Effects of MnTnHex-2-PyP on Lung Antioxidant Defence System in Asthma Mice Model
Abstract
We aimed to study the MnTnHex-2-PyP effect on some markers of lung antioxidant defence system in mice asthma model.The study was carried out on 28 C57B1/6 mice divided into four treatment groups: group 1 - controls; group 2 - injected and inhaled with ovalbumin; group 3 - treated with MnTnHex-2-PyP and inhaled with phosphate buffered saline; group 4 - injected with ovalbumin and MnTnHex-2-PyP but also inhaled with ovalbumin. On days 24, 25 and 26, mice from groups 1 and 2 were inhaled with PBS for 30 min, and those from groups 2 and 4 were given a 1% ovalbumin solution. One hour before inhalation, and 12 hours later the animals from groups 1 and 2 were injected i.p. with 100 μl PBS, and those from groups 3 and 4 received a 100 μl MnTnHex-2-PyP solution in PBS, сontaining 0,05mg/kg. The animals were killed by exsanguination 48 hours after the last inhalation for obtaining a lung homogenate. The activities of superoxide dismutase, catalase, glutathione peroxidase and the non-protein sulphhydryl group content in the lung homogenate were investigated. Ovalbumin decreased the activities of superoxide dismutase (p=0.01), catalase (p=0.002), glutathione peroxidase and non-protein sulphhydryl groups content (p<0.001) in comparison to controls. In group 4 (ovalbumin and MnTnHex-2-PyP) the activities of superoxide dismutase (p=0.044), catalase (p=0.045), glutathione peroxidase (p=0.002), and the non-protein sulphhydryl groups content (p<0.001) were significantly increased compared to ovalbumin (group 2).MnTnHex-2-PyP restored the activities of basic enzymes in the lung antioxidant defence system in ovalbumin-induced asthma mice model, 48 hours after the last nebulization.
1. Bousquet J, Jeffery PK, Busse WW, Johnson M, Vignola AM. Asthma From bronchoconstriction to airways inflammation and remodeling. Am J Respir Crit Care Med 2000; 161(5):1720-45.
2. Kay AB. Asthma and inflammation. J Allergy Clin Immunol 1991; 87(5):893-910.
3. Nakajima H, Takatsu K. Role of cytokines in allergic airway inflammation. Int Arch Allergy Immunol 2007;142(4):265-73.
4. Romagnani S. Immunologic influences on allergy and the Th1/Th2 balance. J Allergy Clin Immunol 2004;113(3):395-400.
5. Dworski R. Oxidant stress and asthma. Thorax 2000;55(Suppl.2):S51-3.
6. Rahman I, Morrison D, Donaldson K, Mac Nee W.Systemic oxidative stress in asthma, COPD, and smokers. Am J Respir Crit Care Med 1996; 154(4):1055-60.
7. Henricks PA, Nijkamp FP. Reactive oxygen species as mediators in asthma. Pulm Pharmacol Ther 2001;14(6):409-20.
8. Cho YS, Lee J, Lee TH, Lee EY, Lee KU, Park JY, et al.Alpha-Lipoic acid inhibits airway inflammation and hyperresponsiveness in a mouse model of asthma. J Allergy Clin Immunol 2004; 114(2):429-35.
9. Lee YC, Lee K S, Park SJ, Park HS, Lim JS, Park KH, et al. Blockade of airway hyperresponsiveness and inflammation in a murine model of asthma by a prodrug of cysteine, L-2-oxothiazolidine-4-carboxylic acid FASEB J 2004; 18:1917-19.
10. Spasojevic I, Chen Y, Noel TJ, Yu Y, Cole MP, Zhang L, et al. Mn porphyrin-based SOD mimic, MnTE-2-PyP5+ targets mouse heart mitochondria. Free Radic Biol Med 2007; 42(8):1193–1200.
11. Maral I, Puget K, Michelson AM. Comparative study of Superoxide dismutase, catalase and glutathione peroxidase levels in erythrocytes of different animals. Biochem Biophys Res Commun 1977; 77(4):1532-35.
12. Koroljuk MA, Ivanova LI, Maiorova IG, Tokarev VE. A method of determining catalase activity. Lab Delo 1988;1:16-9.
13. Pereslegina IA. The activity of antioxidant enzymes in the Saliva of normal children. Lab Delo 1989; 11:20-3.
14. DeLucia AJ, Mustafa MG, Hussain MZ, Cross CE.Ozone interaction with rodent lung. III.Oxidation of reduced glutathione and formation of mixed disulfides between protein and nonprotein sulfhydryls. J Clin Invest 1975; 55(4):794-802.
15. Matsunaga K, Yanagisawa S, Ichikawa T, Ueshima K, Akamatsu K, Hirano T, et al. Airway cytokine expression measured by means of protein array in exhaled breath condensate: Correlation with physiologic properties in asthmatic patients. J Allergy Clin Immunol 2006;118(1):84-90.
16. Nadeem A, Chhabra SK, Masood A, Raj HG. Increased oxidative stress and altered levels of antioxidants in asthma. J Allergy Clin Immunol 2003; 111(1):72-8.
17. Kos I, Reboucas JS, DeFreitas-Silva G, Salvemini D, Vujaskovic Z, Dewhirst MW, et al. Lipophilicity of potent porphyrin-based antioxidants: Comparison of ortho and meta isomers of Mn(III) N-alkylpyridylporphyrins. Free Radic Biol Med 2009; 47(1):72–8.
