Review Article
 

Animal Model of Asthma, Various Methods and Measured Parameters: A Methodological Review

Abstract

Asthma is a chronic inflammatory disease of the airway with extensive airway remodeling. The ethical issues associated with the studies in asthmatic patients, required development of animal model of asthma. Animal models of asthma can provide valuable information on several features of asthma pathogenesis and treatment. Although these models cannot carry out all clinical features, they are valuable to understand mechanisms of the disease and curative access. Related articles were searched in different databases from September 1994 to April 2016 using; animal model of asthma, animal sensitization, allergen-induced asthma in animals terms. Although there are several reviews on this topic, in the present article, induction of animal model of asthma in different animals, various methods used for this purpose, measured parameters and research purposes were reviewed, which will help investigators to use the appropriate animal, methods, and evaluating parameters depending on their study design. In this study various method used for induction of animal model of asthma in different animals and measured parameters were described, which will help investigators to use the appropriate animal, method and evaluating parameters depending on their study design.

  1. James AL, Bai TR, Mauad T, Abramson MJ, Dolhnikoff M, McKay KO, et al. Airway smooth muscle thickness in asthma is related to severity but not duration of asthma. Eur Respir J. 2009; 34(5):1040-1045.

  2. Shinagawa K, Kojima M. Mouse model of airway remodeling: strain differences. Am J Respir Crit Care Med. 2003; 168(8):959-967.

  3. Karol M. Animal models of occupational asthma. Eur Respir J. 1994; 7(3):555-568.

  4. Kumar R, Herbert C, Yang M, Koskinen A, McKenzie A, Foster P. Role of interleukin‐13 in eosinophil accumulation and airway remodelling in a mouse model of chronic asthma. Clin Exp Allergy. 2002; 32(7):1104-1111.

  5. Szelenyi I. Animal models of bronchial asthma. Inflamm Res. 2000; 49(12):639-654.

  6. Taube C, Dakhama A, Gelfand EW. Insights into the pathogenesis of asthma utilizing murine models. Int Arch Allergy Immunol. 2004; 135(2):173-186.

  7. Al Suleimani M, Ying D, Walker MJ. A comprehensive model of allergic rhinitis in guinea pigs. J Pharmacol Toxicol Methods. 2007; 55(2):127-134.

  8. Barrett EG, Rudolph K, Bowen LE, Muggenburg BA, Bice DE. Effect of inhaled ultrafine carbon particles on the allergic airway response in ragweed-sensitized dogs. Inhal Toxicol. 2003; 31(4):432-447.

  9. Farraj AK, Harkema JR, Jan T-R, Kaminski NE. Immune responses in the lung and local lymph node of A/J mice to intranasal sensitization and challenge with adjuvant-free ovalbumin. Toxicol Pathol. 2003; 15(2):151-165.

  10. Kumar RK, Herbert C, Foster PS. The “classical” ovalbumin challenge model of asthma in mice. Curr Drug Targets. 2008; 9(6):485-494.

  11. Fuchs B, Braun A. Improved mouse models of allergy and allergic asthma-chances beyond ovalbumin. Curr Drug Targets. 2008; 9(6):495-502.

  12. Ikeda RK, Miller M, Nayar J, Walker L, Cho JY, McElwain K, et al. Accumulation of peribronchial mast cells in a mouse model of ovalbumin allergen induced chronic airway inflammation: modulation by immunostimulatory DNA sequences. J Immunol. 2003; 171(9):4860-4867.

  13. Zosky G, Sly P. Animal models of asthma. Clin Exp Allergy. 2007; 37(7):973-988.

  14. Schneider T, Van Velzen D, Moqbel R, Issekutz AC. Kinetics and quantitation of eosinophil and neutrophil recruitment to allergic lung inflammation in a brown Norway rat model. Am J Respir Cell Mol Biol. 1997; 17(6):702-712.

  15. Wagers SS, Haverkamp HC, Bates JH, Norton RJ, Thompson-Figueroa JA, Sullivan MJ, Irvin CG. Intrinsic and antigen-induced airway hyperresponsiveness are the result of diverse physiological mechanisms. J Appl Physiol. 2007; 102(1):221-230.

  16. Blonder JP, Mutka SC, Sun X, Qiu J, Green LH, Mehra NK, et al. Pharmacologic inhibition of S-nitrosoglutathione reductase protects against experimental asthma in BALB/c mice through attenuation of both bronchoconstriction and inflammation. BMC Pulm Med. 2014; 14(1):3.

