Immunomodulatory Effects of Human Umbilical Cord Wharton’s Jelly-Derived Mesenchymal Stem Cells on Differentiation, Maturation and Endocytosis of Monocyte-Derived Dendritic Cells


The Wharton’s jelly of the umbilical cord is believed to be a source of mesenchymal stem cells (MSCs) which can be therapeutically applied in degenerative diseases.
In this study, we investigated the immunomodulatory effect of umbilical cord derived- mesenchymal stem  cells (UC-MSCs) and  bone  marrow-derived-mesenchymal stem  cells (BM-MSCs) on differentiation, maturation, and endocytosis of monocyte-derived dendritic cells in a transwell culture system under laboratory conditions. Monocytes were differentiated into immature dendritic cells (iDCs) in the presence of GM-CSF and IL-4 for 6 days and then differentiated into mature dendritic cells (mDCs) in the presence of TNF-α for 2 days. In every stage of differentiation, immature and mature dendritic cells were separately co- cultured with UC-MSCs and BM-MSCs.
The findings showed that UC-MSCs and BM-MSCs inhibited strongly differentiation and maturation of dendritic cells at higher dilution ratios (1:1). The BM-MSCs and UC-MSCs showed more inhibitory effect on CD1a, CD83, CD86 expression, and dendritic cell endocytic activity, respectively. On the other hand, these cells severely up-regulated CD14 marker expression.
 We concluded that UC-MSCs and BM-MSCs could inhibit differentiation, maturation and endocytosis in monocyte-derived DCs through the secreted factors and free of any cell- cell contacts  under  laboratory conditions. As DCs  are believed to  be the  main antigen presenting cells for naïve T cells in triggering immune responses, it would be logical that their inhibitory effect on differentiation, maturation and function can decrease or modulate immune and inflammatory responses.

1. Kørbling M, Estrov Z. Adult stem cells for tissue repair - a new therapeutic concept? N Engl J Med 2003; 349 (6):570-82.
2. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK,Douglas R, Mosca JD, et al. Multilineage potential of adult human mesenchymal stem cells. Science 1999;284(5411):143-7.
3. Chamberlain G, Fox J, Ashton B, Middleton J.Mesenchymal stem cells: their phenotype, differentiation capacity, immunological features, and potential for homing. Stem Cells 2007; 25(11):2739-49.
4. Uccelli A, Moretta L, Pistoia V. Mesenchymal stem cells in health and disease. Nat Rev Immunol 2008; 8(9):726-36.
5. Frank P. Barry,1 Raymond E. Boynton, Stephen Haynes worth, J. Mary Murphy, and Joseph Zaia.The Monoclonal Antibody SH-2, Raised against Human Mesenchymal Stem Cells, Recognizes an Epitope on Endoglin (CD105). Biochemical and Biophysical Research Communications.1999; 265, 134–139
6. Bartholomew A, Sturgeon C, Siatskas M, et al.Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo. Exp Hematol 2002; 30(1):42-8.
7. Oswald J, Boxberger S, Jorgensen B, Feldmann S, Ehninger G, Bornhäuser M, et al. Mesenchymal stem cells can be differentiated into endothelial cells in vitro. Stem Cells 2004; 22(3):377-84.
8. Conconi MT, Burra P, Di Liddo R, Calore C, Turetta M, Bellini S, et al. CD105(+) cells from Wharton’s jelly show in vitro and in vivo myogeni differentiative potential. Int J Mol Med 2006; 18(6):1089-96.
9. Troyer DL, Weiss ML. Wharton's jelly-derived cells are a primitive stromal cell population. Stem Cells 2008;26(3):591-9.
10. Wang HS, Hung SC, Peng ST, Huang CC, Wei HM, Guo YJ, et al. Mesenchymal stem cells in the Wharton's jelly of the human umbilical cord. Stem Cells 2004;22(7):1330-7.
