Articles
 

The Immunopathogenic Role of Reactive Oxygen Species in Alzheimer Disease

Abstract

Reactive oxygen species (ROS) are produced in many normal and abnormal processes in humans, including atheroma, asthma, joint diseases, cancer, and aging. Basal levels of ROS production  in  cells  could  be  related  to  several  physiological functions  including  cell proliferation, apoptosis and homeostasis.
However, excessive ROS production above basal levels would impair and oxidize DNA, lipids, sugars and proteins and consequently result in dysfunction of these molecules within cells and finally cell death. A leading theory of the cause of aging indicates that free radical damage and oxidative stress play a major role in the pathogenesis of Alzheimer disease (AD). Because the brain utilizes 20% more oxygen than other tissues that also undergo mitochondrial respiration, the potential for ROS exposure increases.
In fact, AD has been demonstrated to be highly associated with cellular oxidative stress, including augmentation of  protein  oxidation, protein  nitration, glycoloxidation and  lipid peroxidation as well as accumulation of Amyloid β (Aβ). The treatment with anti-oxidant compounds can provide protection against oxidative stress and Aβ toxicity.
In this review, our aim was to clarify the role of ROS in pathogenesis of AD and will discuss therapeutic efficacy of some antioxidants studies in recent years in this disease.

1. Jung HA, Min BS, Yokozawa T, Lee JH, Kim YS, Choi JS. Anti-Alzheimer and antioxidant activities of Coptidis Rhizoma alkaloids. Biol Pharm Bull 2009; 32(8):1433-8.
2. Hirai K, Aliev G, Nunomura A, Fujioka H, Russell RL, Atwood CS, et al. Mitochondrial abnormalities in Alzheimer's disease. J Neurosci 2001; 21(9):3017-23.
3. Castegna A, Aksenov M, Aksenova M, Thongboonkerd V, Klein JB, Pierce WM, et al. Proteomic identification of oxidatively modified proteins in Alzheimer's disease brain. Part I: creatine kinase BB, glutamine synthase, and ubiquitin carboxy-terminal hydrolase L-1. Free Radic Biol Med 2002; 33(4):562-71.
4. Aliev G, Liu J, Shenk JC, Fischbach K, Pacheco GJ, Chen SG, et al. Neuronal mitochondrial amelioration by feeding acetyl-L-carnitine and lipoic acid to aged rats. J Cell Mol Med 2009; 13(2):320-33.
5. Aliev G, Palacios HH, Walrafen B, Lipsitt AE, Obrenovich ME, Morales L. Brain mitochondria as a primary target in the development of treatment strategies for Alzheimer disease. Int J Biochem Cell Biol 2009;41(10):1989-2004.
6. Vladimirova O, Lu FM, Shawver L, Kalman B. The activation of protein kinase C induces higher production of reactive oxygen species by mononuclear cells in patients with multiple sclerosis than in controls. Inflamm Res 1999; 48(7):412-6.
7. Manczak M, Park BS, Jung Y, Reddy PH. Differential expression of oxidative phosphorylation genes in patients with Alzheimer's disease: implications for early mitochondrial dysfunction and oxidative damage. Neuromolecular Med 2004; 5(2):147-62.
8. Sun KH, de Pablo Y, Vincent F, Shah K. Deregulated Cdk5 promotes oxidative stress and mitochondrial dysfunction. J Neurochem 2008; 107(1):265-78.
9. Sarti P, Arese M, Giuffrè A. The molecular mechanisms by which nitric oxide controls mitochondrial complex IV. Ital J Biochem 2003; 52(1):37-42.
10. Sheng B, Gong K, Niu Y, Liu L, Yan Y, Lu G, et al.Inhibition of gamma-secretase activity reduces Abeta production, reduces oxidative stress, increases mitochondrial activity and leads to reduced vulnerability to apoptosis: Implications for the treatment of Alzheimer's disease. Free Radic Biol Med 2009; 46(10):1362-75.
11. Beckman KB, Ames BN. The free radical theory of aging matures. Physiol Rev 1998; 78(2):547–81.
12. Aliev G, Obrenovich ME, Reddy VP, Shenk JC, Moreira PI, Nunomura A, et al. Antioxidant therapy in Alzheimer's disease: theory and practice. Mini Rev Med Chem 2008; 8(13):1395-406.