  17. Reddy AT, Lakshmi SP, Reddy RC. Murine model of allergen induced asthma. J Vis Exp: JoVE 2012.

  18. Li B, Luo Q-l, Nurahmat M, Jin H-l, Du Y-j, Wu X, et al. Establishment and Comparison of Combining Disease and Syndrome Model of Asthma with “Kidney Yang Deficiency” and “Abnormal Savda”. Evid Based Complement Alternat Med. 2013; 2013.

  19. Beck L, Spiegelberg HL. The polyclonal and antigen-specific IgE and IgG subclass response of mice injected with ovalbumin in alum or complete Freund's adjuvant. Cell Immunol. 1989; 123(1):1-8.

  20. Yang G, Li L, Volk A, Emmell E, Petley T, Giles-Komar J, Rafferty P, Lakshminarayanan M, Griswold DE, Bugelski PJ. Therapeutic dosing with anti-interleukin-13 monoclonal antibody inhibits asthma progression in mice. J Pharmacol Exp Ther. 2005; 313(1):8-15.

  21. Mabalirajan U, Dinda AK, Kumar S, Roshan R, Gupta P, Sharma SK, Ghosh B. Mitochondrial structural changes and dysfunction are associated with experimental allergic asthma. J Immunol. 2008; 181(5):3540-3548.

  22. Venkayya R, Lam M, Willkom M, Grunig G, Corry DB, Erle DJ. The Th2 lymphocyte products IL-4 and IL-13 rapidly induce airway hyperresponsiveness through direct effects on resident airway cells. Am J Respir Cell Mol Biol. 2002; 26(2):202-208.

  23. Oh S-W, Cha J-Y, Jung J-E, Chang B-C, Kwon H-J, Lee B-R, et al. Curcumin attenuates allergic airway inflammation and hyper-responsiveness in mice through NF-κB inhibition. J Ethnopharmacol. 2011; 136(3):414-421.

  24. Mahay G, Sagan C, Neunlist M, Brouard S, Bodinier M, Magnan A. Food allergy enhances allergic asthma in mice. 2014

  25. Lee SY, Kim JS, Lee JM, Kwon SS, Kim KH, Moon HS, et al. Inhaled corticosteroid prevents the thickening of airway smooth muscle in murine model of chronic asthma. Pulm Pharmacol Ther. 2008; 21(1):14-19.

  26. Ammar E-SM, Gameil NM, Shawky NM, Nader MA. Comparative evaluation of anti-inflammatory properties of thymoquinone and curcumin using an asthmatic murine model. Int Immunopharmacol. 2011; 11(12):2232-2236.

  27. Misawa M, Takenouchi K, Abiru T, Yoshino Y, Yanaura S. Strain difference in an allergic asthma model in rats. Jpn J Pharmacol. 1987; 45(1):63-68.

  28. Hylkema M, Hoekstra M, Luinge M, Timens W. The strength of the OVA‐induced airway inflammation in rats is strain dependent. Clin Exp Immunol. 2002; 129(3):390-396.

  29. Dong F, Wang C, Duan J, Zhang W, Xiang D, Li M. Puerarin Attenuates Ovalbumin-Induced Lung Inflammation and Hemostatic Unbalance in Rat Asthma Model. Evid Based Complement Alternat Med. 2014; 2014.

  30. Yang Y-G, Tian W-M, Zhang H, Li M, Shang Y-X. Nerve growth factor exacerbates allergic lung inflammation and airway remodeling in a rat model of chronic asthma. Exp Ther Med. 2013; 6(5):1251-1258.

  31. Salmon M, Walsh DA, Huang TJ, Barnes PJ, Leonard TB, Hay DW, et al. Involvement of cysteinyl leukotrienes in airway smooth muscle cell DNA synthesis after repeated allergen exposure in sensitized Brown Norway rats. Br J Pharmacol. 1999; 127(5):1151-1158.

  32. Jang D-J, Kim ST, Oh E, Lee K. Enhanced oral bioavailability and antiasthmatic efficacy of curcumin using redispersible dry emulsion. Bio-Med Mater Eng. 2014; 24(1):917-930.

  33. Mahmoudabady M, Neamati A, Vosooghi S, Aghababa H. Hydroalcoholic extract of Crocus sativus effects on bronchial inflammatory cells in ovalbumin sensitized rats. Avicenna J Phytomed. 2013; 3(4):356-363.

