The Effect of Lactobacillus actobacillus Peptidoglycan on Bovine β-Lactoglobulin-Sensitized Mice via TLR2/NF-κB Pathway
Abstract
Our previous study reported that Lactobacillus acidophilus(L.acidophilus) key laboratory of dairy science (KLDS) 1.0738 had an effective impact on inhibiting β-lactoglobulin (β-lg) allergy. This study further investigated the anti-allergic activity of peptidoglycan (PGN) isolated from KLDS 1.0738. This study aimed to assess whether toll-like receptor 2 (TLR2)/NF-kappaB (NF-κB) signaling activated by PGN was responsible for reducing allergic inflammation. Our data showed that administration of L. acidophilus PGN inhibited IgE production and improved the Treg/Th17 balance toward a Treg response in a mouse model of β-lg allergy. In addition, treating different doses L. acidophilus PGN to sensitized mice significantly increased TLR2 levels, along with enhancing NF-κB expression, especially in medium and high concentration (p<0.05). Further analysis revealed that the mRNA expression of TLR2 and NF-κB were positively correlated with the Foxp3 mRNA expression (p<0.05), but were negatively correlated with the RORγt mRNA expression in L. acidophilus PGN-treated group compared to allergy group (p<0.05). This study suggests PGN was similar to probiotics in preventing β-lg allergy through regulating Treg/Th17 imbalance, and activation of TLR2/NF-κB signaling may be involved in this process.
1. Caffarelli C, Baldi F, Bendandi B, Calzone L, Marani M, Pasquinelli P. Cow's milk protein allergy in children: a practical guide. Ital J Pediatr 2010; 36:5.
2. Rodriguez B, Prioult G, Hacini-Rachinel F, Moine D, Bruttin A, Ngom-Bru C, Labellie C, Nicolis I, Berger B, Mercenier A, Butel MJ, Waligora-Dupriet AJ. Infant gut microbiota is protective against cow's milk allergy in mice despite immature ileal T-cell response. FEMS Microbiol Ecol 2012; 79(1):192-202.
3. Berni Canani R, Nocerino R, Terrin G, Coruzzo A, Cosenza L, Leone L, et al. Effect of Lactobacillus GG on tolerance acquisition in infants with cow's milk allergy: a randomized trial. J Allergy Clin Immunol 2012;129(2):580-2.
4. Pellaton C, Nutten S, Thierry AC, Boudousquié C, Barbier N, Blanchard C, et al. Intragastric and intranasal administration of Lactobacillus paracasei NCC2461 modulates allergic airway inflammation in mice. Int J Inflam 2012; 2012:686739.
5. Oliveira-Nascimento L, Massari P, Wetzler LM. The role of TLR2 in infection and immunity. Front Immunol 2012;3:79.
6. Zhong Y, Huang J, Tang W, Chen B, Cai W. Effects of probiotics, probiotic DNA and the CpG oligodeoxynucleotides on ovalbumin-sensitized Brown- Norway rats via TLR9/NF-κB pathway. FEMS Immunol Med Microbiol 2012; 66(1):71-82.
7. Sengupta R, Altermann E, Anderson RC, McNabb WC, Moughan PJ, Roy NC. The role of cell surface architecture of lactobacilli in host-microbe interactions in the gastrointestinal tract. Mediators Inflamm 2013;2013:237921.
8. Wu L, Feng BS, He SH, Zheng PY, Croitoru K, Yang PC.Bacterial peptidoglycan breaks down intestinal tolerance via mast cell activation: the role of TLR2 and NOD2. Immunol Cell Biol 2009; 85(7):538-45.
9. Sun J, Shi YH, Le GW, Ma XY. Distinct immune response induced by peptidoglycan derived from Lactobacillus sp. World J Gastroenterol 2005;11(40):6330-7.
10. Shida K, Kiyoshima-Shibata J, Kaji R, Nagaoka M, Nanno M. Peptidoglycan from lactobacilli inhibits interleukin-12 production by macrophages induced by Lactobacillus casei through Toll-like receptor 2- dependent and independent mechanisms. Immunology 2009; 128(1 Suppl):e858-69.
11. Kawashima T, Hayashi K, Kosaka A, Kawashima M, Igarashi T, Tsutsui H, et al. Lactobacillus plantarum strain YU from fermented foods activates Th1 and protective immune responses. Int Immunopharmacol 2011; 11(12):2017-24.
