In Vitro Generation of IL-35-expressing Human Wharton’s Jelly-derived Mesenchymal Stem Cells Using Lentiviral Vector
Abstract
Human Wharton’s Jelly-derived Mesenchymal Stem Cells (hWJ-MSCs) are easily available cells without transplant rejection problems or ethical concerns compared to bone-marrow-derived MSCs for prospective clinical applications. These cells display immunosuppressive properties and may be able to play an important role in autoimmune disorders. Regulatory T-cells (Treg) are important to prevent autoimmune disease development. Interleukin 35 (IL-35) induces the proliferation of Treg cell populations and reduces the activity of T helper 17 (Th17) and T helper 1 (Th1) cells, which play a central role in initiation of inflammation and autoimmune disease.Recent studies identified IL-35 as a new inhibitory cytokine required for the suppressive function of Treg cells. We created IL-35-producing hWJ-MSCs as a good vehicle for reduction of inflammation and autoimmune diseases. We isolated hWJ-MSCs based on explant culture. HWJ-MSCs were transduced at MOI=50 (Multiplicity of Infection) with lentiviral particles harboring murine Interleukin 35 (mIL-35). Expression of IL-35 in hWJ-MSCs was quantified by an IL-35 ELISA kit.IL-35 bioactivity was analyzed by inhibiting the proliferation of mouse splenocytes using CFSE cell proliferation kit. Frequency of CD4+CD25+CD127low/neg Foxp3+ Treg cells was measured by flow cytometry. There was an up to 85% GFP positive transduction rate, and the cells successfully released a high level of mIL-35 protein (750 ng/ml). IL-35 managed to inhibit CD4+ T cell proliferation with PHA, and improved the frequency of Treg cells.Our data suggest that transduced hWJ-MSCs overexpressing IL-35 may provide a useful approach for basic research on gene therapy for autoimmune disorders.
1. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 2006; 8(4):315-7.
2. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, et al. Multilineage potential of adult human mesenchymal stem cells. Science 1999;284(5411):143-7.
3. Rasmusson I, Ringden O, Sundberg B, Le Blanc K.Mesenchymal stem cells inhibit the formation of cytotoxic T lymphocytes, but not activated cytotoxic T lymphocytes or natural killer cells. Transplantation 2003;76(8):1208-13.
4. Tse WT, Pendleton JD, Beyer WM, Egalka MC, Guinan EC. Suppression of allogeneic T-cell proliferation by human marrow stromal cells: implications in transplantation. Transplantation. 2003; 75(3):389-97.
5. Pereboeva L, Komarova S, Mikheeva G, Krasnykh V, Curiel DT. Approaches to utilize mesenchymal progenitor cells as cellular vehicles. Stem cells 2003; 21(4):389-404.
6. Logeart-Avramoglou D, Anagnostou F, Bizios R, Petite H. Engineering bone: challenges and obstacles. J Cell Mol Med 2005; 9(1):72-84.
7. Bobis S, Jarocha D, Majka M. Mesenchymal stem cells: characteristics and clinical applications. Folia Histochem Cytobiol 2006; 44(4):215-30.
8. Troyer DL, Weiss ML. Wharton's jelly-derived cells are a primitive stromal cell population. Stem cells 2008;26(3):591-9.
9. Baksh D, Yao R, Tuan RS. Comparison of proliferative and multilineage differentiation potential of human mesenchymal stem cells derived from umbilical cord and bone marrow. Stem cells 2007; 25(6):1384-92.
10. Capelli C, Gotti E, Morigi M, Rota C, Weng L, Dazzi F, et al. Minimally manipulated whole human umbilical cord is a rich source of clinical-grade human mesenchymal stromal cells expanded in human platelet lysate. Cytotherapy 2011; 13(7):786-801.
11. Fong CY, Richards M, Manasi N, Biswas A, Bongso A.Comparative growth behaviour and characterization of stem cells from human Wharton's jelly. Reprod Biomed Online 2007; 15(6):708-18.
12. Zeddou M, Briquet A, Relic B, Josse C, Malaise MG, Gothot A, et al. The umbilical cord matrix is a better source of mesenchymal stem cells (MSC) than the umbilical cord blood. Cell biol int 2010; 34(7):693–701.
13. Romanov YA, Svintsitskaya VA, Smirnov VN. Searching for alternative sources of postnatal human mesenchymal stem cells: candidate MSC-like cells from umbilical cord. Stem cells 2003; 21(1):105-10.
14. Prasanna SJ, Gopalakrishnan D, Shankar SR, Vasandan AB. Pro-inflammatory cytokines, IFNgamma and TNFalpha, influence immune properties of human bone marrow and Wharton jelly mesenchymal stem cells differentially. PLoS one 2010; 5(2):e9016.
15. Haribhai D, Williams JB, Jia S, Nickerson D, Schmitt EG, Edwards B, et al. A requisite role for induced regulatory T cells in tolerance based on expanding antigen receptor diversity. Immunity 2011; 35(1):109-22. Hori S, Nomura T, Sakaguchi S. Control of regulatory T cell development by the transcription factor Foxp3. Science 2003; 299(5609):1057-61.
16. Vignali DA, Kuchroo VK. IL-12 family cytokines:immunological playmakers. Nat Immunol 2012;13(8):722-8.
17. Collison LW, Vignali DA. Interleukin-35: odd one out or part of the family? Immunol Rev 2008; 226:248-62.
18. Collison LW, Delgoffe GM, Guy CS, Vignali KM, Chaturvedi V, Fairweather D, et al. The composition and signaling of the IL-35 receptor are unconventional. Nat Immunol 2012; 13(3):290-9.