  34. HU Y, LIU P, LI H-c, WANG Y-d. The “time-window” effect of early allergen exposure on a rat asthma model. Chin Med J. 2013; 126(12):2265-2269.

  35. Hutson PA, Holgate ST, Church MK. The effect of cromolyn sodium and albuterol on early and late phase bronchoconstriction and airway leukocyte infiltration after allergen challenge of nonanesthetized guinea pigs. Am Rev Respir Dis. 1988; 138(5):1157-1163.

  36. Boskabady MH, Ziaei T. Effect of ascorbic acid on airway responsiveness in ovalbumin sensitized guinea pigs. Respirology. 2003; 8(4):473-478.

  37. Boskabady MH, Teymoorybcef S. The influence of epithelium on the responsiveness of guinea-pig trachea to ß-adrenergic agonist and antagonist. Signature. 2003; 9(9):342.

  38. Ricciardolo FL, Nijkamp F, Rose VD, Folkerts G. The guinea pig as an animal model for asthma. Curr Drug Targets. 2008; 9(6):452-465.

  39. Keyhanmanesh R, Boskabady MH, Eslamizadeh MJ, Khamneh S, Ebrahimi MA. The Effect of Thymoquinone, the Main Constituent of< EM EMTYPE=. Planta Med. 2010; 76(03):218-222.

  40. Boskabady M, Tabatabaee A, Byrami G. The effect of the extract of Crocus sativus and its constituent safranal, on lung pathology and lung inflammation of ovalbumin sensitized guinea-pigs. Phytomedicine. 2012; 19(10):904-911.

  41. Bautsch W, Hoymann H-G, Zhang Q. Cutting edge: guinea pigs with a natural C3a-receptor defect exhibit decreased bronchoconstriction in allergic airway disease: evidence for an involvement of the C3a anaphylatoxin in the pathogenesis of asthma. J Immunol, 2000; 5401-5405

  42. Griffiths-Johnson DA, Karol MH. Validation of a non-invasive technique to assess development of airway hyperreactivity in an animal model of immunologic pulmonary hypersensitivity. Toxicology. 1991; 65(3):283-294.

  43. Ryan LK, Karol MH. Release of tumor necrosis factor in guinea pigs upon acute inhalation of cotton dust. Am J Respir Cell Mol Biol. 1991; 5(1):93-98.

  44. Jalali S, Boskabady MH, Rohani AH, Eidi A. The effect of carvacrol on serum cytokines and endothelin levels of ovalbumin sensitized guinea-pigs. Iran J Basic Med Sci. 2013; 16(4):615.

  45. Boskabady M, Adel-Kardan S. Increased muscarinic receptor blockade by atropine in tracheal chains of ovalbumin-sensitized guinea pigs. Pharmacology. 1999; 58(6):300-308.

  46. Boskabady MH, Keyhanmanesh R, Khamneh S, Ebrahimi MA. The effect of Nigella sativa extract on tracheal responsiveness and lung inflammation in ovalbumin-sensitized guinea pigs. Clinics. 2011; 66(5):879-887.

  47. Byrami G, Boskabady MH, Jalali S, Farkhondeh T. The effect of the extract of Crocus sativus on tracheal responsiveness and plasma levels of IL-4, IFN-γ, total NO and nitrite in ovalbumin sensitized Guinea-pigs. J Ethnopharmacol. 2013; 147(2):530-535.

  48. Boskabady MH, Shahmohammadi Mehrjardi S, Rezaee A, Rafatpanah H, Jalali S. The impact of Zataria multiflora Boiss extract on in vitro and in vivo Th1 Th2 cytokine (IFNγ/L4) balance. J Ethnopharmacol. 2013; 150(3):1024-1031.

  49. Lewis CA, Johnson A, Broadley KJ. Early and late phase bronchoconstrictions in conscious sensitized guinea-pigs after macro-and microshock inhalation of allergen and associated airway accumulation of leukocytes. Int J Immunopharmacol. 1996; 18(6):415-422.

  50. Buels K, Jacoby D, Fryer A. Non‐bronchodilating mechanisms of tiotropium prevent airway hyperreactivity in a guinea‐pig model of allergic asthma. Br J Pharmacol. 2012; 165(5):1501-1514.

  51. Ram A, Das M, Ghosh B. Curcumin attenuates allergen-induced airway hyperresponsiveness in sensitized guinea pigs. Biol Pharm Bull. 2003; 26(7):1021-1024.