13. Ames BN, Shigenaga MK, Hagen TM. Oxidants, antioxidants, and the degenerative diseases of aging. Proc Natl Acad Sci U S A 1993; 90(17):7915–22.
14. Beal MF. Mitochondria, oxidative damage, and inflammation in Parkinson’s disease. Ann N Y Acad Sci 2003; 991:120–31.
15. Mirshafiey A, Mohsenzadegan M. Antioxidant therapy in multiple sclerosis. Immunopharmacol Immunotoxicol 2009; 31(1):13-29.
16. Mishafiey A, Mohsenzadegan M. immunotoxicological effect of reative oxygen species in multiple sclerosis.J of Chinese clinical medicine 2008; 3:7.
17. Zhu X, Su B, Wang X, Smith MA,Perry G. Causes of oxidative stress in Alzheimer disease. Cell. Mol. Life Sci 2007; 64(17):2202–10.
18. Lambeth JD. NOX enzymes and the biology of reactive oxygen. Nat Rev Immunol 2004; 4(3):181–9.
19. Ravikumar B, Vacher C, Berger Z, Davies JE, Luo S,Oroz LG, et al. Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease. Nat Genet 2004; 36(6):585-95.
20. Levine B, Klionsky DJ. Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev Cell 2004; 6(4):463-77.
21. Lipinski MM, Zheng B, Lu T, Yan Z, Py BF, Ng A, et al. Genome-wide analysis reveals mechanisms modulating autophagy in normal brain aging and in Alzheimer's disease. Proc Natl Acad Sci U S A 2010;107(32):14164-9.
22. Ilhan A, Akyol O, Gurel A, Armutcu F, Iraz M, Oztas E.Protective effects of caffeic acid phenethyl ester against experimental allergic encephalomyelitis induced oxidative stress in rats. Free Radic Biol Med 2004; 37(3):386–94.
23. Lum H, Roebuck KA. Oxidant stress and endothelial cell dysfunction. Am J Physiol. Cell Physiol 2001;280(4):C719-41.
24. Park L, Anrather J, Zhou P, Frys K, Pitstick R, Younkin S, et al. NADPH-oxidase-derived reactive oxygen species mediate the cerebrovascular dysfunction induced by the amyloid beta peptide. J Neurosci 2005; 25(7):1769-77.
25. Abdala-Valencia H, Cook-Mills JM. VCAM-1 signals activate endothelial cell protein kinase cα via oxidation. J Immunol 2006; 177(9):6379–87.
26. Mirshafiey A, Mohsenzadegan M. The role of reactive oxygen species in immunopathogenesis of rheumatoid arthritis. Iran J Allergy Asthma Immunol 2008 ; 7(4):195-202.
27. Calabrese V, Lodi R, Tonon C, D’Agata V, Sapienza M, Scapagnini G, et al. Oxidative stress, mitochondrial dysfunction and cellular stress response in Friedreich’s ataxia. J Neurol Sci 2005; 233 (1-2):145–62.
28. Ruuls SR, Bauer J, Sontrop K, Huitinga I, ‘t Hart BA,Dijkstra CD. Reactive oxygen species are involved in the pathogenesis of experimental allergic encephalomyelitis in Lewis rats, J. Neuroimmunol. 1995; 56(2):207–17.
29. Torreilles F, Salman-Tabcheh S, Guérin M, Torreilles J.Brain Res 1999; 30(2):153-63.
30. Mirshafiey A, Matsuo H, Nakane S, Rehm BH, Koh CS, Miyashi S. Novel immunosuppressive therapy by M2000 in experimental multiple sclerosis. Immunopharmacol Immunotoxicol 2005; 27(2):255–65.
31. Vrabec JP, Lieven CJ, Levin LA. Cell-type-specific opening of the retinal ganglion cell mitochondrial permeability transition pore. Invest. Ophthalmol. Vis.Sci 2003; 44(6):2774–82.
32. Dumont M, Ho DJ, Calingasan NY, Xu H, Gibson G, Beal MF. Mitochondrial dihydrolipoyl succinyltransferase deficiency accelerates amyloid pathology and memory deficit in a transgenic mouse model of amyloid deposition. Free Radic Biol Med 2009; 47(7):1019-27.
33. Melov S, Adlard PA, Morten K, Johnson F, Golden TR, Hinerfeld D, et al. Mitochondrial oxidative stress causes hyperphosphorylation of tau. PLoS One 2007;2(6):e536.