11. Zeddou M, Briquet A, Relic B, Josse C, Malaise MG, Gothot A, et al. The umbilical cord matrix is a better source of mesenchymal stem cells (MSC) than the umbilical cord blood. Cell Biol Int 2010; 34(7):693–701.
12. Romanov YA, Svintsitskaya VA, Smirnov VN. Searching for alternative sources of postnatal human mesenchymal stem cells: candidate MSC-like cells from umbilical cord. Stem Cells 2003; 21(1):105-10.
13. McElreavey KD, Irvine AI, Ennis KT, McLean WH.Isolation, culture and characterisation of fibroblast-like cells derived from the Wharton's jelly portion of human umbilical cord. Biochem Soc Trans 1991; 19(1):29S.
14. Kobayashi K, Kubota T, Aso T. Study on myofibroblastdifferentiation in the stromal cells of Wharton's jelly: expression and localization of alpha-smooth muscle actin. Early Hum Dev 1998; 51(3):223-33.
15. Carlin R, Davis D, Weiss M, Schultz B, Troyer D.Expression of early transcription factors Oct-4, Sox-2 and Nanog by porcine umbilical cord (PUC) matrix cells. Reprod Biol Endocrinol 2006; 4:8.
16. Sobolewski K, Małkowski A, Bańkowski E, Jaworski S.Wharton's jelly as a reservoir of peptide growth factors. Placenta 2005; 26(10):747-52.
17. Mitchell KE, Weiss ML, Mitchell BM, Martin P, Davis D, Morales L, et al. Matrix cells from Wharton's jelly form neurons and glia. Stem Cells 2003; 21(1):50-60.
18. Zhang HT, Fan J, Cai YQ, Zhao SJ, Xue S, Lin JH, et al.Human Wharton’s jelly cells can be induced to differentiate into growth factor-secreting oligodendrocyte progenitor-like cells. Differentiation 2010; 79(1):15–20.
19. Zhang YN, Lie PC, Wei X. Differentiation ofmesenchymal stromal cells derived from umbilical cord Wharton’s jelly into hepatocyte- like cells. Cytotherapy 2009; 11(5):548–58.
20. Anzalone R, Lo Iacono M, Corrao S, Magno F, Loria T, Cappello F, et al. New emerging potentials for human Wharton’s jelly mesenchymal stem cells: immunological features and hepatocyte-like differentiative capacity. Stem Cells Dev 2010; 19(4):423–38.
21. Schneider RK, Püllen A, Kramann R, Bornemann J, Knüchel R, Neuss S, et al. Long-term survival and characterization of human umbilical cord-derived mesenchymal stem cells on dermal equivalents. Differentiation 2010;79(3):182–93.
22. Xu HH, Zhao L, Detamore MS, Takagi S, Chow LC. Umbilical cord stem cell seeding on fast-resorbable calcium phosphate bone cement. Tissue Eng Part A 2010;16(9):2743–53.
23. Caballero M, Reed CR, Madan G, van Aalst JA.Osteoinduction in umbilical cord- and palate periosteum- derived mesenchymal stem cells. Ann Plast Surg 2010;64(5):605–9.
24. Raio L, Cromi A, Ghezzi F, Passi A, Karousou E, Viola M, et al. Hyaluronan content of Wharton's jelly in healthy and Down syndrome fetuses. Matrix Biol 2005;24(2):166-74.
25. Prasanna SJ, Gopalakrishnan D, Shankar SR, Vasandan AB. Pro-inflammatory cytokines, IFNgamma and TNFalpha, influence immune properties of human bone marrow and Wharton jelly mesenchymal stem cells differentially. PLoS One 2010; 5(2):e9016.
26. Romani N, Gruner S, Brang D, Kämpgen E, Lenz A, Trockenbacher B, et al. Proliferating dendritic cell progenitors in human blood. J Exp Med 1994; 180(1):83-93.