  52. Mauser PJ, Pitman A, Witt A, Fernandez X, Zurcher J, Kung T, et al. Inhibitory effect of the TRFK-5 anti-IL-5 antibody in a guinea pig model of asthma. Am Rev Respir Dis. 1993; 148(6_pt_1):1623-1627.

  53. Tepper R, Ramchandani R, Argay E, Zhang L, Xue Z, Liu Y, et al. Chronic strain alters the passive and contractile properties of rabbit airways. J Appl Physiol. 2005; 98(5):1949-1954.

  54. Metzger W. Late phase asthma in an allergic rabbit model. Late Phase Allergic Reactions. 1990: 347-362.

  55. Gozzard N, El‐Hashim A, Herd C, Blake S, Holbrook M, Hughes B, et al. Effect of the glucocorticosteroid budesonide and a novel phosphodiesterase type 4 inhibitor CDP840 on antigen‐induced airway responses in neonatally immunised rabbits. Br J Pharmacol. 1996; 118(5):1201-1208.

  56. Kamaruzaman NA, Sulaiman SA, Kaur G, Yahaya B. Inhalation of honey reduces airway inflammation and histopathological changes in a rabbit model of ovalbumin-induced chronic asthma. BMC. Complement Altern Med. 2014; 14(1):176.

  57. Darowski M, Hannon V, Hirshman C. Corticosteroids decrease airway hyperresponsiveness in the Basenji-Greyhound dog model of asthma. J Appl Physiol. 1989; 66(3):1120-1126.

  58. Dévaud N, Hall J, Gaschen F, Vallan C, Doherr M, Williamson L, et al. Lymphocyte blastogenic response to ovalbumin in a model for canine allergy. Vet J. 2009; 181(2):178-186.

  59. Schiessl B, Zemann B, Hodgin-Pickart L, de Weck A, Griot-Wenk M, Mayer P, et al. Importance of early allergen contact for the development of a sustained immunoglobulin E response in a dog model. Int Arch Allergy Immunol. 2003; 130(2):125-134.

  60. Abraham WM, Ahmed A, Cortes A, Sielczak MW, Hinz W, Bouska J, et al. The 5-lipoxygenase inhibitor zileuton blocks antigen-induced late airway responses, inflammation and airway hyperresponsiveness in allergic sheep. Eur J Phycol. 1992; 217(2):119-126.

  61. Van Gramberg JL, de Veer MJ, O'Hehir RE, Meeusen EN, Bischof RJ. Induction of allergic responses to peanut allergen in sheep. PloS one. 2012; 7(12):e51386.

  62. Viel L. Small airway disease as a vanguard for chronic obstructive pulmonary disease. The Veterinary clinics of North America. Equine practice. 1997; 13(3):549-560.

  63. Furr M. Humoral immune responses in the horse after intrathecal challenge with ovalbumin. J Vet Intern Med. 2007; 21(4):806-811.

  64. Lavoie J-P, Lefebvre-Lavoie J, Leclere M, Lavoie-Lamoureux A, Chamberland A, Laprise C, et al. Profiling of differentially expressed genes using suppression subtractive hybridization in an equine model of chronic asthma. PloS one. 2012; 7(1):e29440.

  65. Kim CH, Ahn JH, Kim SJ, Lee S-Y, Kim YK, Kim KH, et al. Co-administration of vaccination with DNA encoding T cell epitope on the Der p and BCG inhibited airway remodeling in a murine model of chronic asthma. J Asthma. 2006; 43(5):345-353.

  66. Johnson JR, Wiley RE, Fattouh R, Swirski FK, Gajewska BU, Coyle AJ, et al. Continuous exposure to house dust mite elicits chronic airway inflammation and structural remodeling. Am J Respir Crit Care Med. 2004; 169(3):378-385.

  67. Le DD, Rochlitzer S, Fischer A, Heck S, Tschernig T, Sester M, et al. Allergic airway inflammation induces the migration of dendritic cells into airway sensory ganglia. brain. 2014; 2:5.

  68. Ulrich K, Hincks JS, Walsh R, Wetterstrand E, Fidock MD, Sreckovic S, et al. Anti-inflammatory modulation of chronic airway inflammation in the murine house dust mite model. Pulm Pharmacol Ther. 2008; 21(4):637-647.

  69. Tournoy K, Kips J, Schou C, Pauwels R. Airway eosinophilia is not a requirement for allergen-induced airway hyperresponsiveness. Clin Exp Allergy. 2000; 30(1):79-85.