34. Dumont M, Wille E, Stack C, Calingasan NY, Beal MF, Lin MT. Reduction of oxidative stress, amyloid deposition, and memory deficit by manganese superoxide dismutase overexpression in a transgenic mouse model of Alzheimer's disease. FASEB J 2009;23(8):2459-66.
35. Gibson GE, Blass JP, Beal MF, Bunik V. The alpha- ketoglutarate-dehydrogenase complex: a mediator between mitochondria and oxidative stress in neurodegeneration. Mol Neurobiol 2005; 31(1-3):43–63.
36. Clement AB, Gimpl G, Behl C. Oxidative stress resistance in hippocampal cells is associated with altered membrane fluidity and enhanced nonamyloidogenic cleavage of endogenous amyloid precursor protein. Free Radic Biol Med. 2010; 48(9):1236-41.
37. Kojro E, Gimpl G, Lammich S, Marz W, Fahrenholz F.Low cholesterol stimulates the nonamyloidogenic pathway by its effect on the alpha-secretase ADAM 10. Proc Natl Acad Sci USA 2001; 98(10):5815–20.
38. Bodovitz S,Klein WL. Cholesterol modulates alpha- secretase cleavage of amyloid precursor protein. J Biol Chem 1996; 271(8):4436–40.
39. Block ML. NADPH oxidase as a therapeutic target in Alzheimer's disease. BMC Neurosci 2008; 9 Suppl 2:S8.
40. Qin L, Liu Y, Wang T, Wei SJ, Block ML, Wilson B, et al. NADPH oxidase mediates lipopolysaccharide- induced neurotoxicity and proinflammatory gene expression in activated microglia. J Biol Chem 2004;279(2):1415-21.
41. Wang T, Qin L, Liu B, Liu Y, Wilson B, Eling TE, et al.Role of reactive oxygen species in LPS-induced production of prostaglandin E2 in microglia. J Neurochem 2004; 88(4):939-47.
42. Ray B, Lahiri DK. Neuroinflammation in Alzheimer's disease: different molecular targets and potential therapeutic agents including curcumin. Curr Opin Pharmacol 2009; 9(4):434-44.
43. Arnaud L, Robakis NK, Figueiredo-Pereira ME.It may take inflammation, phosphorylation and ubiquitination to‘tangle’ in Alzheimer’s disease. Neurodegener Dis 2006;3(6):313-19.
44. Davis JB, McMurray HF, Schubert D.The amyloid beta- protein of Alzheimer's disease is chemotactic for mononuclear phagocytes. Biochem Biophys Res Commun 1992; 189(2):1096-100.
45. Ophir G, Amariglio N, Jacob-Hirsch J, Elkon R, Rechavi G, Michaelson DM. Apolipoprotein E4 enhances brain inflammation by modulation of the NF-kappaB signaling cascade. Neurobiol Dis 2005; 20(3):709-18.
46. Barger SW, Mattson MP. Induction of neuroprotective kappa Bdependent transcription by secreted forms of the Alzheimer’s beta-amyloid precursor. Brain Res Mol Brain Res 1996; 40(1):116-26.
47. Sanchez-Ortiz E, Hahm BK, Armstrong DL, Rossie S.Protein phosphatase 5 protects neurons against amyloid- beta toxicity. J Neurochem 2009; 111(2):391-402.
48. Marques CA,Keil U,Bonert A,Steiner B,Haass C,Muller WE,Eckert A. Neurotoxic mechanisms caused by the Alzheimer's disease-linked Swedish amyloid precursor protein mutation: oxidative stress, caspases, and the JNK pathway. J Biol Chem 2003; 278(30):28294–302.
49. Keil U, Bonert A, Marques CA, Scherping I, Weyermann J, Strosznajder JB, et al. Amyloid β-induced Changes in Nitric Oxide Production and Mitochondrial Activity Lead to Apoptosis. J Biol Chem 2004; 279(48):50310–20.
50. Zhou G, Golden T, Aragon IV, Honkanen RE. Ser/Thrprotein phosphatase 5 inactivates hypoxia-induced activation of an apoptosis signal-regulating kinase1/MKK-4/JNK signaling cascade. J Biol Chem 2004;279(45):46595–605.
51. Shinoda S, Skradski SL, Araki T, Schindler CK, Meller R, Lan JQ, et al. Formation of a tumour necrosis factor receptor 1 molecular scaffolding complex and activation of apoptosis signal-regulating kinase 1 during seizure- induced neuronal death. Eur J Neurosci 2003;17(10):2065–76.