12. Zhao Y, Yang J, Gao YD, Guo W. Th17 immunity in patients with allergic asthma. Int Arch Allergy Imm 2010; 151(4):297-307.
13. Palomares O, Yaman G, Azkur AK, Akkoc T, Akdis M, Akdis CA. Role of Treg in immune regulation of allergic diseases. Eur J Immunol 2010; 40(5):1232-40.
14. Loures FV, Pina A, Felonato M, Calich VL. TLR2 is a negative regulator of Th17 cells and tissue pathology in a pulmonary model of fungal infection. J Immunol 2009;183(2):1279-90.
15. Nichols JR, Aldrich AL, Mariani MM, Vidlak D, Esen N, Kielian T. TLR2 deficiency leads to increased Th17 infiltrates in experimental brain abscesses. J Immunol 2009; 182(11):7119-30.
16. Filippi CM, Ehrhardt K, Estes EA, Larsson P, Oldham JE, von Herrath MG. TLR2 signaling improves immunoregulation to prevent type 1 diabetes. Eur J Immunol 2011; 41(5):1399-409.
17. Lesiak A, Smolewski P, Sobolewska-Sztychny D, Sysa- Jedrzejowska A, Narbutt J. The role of T-regulatory cells and Toll-like receptors 2 and 4 in atopic dermatitis. Scand J Immunol 2012; 76(4):405-10.
18. Li AL, Meng XC, Duan CC, Huo GC, Zheng QL, Li D. Suppressive effects of oral administration of heat-killed Lactobacillus acidophilus on Th17 immune responses in a bovine β-lg-sensitized mice model. Biol Pharm Bull 2013; 36(2):202-7.
19. Li AL, Meng XC, Huo GC,Duan CC, Huo GC, Zheng QL, Li D. The Treg/Th17 imbalance in bovine β-lg- sensitized mice. Int Dairy J 2014; 34:257-262.
20. Iwabuchi N, Takahashi N, Xiao JZ, Miyaji K, Iwatsuki K.In vitro Th1 cytokine-independent Th2 suppressive effects of bifidobacteria. Microbiol Immunol 2007;51(7):649-60.
21. Sekine K, Toida T, Saito M, Kuboyama M, Kawashima T, Hashimoto Y. A new morphologically characterized cell wall preparation (whole peptidoglycan) from Bifidobacterium infantis with a higher efficacy on the regression of an established tumor in mice. Cancer Res 1985; 45(3):1300-7.
22. Shida K, Kiyoshima-Shibata J, Kaji R, Nagaoka M, Nanno M. Peptidoglycan from lactobacilli inhibits interleukin-12 production by macrophages induced by Lactobacilluscasei through Toll-like receptor 2-dependent and independent mechanisms. Immunology 2009; 128(1 Suppl):e858-69.
23. Rosenthal RS, Dziarski R. Isolation of peptidoglycan and soluble peptidoglycan fragments. Methods Enzymol 1994; 235:253-85.
24. Tian PJ, Li BL, Shan YJ, Zhang JN, Chen JY, Yu M, et al. Extraction of peptidoglycan from L. paracasei subp. Paracasei X12 and its preliminary mechanisms of inducing immunogenic cell death in HT-29 cells. Int J Mol Sci 2015; 16(8):20033-49.
25. Shida K, Kiyoshima-Shibata J, Nagaoka M, Watanabe K, Nanno M. Induction of interleukin-12 by Lactobacillus strains having a rigid cell wall resistant to intracellular digestion. J Dairy Sci 2006; 89(9):3306-17.
26. Macho Fernandez E, Valenti V, Rockel C, Hermann C, Pot B, Boneca IG, et al. Anti-inflammatory capacity of selected lactobacilli in experimental colitis is driven by NOD2-mediated recognition of a specific peptidoglycan- derived muropeptide. Gut 2011; 60(8):1050-9.
27. Duan C, Huo G, Yang L, Ren D, Chen J. Comparison of sensitization between beta- lactoglobulin and its hydrolysates. Asian Pac J Allergy Immunol 2012;30(1):32-9.
28. Macho Fernandez E, Pot B, Grangette C. Beneficial effect of probiotics in IBD: are peptidogycan and NOD2 the molecular key effectors? Gut Microbes 2011; 2(5):280-6.