  70. Iwashita K, Kawasaki H, Sawada M, In M, Mataki Y, Kuwabara T. Shortening of the induction period of allergic asthma in cynomolgus monkeys by Ascaris suum and house dust mite. J Pharmacol Sci. 2008; 106(1):92-99.

  71. Mauser PJ, Pitman AM, Fernandez X, Foran SK, Adams 3rd G, Kreutner W, et al. Effects of an antibody to interleukin-5 in a monkey model of asthma. Am J Respir Crit Care Med. 1995; 152(2):467-472.

  72. Duechs MJ, Tilp C, Tomsic C, Gantner F, Erb KJ. Development of a Novel Severe Triple Allergen Asthma Model in Mice Which Is Resistant to Dexamethasone and Partially Resistant to TLR7 and TLR9 Agonist Treatment. PloS one. 2014; 9(3):e91223.

  73. Kurup VP, Barrios CS, Raju R, Johnson BD, Levy MB, Fink JN. Immune response modulation by curcumin in a latex allergy model. Clin Mol Allergy. 2007; 5(1):1.

  74. Yuan S, Cao S, Jiang R, Liu R, Bai J, Hou Q. FLLL31, a derivative of curcumin, attenuates airway inflammation in a multi-allergen challenged mouse model. Int Immunopharmacol. 2014; 21(1):128-136.

  75. Sarpong SB, Zhang L-Y, Kleeberger SR. A novel mouse model of experimental asthma. Int. Arch. Allergy. Immunol. 2004; 132(4):346-354.

  76. Ahmad T, Mabalirajan U, Sharma A, Aich J, Makhija L, Ghosh B, et al. Simvastatin improves epithelial dysfunction and airway hyperresponsiveness: from asymmetric dimethyl-arginine to asthma. Am J Respir Cell Mol Biol . 2011; 44(4):531-539.

  77. Xiao X, Zeng X, Zhang X, Ma L, Liu X, Yu H, et al. Effects of Caryota mitis profilin-loaded PLGA nanoparticles in a murine model of allergic asthma. Int J Nanomedicine. 2013; 8:4553.

  78. Hamelmann E, Schwarze J, Takeda K, Oshiba A, Larsen G, Irvin C, et al. Noninvasive measurement of airway responsiveness in allergic mice using barometric plethysmography. Am J Respir Crit Care Med. 1997; 156(3):766-775.

  79. Moon D-O, Kim M-O, Lee H-J, Choi YH, Park Y-M, Heo M-S, et al. Curcumin attenuates ovalbumin-induced airway inflammation by regulating nitric oxide. Biochem Biophys Res Commun. 2008; 375(2):275-279.

  80. Temelkovski J, Hogan SP, Shepherd DP, Foster PS, Kumar RK. An improved murine model of asthma: selective airway inflammation, epithelial lesions and increased methacholine responsiveness following chronic exposure to aerosolised allergen. Thorax. 1998; 53(10):849-856.

  81. McMillan S, Xanthou G, Lloyd C. Therapeutic administration of Budesonide ameliorates allergen‐induced airway remodelling. Clin Exp Allergy. 2005; 35(3):388-396.

  82. Wang C, Almirall J, Dolman C, Dandurand R, Eidelman D. In vitro bronchial responsiveness in two highly inbred rat strains. J Appl Physiol. 1997; 82(5):1445-1452.

  83. Kramer K, Doelman CJ, Timmerman H, Bast A. A disbalance between bet a-adrenergic and muscarinic responses caused by hydrogen peroxide in rat airways in vitro. Biochem Biophys Res Commun. 1987; 145(1):357-362.

  84. Neamati A, Boskabady MH, Afshari JT, Hazrati SM, Rohani AH. The effect of natural adjuvants on tracheal responsiveness and cell count in lung lavage of sensitized guinea pigs. Respirology. 2009; 14(6):877-884.

  85. Boskabady MH, Neamati A, Hazrati SM, Khakzad MR, Moosavi SH, Gholamnezhad Z. The preventive effects of natural adjuvants, G2 and G2F on tracheal responsiveness and serum IL-4 and IFN-?(th1/th2 balance) in sensitized guinea pigs. Clinics. 2014; 69(7):491-496.

  86. Boskabady MH, Jalali S. Effect of carvacrol on tracheal responsiveness, inflammatory mediators, total and differential WBC count in blood of sensitized guinea pigs. Exp Biol Med. 2013; 238(2):200-208.