52. Du H, Yan SS. Mitochondrial permeability transition pore in Alzheimer's disease: cyclophilin D and amyloid beta. Biochim Biophys Acta 2010; 1802(1):198-204.
53. Mark RJ, Hensley K, Butterfield DA, Mattson MP.Amyloid beta-peptide impairs ion-motive ATPase activities: evidence for a role in loss of neuronal Ca2+ homeostasis and cell death. J Neurosci 1995;15(9):6239-49.
54. Ekinci FJ, Malik KU, Shea TB. Activation of the L voltage-sensitive calcium channel by mitogen-activated protein (MAP) kinase following exposure of neuronal cells to beta-amyloid. MAP kinase mediates beta- amyloid-induced neurodegeneration. J Biol Chem 1999;274(42):30322-7.
55. Cowburn RF, Wiehager B, Trief E, Li-Li M, Sundström E. Effects of beta-amyloid-(25-35) peptides on radioligand binding to excitatory amino acid receptors and voltage-dependent calcium channels: evidence for a selective affinity for the glutamate and glycine recognition sites of the NMDA receptor. Neurochem Res 1997; 22(12):1437-42.
56. Hiruma H, Katakura T, Takahashi S, Ichikawa T, Kawakami T. Glutamate and amyloid beta-protein rapidly inhibit fast axonal transport in cultured rat hippocampal neurons by different mechanisms. J Neurosci 2003; 23(26):8967-77.
57. Kim JH, Rah JC, Fraser SP, Chang KA, Djamgoz MB, Suh YH. Carboxyl-terminal peptide of beta-amyloid precursor protein blocks inositol 1,4,5-trisphosphate- sensitive Ca2+ release in Xenopus laevis oocytes. J Biol Chem 2002; 277(23):20256-63.
58. Veal EA, Day AM,Morgan BA. Hydrogen peroxide sensing and signaling. Mol Cell 2007; 26(1):1–14.
59. Chang TS, Jeong W, Choi SY, Yu S, Kang SW, Rhee SG. Regulation of peroxiredoxin I activity by Cdc2- mediated phosphorylation. J Biol Chem 2002;277(28):25370–76.
60. Borsello T, Forloni G. JNK signalling: a possible target to prevent neurodegeneration. Curr Pharmaceut Design 2007; 13(18):1875–86.
61. Sun KH, Lee HG, Smith MA, Shah K. Direct and indirect roles of cyclin-dependent kinase 5 as an upstream regulator in the c-Jun NH2-terminal kinase cascade: relevance to neurotoxic insults in Alzheimer's disease. Mol Biol Cell 2009; 20(21):4611-9.
62. Shen C, ChenY, Liu H, Zhang K, Zhang T, Lin A, et al.Hydrogen peroxide promotes Abeta production through JNK-dependent activation of gamma-secretase. J Biol Chem 2008; 283(25):17721–30.
63. Tamagno E, Guglielmotto M, Aragno M, Borghi R,Autelli R, Giliberto L, et al. Oxidative stress activates a positive feedback between the gammaand beta-secretase cleavages of the beta-amyloid precursor protein. J Neurochem 2008; 104(3):683–95.
64. Marques CA, Keil U, Bonert A, Steiner B, Haass C,Muller WE, et al. Neurotoxic mechanisms caused by the Alzheimer's disease-linked Swedish amyloid precursor protein mutation: oxidative stress, caspases, and the JNK pathway. J Biol Chem 2003; 278(30):28294–302.
65. Hureau C, Faller P. Abeta-mediated ROS production by Cu ions: structural insights, mechanisms and relevance to Alzheimer's disease. Biochimie 2009; 91(10):1212-7.
66. da Silva GF, Lykourinou V, Angerhofer A, Ming LJ.Methionine does not reduce Cu(II)-beta-amyloid!-- rectification of the roles of methionine-35 and reducing agents in metal-centered oxidation chemistry of Cu(II)- beta-amyloid. Biochim Biophys Acta 2009; 1792(1):49-55.
67. Pogue AI, Li YY, Cui JG, Zhao Y, Kruck TP, Percy ME, et al. Characterization of an NF-kappaB-regulated, miRNA-146a-mediated down-regulation of complement factor H (CFH) in metal-sulfate-stressed human brain cells. J Inorg Biochem 2009; 103(11):1591-5.