19. Chaturvedi V, Collison LW, Guy CS, Workman CJ, Vignali DA. Cutting edge: Human regulatory T cells require IL-35 to mediate suppression and infectious tolerance. J Immunol 2011; 186(12):6661-6.
20. Bardel E, Larousserie F, Charlot-Rabiega P, Coulomb- L'Hermine A, Devergne O. Human CD4+ CD25+ Foxp3+ regulatory T cells do not constitutively express IL-35. J Immunol 2008; 181(10):6898-905.
21. Collison LW, Chaturvedi V, Henderson AL, Giacomin PR, Guy C, Bankoti J, et al. IL-35-mediated induction of a potent regulatory T cell population. Nat Immunol 2010;11(12):1093-101.
22. Olson BM, Jankowska-Gan E, Becker JT, Vignali DA, Burlingham WJ, McNeel DG. Human prostate tumor antigen-specific CD8+ regulatory T cells are inhibited by CTLA-4 or IL-35 blockade. J Immunol 2012;189(12):5590-601.
23. Niedbala W, Wei XQ, Cai B, Hueber AJ, Leung BP, McInnes IB, et al. IL-35 is a novel cytokine with therapeutic effects against collagen-induced arthritis through the expansion of regulatory T cells and suppression of Th17 cells. Eur J Immunol 2007;37(11):3021-9.
24. Wang Z, Liu JQ, Liu Z, Shen R, Zhang G, Xu J, et al.Tumor-derived IL-35 promotes tumor growth by enhancing myeloid cell accumulation and angiogenesis. J Immunol 2013; 190(5):2415-23.25. Kochetkova I, Golden S, Holderness K, Callis G, Pascual DW. IL-35 stimulation of CD39+ regulatory T cells confers protection against collagen II-induced arthritis via the production of IL-10. J Immunol 2010; 84(12):7144-53.
26. Wirtz S, Billmeier U, McHedlidze T, Blumberg RS, Neurath MF. Interleukin-35 mediates mucosal immune A. Amari, et al.responses that protect against T-cell-dependent colitis. Gastroenterology 2011; 141(5):1875-86.
27. Huang CH, Loo EX, Kuo IC, Soh GH, Goh DL, Lee BW, et al. Airway inflammation and IgE production induced by dust mite allergen-specific memory/effector Th2 cell line can be effectively attenuated by IL-35. J Immunol 2011; 187(1):462-71.
28. Bettini M, Castellaw AH, Lennon GP, Burton AR, Vignali DA. Prevention of autoimmune diabetes by ectopic pancreatic beta-cell expression of interleukin-35. Diabetes 2012; 61(6):1519-26.
29. Kuo J, Nardelli DT, Warner TF, Callister SM, Schell RF.
Interleukin-35 enhances Lyme arthritis in Borrelia- vaccinated and -infected mice. Clin Vaccine Immunol 2011; 18(7):1125-32.
30. Abasi M, Massumi M, Riazi G, Amini H. The synergistic effect of beta-boswellic acid and Nurr1 overexpression on dopaminergic programming of antioxidant glutathione peroxidase-1-expressing murine embryonic stem cells. Neuroscience 2012; 222:404-16.
31. Weiss ML, Anderson C, Medicetty S, Seshareddy KB, Weiss RJ, VanderWerff I, et al. Immune properties of human umbilical cord Wharton's jelly-derived cells. Stem cells 2008; 26(11):2865-74.
32. Cotsapas C, Hafler DA. Immune-mediated disease genetics: the shared basis of pathogenesis. Trends Immunol 2013; 34(1):22-6.
33. Picanco-Castro V, de Sousa Russo-Carbolante EM, Tadeu Covas D. Advances in lentiviral vectors: a patent review. Recent Pat DNA Gene Seq 2012; 6(2):82-90.
34. Pfeifer A, Ikawa M, Dayn Y, Verma IM. Transgenesis by lentiviral vectors: lack of gene silencing in mammalian embryonic stem cells and preimplantation embryos. Proc Natl Acad Sci USA 2002; 99(4):2140-5.
35. Shi Q, Wilcox DA, Fahs SA, Fang J, Johnson BD, Du LM, et al. Lentivirus-mediated platelet-derived factor VIII gene therapy in murine haemophilia. J Thromb Haemost 2007; 5(2):352-61.
36. Telesnitsky A. Retroviruses: Molecular Biology, Genomics and Pathogenesis. Future virol 2010; 5(5):539-43.
37. Qian H, Zhang X, Xu W, Zhu W, Cao H, Chen Y, et al.Lentivirus-modified human umbilical cord mesenchymal stem cells maintain their pluripotency. Biotechnol Appl Biochem 2010; 55(1):53-62.
38. Collison LW, Workman CJ, Kuo TT, Boyd K, Wang Y, Vignali KM, et al. The inhibitory cytokine IL-35 contributes to regulatory T-cell function. Nature 2007;450(7169):566-9.
Files | ||
Issue | Vol 14, No 4 (2015) | |
Section | Original Article(s) | |
Keywords | ||
IL-35 Lentivirus Mesenchymal Stem Cells Vector Wharton’s Jelly-Derived |
Rights and permissions | |
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. |