  87. Featherstone R, Hutson P, Holgate S, Church M. Active sensitization of guinea-pig airways in vivo enhances in vivo and in vitro responsiveness. Eur Respir J. 1988; 1(9):839-845.

  88. Boskabady M, Kiani S. The Effect of Exposure of Guinea Pig to Cigarette Smoke and their Sensitization in Tracheal Responsiveness to Histamine and Histamine Receptor (H1) Blockade by Chlorpheniramine. Pathophysiology. 2007; 14(2):97-104.

  89. Bousquet J, Jeffery PK, Busse WW, Johnson M, Vignola AM. Asthma: from bronchoconstriction to airways inflammation and remodeling. Am J Respir Crit Care Med. 2000; 161(5):1720-1745.

  90. Chapoval SP, Iijima K, Marietta EV, Smart MK, Chapoval AI, Andrews AG, et al. Allergic inflammatory response to short ragweed allergenic extract in HLA-DQ transgenic mice lacking CD4 gene. J Immunol. 2002; 168(2):890-899.

  91. Cockcroft DW, Davis BE. Mechanisms of airway hyperresponsiveness. J Allergy Clin Immunol. 2006; 118(3):551-559.

  92. Lim YS, Won T-B, Shim WS, Kim YM, Kim J-W, Lee CH, et al. Induction of airway remodeling of nasal mucosa by repetitive allergen challenge in a murine model of allergic rhinitis. Ann Allergy Asthma Immunol. 2007; 98(1):22-31.

  93. Ebina M, Takahashi T, Chiba T, Motomiya M. Cellular hypertrophy and hyperplasia of airway smooth muscles underlying bronchial asthma: a 3-D morphometric study. Am Rev Respir Dis. 1993; 148(3):720-726.

  94. Woodruff PG, Dolganov GM, Ferrando RE, Donnelly S, Hays SR, Solberg OD, et al. Hyperplasia of smooth muscle in mild to moderate asthma without changes in cell size or gene expression. Am J Respir Crit Care Med. 2004; 169(9):1001-1006.

  95. Aikawa T, Shimura S, Sasaki H, Ebina M, Takishima T. Marked goblet cell hyperplasia with mucus accumulation in the airways of patients who died of severe acute asthma attack. Chest J. 1992; 101(4):916-921.

  96. Heard BE, Hossain S. Hyperplasia of bronchial muscle in asthma. J Pathol. 1973; 110(4):319-331.

  97. Hirota J, Ask K, Fritz D, Ellis R, Wattie J, Richards C, et al. Role of STAT6 and SMAD2 in a model of chronic allergen exposure: a mouse strain comparison study. Clin Exp Allergy. 2009; 39(1):147-158.

  98. Lee JJ, Dimina D, Macias MP, Ochkur SI, McGarry MP, O'Neill KR, et al. Defining a link with asthma in mice congenitally deficient in eosinophils. Science. 2004; 305(5691):1773-1776.

  99. Nials AT, Uddin S. Mouse models of allergic asthma: acute and chronic allergen challenge. Dis Model Mech. 2008; 1(4-5):213-220.

  100. Wang W, Zhu R, Xie Q, Li A, Xiao Y, Li K, et al. Enhanced bioavailability and efficiency of curcumin for the treatment of asthma by its formulation in solid lipid nanoparticles. Int J Nanomedicine. 2012; 7:3667.

  101. Zeng X, Cheng Y, Qu Y, Xu J, Han Z, Zhang T. Curcumin inhibits the proliferation of airway smooth muscle cells in vitro and in vivo. Int J Mol Med. 2013; 32(3):629-636.

  102. Uriarte SM, Rane MJ, Merchant ML, Jin S, Lentsch AB, Ward RA, et al. Inhibition of neutrophil exocytosis ameliorates acute lung injury in rats. Shock (Augusta, Ga) . 2013; 39(3):286.

  103. Li Y, Martin LD, Minnicozzi M, Greenfeder S, Fine J, Pettersen CA, et al. Enhanced expression of mucin genes in a guinea pig model of allergic asthma. Am J Respir Cell Mol Biol. 2001; 25(5):644-651.

  104. Farkhondeh T, Boskabady M, Jalali S, Bayrami G. The effect of lead exposure on tracheal responsiveness to methacholine and ovalbumin, total and differential white blood cells count, and serum levels of immunoglobulin E, histamine, and cytokines in guinea pigs. Hum Exp Toxicol. 2013:0960327113499040.