27. Chapuis F, Rosenzwajg M, Yagello M, Ekman M, Biberfeld P, Gluckman JC. Differentiation of human dendritic cells from monocytes in vitro. Eur J Immunol 1997; 27(2):431-41
28. Banchereau J, Briere F, Caux C, Davoust J, Lebecque S, Liu YJ, et al. Immunobiology of dendritic cells. Annu Rev Immunol 2000; 18:767-811.
29. Liu YJ, Kanzler H, Soumelis V, Gilliet M. Dendritic cell lineage, plasticity and cross-regulation. Nat Immunol 2001; 2(7):585-9.
30. Steinman RM, Hawiger D, Nussenzweig MC.Tolerogenic dendritic cells. Annu Rev Immunol 2003;21:685-711.
31. Smits HH, de Jong EC, Wierenga EA, Kapsenberg ML.Different faces of regulatory DCs in homeostasis and immunity. Trends Immunol 2005; 26(3):123-9.
32. Steinman RM, Banchereau J. Taking dendritic cells intomedicine. Nature 2007; 449(7161):419-26.
33. Nauta AJ, Westerhuis G, Kruisselbrink AB, Lurvink EG, Willemze R, Fibbe WE. Donor-derived mesenchymal stem cells are immunogenic in an allogeneic host and stimulate donor graft rejection in a nonmyeloablative setting. Blood 2006; 108(6):2114–20.
34. Di Nicola M, Carlo-Stella C, Magni M, Milanesi M, Longoni PD, Matteucci P, et al. Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood 2002; 99(10):3838-43.
35. Yang SH, Park MJ, Yoon IH, Kim SY, Hong SH, Shin JY, et al. Soluble Mediators from Mesenchymal Stem Cells Suppress T cell Proliferation by inducing IL-10. Exp Mol Med 2009; 41(5):315-24.
36. Bailey MM, Wang L, Bode CJ, Mitchell KE, Detamore MS. A comparison of human umbilical cord matrix stem cells and temporomandibular joint condylar chondrocytes for tissue engineering temporomandibular joint condylar cartilage. Tissue Eng 2007; 13(8):2003-10.
37. Jomura S, Uy M, Mitchell K, Dallasen R, Bode CJ, Xu Y.Potential treatment of cerebral global ischemia with Oct 4+ umbilical cord matrix cells. Stem Cells. 2007;25(1):98-106.
38. Tian X, Fu R, Deng L. [Method and conditions of isolation and proliferation of multipotent mesenchymal stem cells]. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi 2007; 21(1):81-5.
39. Sobolewski K, Małkowski A, Bańkowski E, Jaworski S.Wharton's jelly as a reservoir of peptide growth factors. Placenta 2005; 26(10):747-52.
40. Janderova L, McNeil M, Murrell AN, Mynatt RL, Smith SR. Human mesenchymal stem cells as an in vitro model for human adipogenesis. Obes Res 2003 11(1):65-74.
41. Le Blanc K, Tammik L, Sundberg B, Haynesworth SE, Ringdén O. Mesenchymal stem cells inhibit and stimulate mixed lymphocyte cultures and mitogenic responses independently of the major histocompatibility complex. Scand J Immunol 2003; 57(1):11–20.
42. Krampera M, Glennie S, Dyson J, Scott D, Laylor R, Simpson E, et al. Bone marrow mesenchymal stem cells inhibit the response of naive and memory antigen-specific T cells to their cognate peptide. Blood 2003; 101(9):3722–9.
43. Tse WT, Pendleton JD, Beyer WM, Egalka MC, Guinan EC. Suppression of allogeneic T-cell proliferation by human marrow stromal cells: implications in transplantation. Transplantation 2003; 75(3):389–97.
44. Djouad F, Plence P, Bony C, Tropel P, Apparailly F, Sany J, et al. Immunosuppressive effect of mesenchymal stem cells favors tumor growth in allogeneic animals. Blood 2003; 102(10):3837–44.