68. Guilloreau L, Combalbert S, Sournia-Saquet A, Marzaguil H, Faller P. Redox chemistry of copper- amyloid-beta: the generation of hydroxyl radical in the presence of ascorbate is linked to redox-potentials and aggregation state. Chem Biol Chem 2007; 8(11):1317–25.
69. Baruch-Suchodolsky R, Fischer B. Soluble amyloid beta1-28-copper(I)/copper(II)/Iron(II) complexes are potent antioxidants in cell-free systems. Biochemistry 2008; 47(30):7796–806.
70. Kowalik-Jankowska T, Ruta M, Wisniewska K, Lankiewicz L, Dyba M. Products of Cu(II)-catalyzed oxidation in the presence of hydrogen peroxide of the 1–10, 1–16 fragments of human and mouse b-amyloid peptide. J Inorg Biochem 2004; 98(6):940–50.
71. Murakami K, Hara H, Masuda Y, Ohigashi H, Irie K.Distance measurement between Tyr10 and Met35 in amyloid beta by site-directed spin-labeling ESR spectroscopy: implications for the stronger neurotoxicity of Abeta42 than Abeta40. Chem Bio Chem.2007; 8:2308–14.
72. Hou L, Kang I, Marchant RE, Zagorski MG. Methionine 35 oxidation reduces fibril assembly of the amyloid abeta- (1–42) peptide of Alzheimer’s disease. J Biol Chem 2002;277(43):40173–76.
73. Johansson AS, Bergquist J, Volbracht C, Päiviö A, Leist M, Lannfelt L, et al. Attenuated amyloid-beta aggregation and neurotoxicity owing to methionine oxidation. Neuroreport 2007; 18(6):559-63.
74. Clementi ME, Martorana GE, Pezzotti M, Giardina B, Misiti F. Methionine 35 oxidation reduces toxic effects of the amyloid β-protein fragment(31–35) on human red blood cell. Int J Biochem Cell Biol 2004; 36(10):2066–76.
75. da Silva GF, Ming LJ. Alzheimer's disease related copper (II)-beta-amyloid peptide exhibits phenol monooxygenase and catechol oxidase activities. Angew Chem Int Ed Engl 2005; 44(34):5501-4.
76. Campbell A, Yang EY, Tsai-Turton M, Bondy SC. Pro- inflammatory effects of aluminum in human glioblastoma cells. Brain Res 2002; 933(1):60-5.
77. Kawahara M. Effects of aluminum on the nervous system and its possible link with neurodegenerative diseases. J Alzheimers Dis 2005; 8(2):171-82.
78. Lukiw WJ, Percy ME, Kruck TP. Nanomolar aluminum induces pro-inflammatory and pro-apoptotic gene expression in human brain cells in primary culture. J Inorg Biochem 2005; 99(9):1895-8.
79. Saunders AM, Schmader K, Breitner JC, Benson MD, Brown WT, Goldfarb L, et al. Apolipoprotein E epsilon 4 allele distributions in late-onset Alzheimer’s disease and in other amyloid-forming diseases. Lancet 1993;342(8873):710–1.
80. Ashford JW. APOE genotype effects on Alzheimer’s disease onset and epidemiology. J Mol Neurosci 2004;23(3):157–65.
81. Ramassamy C, Averill D, Beffert U, Theroux L, Lussier- Cacan S, Cohn JS, et al. Oxidative insults are associated with apolipoprotein E genotype in Alzheimer’s disease brain. Neurobiol Dis 2000; 7(1):23–37.
82. Cedazo-Minguez A. Apolipoprotein E and Alzheimer’s disease: molecular mechanisms and therapeutic opportunities. J Cell Mol Med 2007; 11(6):1227–38.
83. Reid PC, Urano Y, Kodama T, Hamakubo T. Alzheimer'sdisease: cholesterol, membrane rafts, isoprenoids and statins. J Cell Mol Med 2007; 11(3):383-92.
84. Refolo LM, Malester B, LaFrancois J, Bryant-Thomas T, Wang R, Tint GS, et al. Hypercholesterolemia accelerates the Alzheimer's amyloid pathology in a transgenic mouse model. Neurobiol Dis 2000; 7(4):321-31.
85. Hirai K, Aliev G, Nunomura A, Fujioka H, Russell RL, Atwood CS, et al. Mitochondrial abnormalities in Alzheimer's disease. J Neurosci 2001; 21(9):3017-23.