  105. Boskabady M-H, Keyhanmanesh R, Khameneh S, Doostdar Y, Khakzad M-R. Potential immunomodulation effect of the extract of Nigella sativa on ovalbumin sensitized guinea pigs. J Zhejiang Univ Science B. 2011; 12(3):201-209.

  106. Li L, Sun J, Xu C, Zhang H, Wu J, Liu B, et al. Icariin Ameliorates Cigarette Smoke Induced Inflammatory Responses via Suppression of NF-κB and Modulation of GR In Vivo and In Vitro. PloS one. 2014; 9(8):e102345.

  107. Lloyd CM, Gonzalo J-A, Nguyen T, Delaney T, Tian J, Oettgen H, et al. Resolution of bronchial hyperresponsiveness and pulmonary inflammation is associated with IL-3 and tissue leukocyte apoptosis. J Immunol. 2001; 166(3):2033-2040.

  108. Rowe RG, Keena D, Sabeh F, Willis AL, Weiss SJ. Pulmonary fibroblasts mobilize the membrane-tethered matrix metalloprotease, MT1-MMP, to destructively remodel and invade interstitial type I collagen barriers. Am J Physiol Lung Cell Mol Physiol. 2011; 301(5):L683-L692.

  109. Farkhondeh T, Boskabady MH, Kohi MK, Sadeghi-Hashjin G, Moin M. Lead exposure affects inflammatory mediators, total and differential white blood cells in sensitized guinea pigs during and after sensitization. Drug Chem Toxicol. 2013(0):1-7.

  110. Neamati A, Boskabady MH, Mohaghegh Hazrati S, Khakzad MR, Moosavi SH. The effect of natural adjuvants (G2, G2F) on lung inflammation of sensitized guinea pigs. Avicenna J Phytomed. 2013; 3(4):364-370.

  111. Mapp CE, Lapa e Silva JR, Lucchini RE, Chitano P, Rado V, Saetta M, et al. Inflammatory events in the blood and airways of guinea pigs immunized to toluene diisocyanate. Am J Respir Crit Care Med. 1996; 154(1):201-208.

  112. Fernandez-Rodriguez S, Ford WR, Broadley KJ, Kidd EJ. Establishing the phenotype in novel acute and chronic murine models of allergic asthma. Int Immunopharmacol. 2008; 8(5):756-763.

  113. Lanone S, Zheng T, Zhu Z, Liu W, Lee CG, Ma B, et al. Overlapping and enzyme-specific contributions of matrix metalloproteinases-9 and-12 in IL-13–induced inflammation and remodeling. J Clin Invest. 2002; 110(4):463-474.

  114. Singer M, Lefort J, Vargaftig BB. Granulocyte depletion and dexamethasone differentially modulate airways hyperreactivity, inflammation, mucus accumulation, and secretion induced by rmIL-13 or antigen. Am J Respir Cell Mol Biol . 2002; 26(1):74-84.

  115. Kay AB. Natural killer T cells and asthma. N Engl J Med. 2006; 354(11):1186.

  116. Laoukili J, Perret E, Willems T, Minty A, Parthoens E, Houcine O, et al. IL-13 alters mucociliary differentiation and ciliary beating of human respiratory epithelial cells. J Clin Invest. 2001; 108(12):1817-1824.

  117. Sutherland M, Shome G, Hulbert L, Krebs N, Wachtel M, McGlone J. Acute stress affects the physiology and behavior of allergic mice. Physiol Behav. 2009; 98(3):281-287.

  118. Karaman M, Arıkan Ayyıldız Z, Fırıncı F, Kiray M, Bağrıyanık A, Yilmaz O, et al. Effects of curcumin on lung histopathology and fungal burden in a mouse model of chronic asthma and oropharyngeal candidiasis. Arch Med Res. 2011; 42(2):79-87.

  119. Wakahara K, Tanaka H, Takahashi G, Tamari M, Nasu R, Toyohara T, et al. Repeated instillations of Dermatophagoides farinae into the airways can induce Th2-dependent airway hyperresponsiveness, eosinophilia and remodeling in mice: Effect of intratracheal treatment of fluticasone propionate. Eur J Pharmacol. 2008; 578(1):87-96.

  120. Bukhari IS, Pattnaik B, Rayees S, Kaul S, Dhar MK. Safranal of Crocus sativus L. inhibits inducible nitric oxide synthase and attenuates asthma in a mouse model of asthma. Phytother Res. 2014

  121. Chauhan PS, Kumari S, Kumar JP, Chawla R, Dash D, Singh M, et al. Intranasal curcumin and its evaluation in murine model of asthma. Int Immunopharmacol. 2013; 17(3):733-743.