45. Meisel R, Zibert A, Laryea M, Göbel U, Däubener W, Dilloo D. Human bone marrow stromal cells inhibit allogeneic T-cell responses by indoleamine 2,3- dioxygenase-mediated tryptophan degradation. Blood 2004; 103(12):4619–21.
46. Potian JA, Aviv H, Ponzio NM, Harrison JS, Rameshwar P. Veto-like activity of mesenchymal stem cells: functional discrimination between cellular responses to alloantigens and recall antigens. J Immunol 2003; 171(7):3426–34.
47. Jiang XX, Zhang Y, Liu B, Zhang SX, Wu Y, Yu XD, et al. Human mesenchymal stem cells inhibit differentiation and function of monocytederived dendritic cells. Blood 2005; 105(10):4120-6.
48. Nauta AJ, Kruisselbrink AB, Lurvink E, Willemze R, Fibbe WE. Mesenchymal stem cells inhibit generation and function of both CD34 + -derived and monocyte- derived dendritic cells. J Immunol 2006; 177(4):2080–7.
49. Zhang W, Ge W, Li C, You S, Liao L, Han Q, et al.Effects of mesenchymal stem cells on differentiation: maturation, and function of human monocyte-derived dendritic cells. Stem Cells Dev 2004; 13(3):263–71.
50. Ramasamy R, Fazekasova H, Lam EW, Soeiro I, Lombardi G, Dazzi F. Mesenchymal stem cells inhibit dendritic cell differentiation and function by preventing entry into the cell cycle. Transplantation 2007; 83(1):71–6.
51. Antony J. Cutler, Vasanti Limbani, John Girdlestone, and Cristina V. Navarrete. Umbilical Cord-Derived Mesenchymal Stromal Cells Modulate Monocyte Function to Suppress T Cell Proliferation. The Journal of Immunology, 2010, 185: 6617–6623.
52. Lutz MB, Suri RM, Niimi M, Ogilvie AL, Kukutsch NA, Rossner S, et al. Immature dendritic cells generated with low doses of GM-CSF in the absence of IL-4 are maturation resistant and prolong allograft survival in vivo. Eur J Immunol 2000; 30(7):1813–22.
53. Mellman I, Steinman RM. Dendritic cells: specialized and regulated antigen processing machines. Cell 2001;106(3):255–8.
54. Banchereau J, Steinman RM. Dendritic cells and the control of immunity. Nature 1998; 392(6673):245–52.
55. Hackstein H, Morelli AE, Thomson AW. Designer dendritic cells for tolerance induction: guided not misguided missiles. Trends Immunol 2001; 22(8):437-42.
56. Fu F, Li Y, Qian S, Lu L, Chambers F, Starzl TE, et al.Costimulatory moleculedeficient dendritic cell progenitors (MHC class II+, CD80dim, D86-) prolong cardiac allograft survival in nonimmunosuppressed recipients. Transplantation 1996; 62(5):659-65.
57. Josien R, Heslan M, Brouard S, Soulillou JP, Cuturi MC.Critical requirement for graft passenger leukocytes in allograft tolerance induced by donor blood transfusion. Blood 1998; 92(12):4539-44.
58. Sallusto F, Lanzavecchia A. Mobilizing dendritic cells for tolerance, priming, and chronic inflammation J Exp Med 1999; 189(4):611-4.

IssueVol 12, No 1 (2013) QRcode
Bone marrow Dendritic cell Endocytosis Mesenchymal stem cells Wharton’s jelly

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
Saeidi M, Masoud A, Shakiba Y, Hadjati J, Mohyeddin Bonab M, Nicknam MH, Latifpour M, Nikbin B. Immunomodulatory Effects of Human Umbilical Cord Wharton’s Jelly-Derived Mesenchymal Stem Cells on Differentiation, Maturation and Endocytosis of Monocyte-Derived Dendritic Cells. Iran J Allergy Asthma Immunol. 1;12(1):37-49.