86. Di Domenico F, Sultana R, Tiu GF, Scheff NN, Perluigi M, Cini C, et al. Protein levels of heat shock proteins 27,32, 60, 70, 90 and thioredoxin-1 in amnestic mild cognitive impairment: an investigation on the role of cellular stress response in the progression of Alzheimer disease. Brain Res 2010; 1333:72-81.
87. Mosser DD, Morimoto RI. Molecular chaperones and the stress of oncogenesis. Oncogene 2004; 23(16):2907–18.
88. Evans CG, Wisen S, Gestwicki JE. Heat shock proteins 70 and 90 inhibit early stages of amyloid beta-(1-42)aggregation in vitro. J Biol Chem 2006; 281(44):33182–91.
89. Bjorkdahl C, Sjogren MJ, Zhou X, Concha H, Avila J, Winblad B, et al. Small heat shock proteins Hsp27 or alphaB-crystallin and the protein components of neurofibrillary tangles: tau and neurofilaments. J Neurosci Res 2008; 86(6):1343–52.
90. Pérez-De La Cruz V, Elinos-Calderón D, Robledo-Arratia Y, Medina-Campos ON, Pedraza-Chaverrí J, Ali SF, et al. Targeting oxidative/nitrergic stress ameliorates motor impairment, and attenuates synaptic mitochondrial dysfunction and lipid peroxidation in two models of Huntington's disease. Behav Brain Res 2009; 199(2):210-7.
91. Gomez-Pinilla F. Brain foods: the effects of nutrients on brain function. Nat Rev Neurosci 2008; 9(7):568–78.
92. Shenk JC, Liu J, Fischbach K, Xu K, Puchowicz M,Obrenovich ME, et al. The effect of acetyl-L-carnitine and R-alpha-lipoic acid treatment in ApoE4 mouse as a model of human Alzheimer's disease. J Neurol Sci 2009;283(1-2):199-206.
93. Cormier A, Morin C, Zini R, Tillement JP, Lagrue G. In vitro effects of nicotine on mitochondrial respiration and superoxide anion generation. Brain Res 2001; 900(1):72-9.
94. Shimohama S, Akaike A, Kimura J. Nicotine-induced protection against glutamate cytotoxicity. Nicotinic cholinergic receptor-mediated inhibition of nitric oxide formation. Ann N Y Acad Sci 1996; 777:356-61.
95. Ezoulin MJ, Li J, Wu G, Dong CZ, Ombetta JE, Chen HZ, et al. Differential effect of PMS777, a new type of acetylcholinesterase inhibitor, and galanthamine on oxidative injury induced in human neuroblastoma SK-N- SH cells. Neurosci Lett 2005; 389(2):61-5.
96. Ferrera P. Differential effects of COX inhibitors againstbeta-amyloid-induced neurotoxicity in human neuroblastoma cells. Arias C. Neurochem Int 2005;47(8):589-96.
97. Lee M, Sparatore A, Del Soldato P, McGeer E, McGeer PL. Hydrogen sulfide-releasing NSAIDs attenuate neuroinflammation induced by microglial and astrocytic activation. Glia 2010; 58(1):103-13.
98. Nivsarkar M, Banerjee A, Padh H. Cyclooxygenase inhibitors: a novel direction for Alzheimer's management. Pharmacol Rep 2008; 60(5):692-8.
99. Liu Y, Qin L, Li G, Zhang W, An L, Liu B, et al.Dextromethorphan protects dopamanergic neurons against inflammationmediated degeneration through inhibition of microglial activation. J Pharmacol Exp Ther 2003;305(1):1-7.
100. Li G, Cui G, Tzeng NS, Wei SJ, Wang T, Block ML, et al. Femtomolar concentrations of dextromethorphan protect mesencephalic dopaminergic neurons from inflammatory damage. Faseb J 2005; 19(6):489-96.
101. Zhang W, Wang T, Qin L, Gao HM, Wilson B, Ali SF, et al. Neuroprotective effect of dextromethorphan in the MPTP Parkinson's disease model: role of NADPH oxidase. Faseb J 2004; 18(3):589-91.
102. Queen BL, Tollefsbol TO. Polyphenols and aging. Curr Aging Sci 2010; 3(1):34-42.
103. Perron NR, Brumaghim JL. A review of the antioxidant mechanisms of polyphenol compounds related to iron binding. Cell Biochem Biophys 2009; 53(2):75–100.
