pentaglobin eradicates effectively inflammation in parvo B19 and adenovirus positive myocarditis. Am Heart Assoc; 2007.
101. Tedeschi A, Airaghi L, Giannini S, Ciceri L, Massari F. High‐dose intravenous immunoglobulin in the treatment of acute myocarditis. A case report and review of the literature. J Intern Med. 2002;251(2):169-73.
102. Atiq M, Hoda M, Aslam N. Effect of intravenous gamma globulin on short-and mid-term clinical outcome in acute viral myocarditis in children. World J Cardiovasc Dis. 2014;2014.
103. El-Saiedi SA. Randomized controlled trial on the use of intravenous immune globulin in acute pediatric myocarditis. J Clin Res Bioeth. 2013;5:170.
Published
2020-08-25
How to Cite
1.
Mansourabadi AH, Gol Mohammad pour Afrakoti L, Shahi A, Shabanian R, Amirzargar A. Intravenous Immunoglobulin Therapy in Myocarditis. Iran J Allergy Asthma Immunol. 19(4):323-336.
Section
Review Article(s)