29. Sengupta R, Altermann E, Anderson RC, McNabb WC, Moughan PJ, Roy NC. The role of cell surface architecture of lactobacilli in host-microbe interactions in the gastrointestinal tract. Mediators Inflamm 2013;2013:237921.
30. Sukhithasri V, Nisha N, Biswas L, Anil Kumar V, Biswas R. Innate immune recognition of microbial cell wall components and microbial strategies to evade such recognitions. Microbiol Res 2013; 168(7):396-406.
31. Zeuthen LH, Fink LN, Frokiaer H. Toll-like receptor 2 and nucleotide-binding oligomerization domain-2 play divergent roles in the recognition of gutderived lactobacilli and bifidobacteria in dendritic cells. Immunology 2008; 124(4):489-502.
32. Rakoff-Nahoum S, Paglino J, Eslami-Varzaneh F, Edberg S, Medzhitov R. Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis. Cell 2004; 118(2):229-41.
33. Wang Q, Dziarski R, Kirschning CJ, Muzio M, Gupta D.Micrococci and peptidoglycan activate TLR2-->MyD88--
>IRAK-->TRAF-->NIK-->IKK-->NF-kappaB signal transduction pathway that induces transcription of interleukin-8. Infect Immun 2001; 69(4):2270-6.
34. Sukkar MB, Xie S, Khorasani NM, Kon OM, Stanbridge R, Issa R, Chung KF. Toll-like receptor 2, 3, and 4 expression and function in human airway smooth muscle. J Allergy Clin Immunol 2006; 118(3): 641-8.
35. Dong Z, Yang Z, Wang C. Expression of TLR2 and TLR4 messenger RNA in the epithelial cells of the nasal airway. Am J Rhinol 2005; 19(3):236-9.
36. Castoldi A, Braga TT, Correa-Costa M, Aguiar CF, Bassi ÊJ, Correa-Silva R, et al. TLR2, TLR4 and the MYD88 signaling pathway are crucial for neutrophil migration in acute kidney injury induced by sepsis. PLoS One 2012;7(5):e37584.
37. Leendertse M, Willems RJ, Giebelen IA, van den Pangaart PS, Wiersinga WJ, et al. TLR2-dependent MyD,88 signaling contributes to early host defense in murine Enterococcus faecium peritonitis. J Immunol 2008; 180(7):4865-74.
38. 38 Finamore A, Roselli M, Imbinto A, Seeboth J, Oswald IP, Mengheri E. Lactobacillus amylovorus inhibits the TLR4 inflammatory signaling triggered by enterotoxigenic Escherichia coli via modulation of the negative regulators and involvement of TLR2 in intestinal Caco-2 cells and pig explants. PLoS One 2014;9(4):e94891.
39. Castillo NA, Perdigón G, de Moreno de Leblanc A. Oral administration of a probiotic Lactobacillus modulates cytokine production and TLR expression improving the immune response against Salmonella enterica serovar Typhimurium infection in mice. BMC Microbiol 2011;11:177.
40. Takeuchi O, Hoshino K, Akira S. Cutting edge: TLR2- deficient and MyD88-deficient mice are highly susceptible to Staphylococcus aureus Infection. J Immunol 2000; 165(10):5392-6
41. Kenny EF, Talbot S, Gong M, Golenbock DT, Bryant CE, O'Neill LA. MyD88 adaptor-like is not essential for TLR2 signaling and inhibits signaling by TLR3. J Immunol 2009; 183(6):3642-51.
42. Schabussova I, Hufnagl K, Tang ML, Hoflehner E, Wagner A, Loupal G, et al. Perinatal maternal administration of Lactobacillus paracasei NCC 2461 prevents allergic inflammation in a mouse model of birch pollen allergy. PLoS One 2011; 7:e40271.
43. Rizzo A, Losacco A, Carratelli CR, Domenico MD, Bevilacqua N. Lactobacillus plantarum reduces Streptococcus pyogenes virulence by modulating the IL-17, IL-23 and Toll-like receptor 2/4 expressions in human epithelial cells. Int Immunopharmacol 2013; 17(2):453-61.
Files | ||
Issue | Vol 16, No 2 (2017) | |
Section | Original Article(s) | |
Keywords | ||
β-lactoglobulin allergy Peptidoglycan Regulatory TLR2/NF-κB signaling Th17 cells T-lymphocytes |
Rights and permissions | |
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. |