104. Vingtdeux V, Chandakkar P, Zhao H, d'Abramo C, Davies P, Marambaud P. Novel synthetic small-molecule activators of AMPK as enhancers of autophagy and amyloid-β peptide degradation. FASEB J 2011;25(1):219-31.
105. Wang J, Ho L, Zhao Z, Seror I, Humala N, Dickstein DL, et al. Moderate consumption of Cabernet Sauvignon attenuates Abeta neuropathology in a mouse model of Alzheimer's disease. FASEB J 2006; 20(13):2313-20.
106. Motterlini R, Foresti R, Bassi R, Green CJ. Curcumin, an antioxidant and anti-inflammatory agent, induces heme oxygenase-1 and protects endothelial cells against oxidative stress. Free Radic Biol Med 2000; 28(8):1303-12.
107. Baum L, Ng A. Curcumin interaction with copper and iron suggests one possible mechanism of action in Alzheimer’s disease animal models. J Alzheimers Dis 2004; 6(4):367-77.
108. Meeran SM, Akhtar S, Katiyar SK. Inhibition of UVB- induced skin tumor development by drinking green tea polyphenols is mediated through DNA repair and subsequent inhibition of inflammation. J Invest Dermatol 2009; 129(5):1258–70.
109. Punathil T, Tollefsbol TO, Katiyar SK. EGCG inhibits mammary cancer cell migration through inhibition of nitric oxide synthase and guanylate cyclase. Biochem Biophys Res Commun 2008; 375(1):162–7.
110. Bastianetto S, Brouillette J, Quirion R. Neuroprotective effects of natural products: interaction with intracellular kinases, amyloid peptides and a possible role for transthyretin. Neurochem Res 2007; 32(10):1720–5.
111. Boots AW, Haenen GR, Bast A. Health effects of quercetin: from antioxidant to nutraceutical. Eur J Pharmacol 2008; 585(2-3):325–37.
112. Guy J, Ellis EA, Hope GM, Rao NA. Antioxidant enzyme suppression of demyelination in experimental optic neuritis. Curr Eye Res 1989; 8(5):467–77.
113. Pahan K, Namboodiri AM, Sheikh FG, Smith BT, Singh I. Increasing Camp attenuates induction of inducible nitric-oxide synthase in rat primary astrocytes. J Biol Chem 1997; 272(12):7786–91.
114. Fassbender K, Simons M, Bergmann C, Stroick M,Lutjohann D, Keller P, et al. Simvastatin strongly reduces levels of Alzheimer's disease beta -amyloid peptides Abeta 42 and Abeta 40 in vitro and in vivo. Proc Natl Acad Sci U S A 2001; 98(10):5856-61.
115. Fraunberger P, Gröne E, Gröne HJ, Walli AK.Simvastatin reduces endotoxin-induced nuclear factor kappaB activation and mortality in guinea pigs despite lowering circulating low-density lipoprotein cholesterol.Shock 2009; 32(2):159-63.
116. Won JS, Im YB, Khan M, Contreras M, Singh AK, Singh I. Lovastatin inhibits amyloid precursor protein (APP) beta-cleavage through reduction of APP distribution in Lubrol WX extractable low density lipid rafts. J Neurochem 2008; 105(4):1536-49.
117. Bi J, Jiang B, Hao S, Zhang A, Dong Y, Jiang T, et al.Catalpol attenuates nitric oxide increase via ERK signaling pathways induced by rotenone in mesencephalic neurons. Neurochem Int 2009; 54(3-4):264–70.
118. Jiang B, Zhang H, Bing J, Zhang XL. Neuroprotective activities of catalpol on MPP+/MPTP-induced neurotoxicity. Neurol Res 2008; 30(6):639-44.
119. Liang JH, Du J, Xu LD, Jiang T, Hao S, Bi J, et al.Catalpol protects primary cultured cortical neurons induced by Abeta(1-42) through a mitochondrial- dependent caspase pathway. Neurochem Int 2009; 55(8):741-6.

Files
IssueVol 11, No 3 (2012) QRcode
SectionArticles
Keywords
Alzheimer disease Reactive oxygen species

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
1.
Mohsenzadegan M, Mirshafiey A. The Immunopathogenic Role of Reactive Oxygen Species in Alzheimer Disease. Iran J Allergy Asthma Immunol. 1;11(3):203-216.