18. Patel M, Day BJ. Metalloporphyrin class of therapeutic catalytic antioxidants. Trends Pharmac Sci 1999;20(9):359-64.
19. Day BJ. Catalytic antioxidants: a radical approach to new therapeutics. Drug Discov Today 2004; 9(18):557-66.
20. Batinić -Haberle I, Spasojevic I, Stevens RD, Hambright P, Fridovich I. Manganese(III) meso tetrakis ortho N- alkylpyridins:synthesis, characterization and catalysis of O• dismutation. J Chem Soc Dalton Trans 2002;13:2689-96.
21. Okado-Matsumoto A, Batinić-Haberle I, Fridovich I.Complemantation of SOD deficient Escherichia coli by manganese porphyrin mimics of superoxide dismutase activity. Free Rad Biol Med 2004; 37(3):401-10.
22. Gauter-Fleckenstein B, Fleckenstein K, Owzar K, Jiang C, Batinić-Haberle I, Vujaskovic Z. Comparison of two Mn porphyrin-based mimics of superoxide dismutase in pulmonary radioprotection. Free Radic Biol Med 2008;44(6):982-9.
23. Saba H, Batinić-Haberle I, Munusamy S, Mitchell T, Lichti C, Megyesi J, et al. Manganese porphyrin reduces renal injury and mitochondrial damage during ischemia/reperfusion. Free Radic Biol Med 2007;42(10):1571-8.
24. Spasojevic I, Chen Y, Noel TJ, Fan P, Zhang L, Rebouças JS, et al. Pharmacokinetics of the potent redox- modulating manganese porphyrin, MnTE-2-PyP5+, in plasma and major organs of B6C3F1 mice. Free Radic Biol Med 2008; 45(7):943-49.
25. Batinić-Haberle I, Reboucas JS, Spasojevic I. Superoxide Dismutase Mimics:Chemistry, Pharmacology, and therapeutic Potencial. Antioxid Redox Signal 2010;13(6):877-918.
26. Meunier B. Metalloporphyrins as versatile catalysts for oxidation reactions and oxidative DNA cleavage. Chem Rev 1992; 92(6):1411-56.
27. Spasojevic I, Batinic-Haberle I, Rebouças JS, Idemori YM, Fridovich I. Electrostatic contribution in the catalysis of O2•- dismutation by superoxide dismutase mimics. MnIIITE-2PyP5+ versusMnIIIBr8T-2-PyP+. J Biol Chem 2003; 278(9):6831-7.
28. Day BJ, Batinić-Haberle I. Crapo DJ. Metalloporphyrins are potent inhibitors of lipid peroxidation. Free Radic Biol Med 1999; 26(5-6):730-6.
29. Batinić -Haberle I, Cuzzocrea S, Rebucas J, Ferrer-Sueta selectively scavenges peroxynitrite over superoxide: Comparison of pure and commercial MnTBAP samples to MnTE-2-PyP in two models of oxidative stress injury an SOD-specific Escherichia coli model and carrageenan- induced pleurisy. Free Rad Biol Med 2009; 46(2):192-201.
30. Ferrer-Sueta G, Hannibal L, Batinić-Haberle I, Radi R.Reduction of manganese porphyrins by flavoenzymes and submitochondrial particles: a catalytic cycle for the reduction of peroxynitrite. Free Raic Biol Med 2006;41(3):503-12.
31. Kachadourian R, Johnson CA, Min E, Spasojević I, Day BJ. Flavin-dependent antioxidant properties of a new series of meso-N,N’-dialkyl-imidazolium substituted manganese(III) porphyrins. Biochem Pharmacol 2004;67(1):77-85.
32. Gauter-Fleckenstein B, Fleckenstein K, Owzar K, Jiang C, Rebouças JS, Batinić-Haberle I, et al. Early and late administration of MnTE-2-PyP5+ in mitigation and treatment of radiation-induced lung damage. Free Radic Biol Med 2010; 48(8):1034-43.
33. Salvemini D, Riley DP, Cuzzocrea S. SOD mimetics are coming of age. Nat Rev Drug Discov 2002; 1(5):367-74.
34. Chang LY, Crapo JD. Inhibition of Airway Inflammation and hyperreactivity by a Catalytic Antioxidant. Chest 2003;123(3):446S.
35. Chang L Y, Crapo JD. Inhibition of airway inflammation and hyperreactivity by an antioxidant mimetic. Free Radic Biol Med 2002;33(3):379-86.
36. Rabbani ZN, Salahuddin FK, Yarmolenko P, Batinić- Haberle I, Thrasher BA, Gauter-Fleckenstein B, et al. Low molecular weight catalytic metalloporphyrin antioxidant AEOL 10150 protects lungs from fractionated radiation. Free Radic Res 2007 ; 41(11):1273-82.
37. Rabbani Z, Batinić-Haberle I, Anscher MS, Huang J, Day BJ, Alexander E, et al. Long-term administration of a small molecular weight catalytic metalloporphyrin antioxidant AEOL-10150, protect lungs from radiation- induced injury. Int J Radiat Oncol Biol Phys 2007;67(2):573-80.
Files | ||
Issue | Vol 11, No 4 (2012) | |
Section | Articles | |
Keywords | ||
Antioxidants Asthma MnTnHex-2-PyP |
Rights and permissions | |
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. |