  122. Chauhan PS, Dash D, Singh R. Intranasal curcumin attenuates airway remodeling in murine model of chronic asthma. Int Immunopharmacol. 2014; 21(1):63-75.

  123. Murad H, Hasanin A. The anti-inflammatory effects of 1, 1 dimethyl-4-phenylpiperazinium (DMPP) compared to dexamethasone in a guinea pig model of ovalbumin induced asthma. Eur Rev Med Pharmacol Sci. 2014; 18(15):2228-2236.

  124. Keyhanmanesh R, Boskabady MH, Khamneh S, Doostar Y. Effect of thymoquinone on the lung pathology and cytokine levels of ovalbumin-sensitized guinea pigs. Pharmacol Rep. 2010; 62(5):910-916.

  125. Jin R, Day BW, Karol MH. Toluene diisocyanate protein adducts in the bronchoalveolar lavage of guinea pigs exposed to vapors of the chemical. Chem Res Toxicol. 1993; 6(6):906-912.

  126. Fotouh SA, Farouk GM. Mitigation of Delayed Sodium Hypochlorite-Induced Lung Injury by Phosphodiesterase Enzyme Inhibitors (PDEIs), Pentoxifylline and Theophylline, in Guinea Pigs. Egypt J Basic Clin Pharmacol. 2011; 1(1):9-21.

  127. Karaman M, Firinci F, Cilaker S, Uysal P, Tugyan K, Yilmaz O, et al. Anti-inflammatory effects of curcumin in a murine model of chronic asthma. Allergol Immunopathol. 2012; 40(4):210-214.

  128. Dunphy JL, Barcham GJ, Bischof RJ, Young AR, Nash A, et al. Isolation and characterization of a novel eosinophil-specific galectin released into the lungs in response to allergen challenge. J Biol Chem. 2002; 277(17):14916-14924.

  129. Kirschvink N, Leemans J, Delvaux F, Snaps F, Clercx C, Gustin P. Functional, inflammatory and morphological characterisation of a cat model of allergic airway inflammation. Vet J. 2007; 174(3):541-553.

  130. Fornhem C, Kumlin M, Lundberg J, Alving K. Allergen-induced late-phase airways obstruction in the pig: mediator release and eosinophil recruitment. Eur Respir J 1995; 8(7):1100-1109.

  131. Ohrui T, Sekizawa K, Aikawa T, Yamauchi K, Sasaki H, Takishima T. Vascular permeability and airway narrowing during late asthmatic response in dogs treated with metopirone. J Allergy Clin Immunol. 1992; 89(5):933-943.

  132. Hayes JP, Daniel R, Tee RD, Barnes PJ, Taylor AN, Chung KF. Bronchial hyperreactivity after inhalation of trimellitic anhydride dust in guinea pigs after intradermal sensitization to the free hapten. Am Rev Respir Dis. 1992; 146(5):1311-1314.

  133. Out TA, Wang SZ, Rudolph K, Bice DE. Local T‐cell activation after segmental allergen challenge in the lungs of allergic dogs. Immunology. 2002; 105(4):499-508.

  134. Chiang PC, Hu Y, Thurston A, Sommers CD, Guzova JA, Kahn LE, et al. Pharmacokinetic and pharmacodynamic evaluation of the suitability of using fluticasone and an acute rat lung inflammation model to differentiate lung versus systemic efficacy. J PhaRM SCI. 2009; 98(11):4354-4364.

  135. Foong RE, Shaw NC, Berry LJ, Hart PH, Gorman S, Zosky GR. Vitamin D deficiency causes airway hyperresponsiveness, increases airway smooth muscle mass, and reduces TGF‐β expression in the lungs of female BALB/c mice. Psychol Rep. 2014; 2(3).

  136. Brown RH, Kaczka DW, Mitzner W. Effect of parenchymal stiffness on canine airway size with lung inflation. PloS one. 2010; 5(4):e10332.

Files
IssueVol 15, No 6 (2016) QRcode
SectionReview Article(s)
Keywords
Asthma Animal models Airway remodeling Airway inflammation Airway responsiveness

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
1.
Kianmeher M, Ghorani V, Boskabady MH. Animal Model of Asthma, Various Methods and Measured Parameters: A Methodological Review. Iran J Allergy Asthma Immunol. 2017;15(6):445-465.