Articles
 

The Role of Interleukin-23 in Stability of In Vitro T Helper-17 Cells

Abstract

Interleukin (IL)-17-producing T helper (Th)-17 cells have recently been explained as a distinct population  of  CD4+  T  cells which play an important  role in immunity against infectious agents. Establishment of persistent phenotype of Th17 cells and recognition of lineage-deviating factors are of most attractive goals in modern researches in immunology. Although  IL-6  and  TGF-β  are  frequently used  to  differentiate  naive T  cells to  Th17 phenotype in mouse models, the application of IL-23 and its importance in preventing cells from plasticity needs to be more investigated. Our main objective was to evaluate the role of IL-23 in Th17 to Th1 plasticity.
In  this  research  project,  we generated in  vitro  Myelin oligodendrocyte glycoprotein (MOG)-specific Th17 cells in the presence of TGF-β, IL-6, IL-23 and peptide MOG35-55. Th17  development  was confirmed  by assessment  of  relevant  transcription  factors  and secreted cytokines by flowcytometry and ELISA, respectively. Th17 to Th1 plasticity was monitored by consecutive samplings in different time points without any extra supplementation of IL-23. Cell culture supernatant  was evaluated for Interferon  (IFN)-γ secretion and cells were evaluated for intracellular expression of this cytokine.
Our results showed that the employed method was relatively convenient in developing antigen-specific Th17  cells. We also showed  that  IL-23  deprivation  which happens  by prolongation of culture period, can convert IL-17 producing cells to IFN-γ secreting Th1 phenotype.
IL-23 can be considered as a Th17 phenotype stabilizing factor for in-vitro developed lineages.

1. Fort MM, Cheung J, Yen D, Li J, Zurawski SM, Lo S, et al. IL-25 induces IL-4, IL-5, and IL-13 and Th2- associated pathologies in vivo. Immunity 2001;15(6):985-95.
2. Paul WE, Seder RA. Seder, Lymphocyte responses and cytokines. Cell 1994; 76(2):241-51.
3. McGeachy MJ, Cua DJ. Th17 cell differentiation: the long and winding road. Immunity 2008; 28(4):445-53.
4. Weaver CT, Hatton RD, Mangan PR, Harrington LE. IL-17 family cytokines and the expanding diversity of effector T cell lineages. Annu Rev Immunol 2007;25:821-52.
5. Stockinger B, Veldhoen M, Martin B. Th17 T cells:linking innate and adaptive immunity. Semin Immunol 2007; 19(6):353-61.
6. Harrington LE, Hatton RD, Mangan PR, Turner H, Murphy TL, Murphy KM, et al. Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat Immunol 2005;6(11):1123-32.
7. Park H, Li Z, Yang XO, Chang SH, Nurieva R, Wang YH, et al. A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat Immunol 2005; 6(11) 1133-41.
8. Chen Z, Laurence A, O'Shea JJ. A. Laurence, and J.J.O'Shea, Signal transduction pathways and transcriptional regulation in the control of Th17 differentiation. Semin Immunol 2007; 19(6):400-8.
9. Moseley TA, Haudenschild DR, Rose L, Reddi AH.Interleukin-17 family and IL-17 receptors. Cytokine Growth Factor Rev 2003; 14(2):155-74.
10. Ye P, Rodriguez FH, Kanaly S, Stocking KL, Schurr J, Schwarzenberger P, et al. Requirement of interleukin 17 receptor signaling for lung CXC chemokine and granulocyte colony-stimulating factor expression, neutrophil recruitment, and host defense. J Exp Med 2001; 194(4):519-27.
11. Zamvil SS, Steinman L. The T lymphocyte in experimental allergic encephalomyelitis. Annu Rev Immunol 1990; 8:579-621.
12. Gately MK, Renzetti LM, Magram J, Stern AS, Adorini L, Gubler U, et al. The interleukin-12/interleukin-12- receptor system: role in normal and pathologic immune responses. Annu Rev Immunol 1998; 16:495-521.
13. Yen D, Cheung J, Scheerens H, Poulet F, McClanahan T, McKenzie B, et al. IL-23 is essential for T cell-mediated colitis and promotes inflammation via IL-17 and IL-6. J Clin Invest 2006; 116(5):1310-6.
14. Langrish CL, Chen Y, Blumenschein WM, Mattson J,Basham B, Sedgwick JD, et al. IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J Exp Med 2005; 201(2):233-40.
15. Kebir H, Kreymborg K, Ifergan I, Dodelet-Devillers A,Cayrol R, Bernard M, et al. Human TH17 lymphocytes promote blood-brain barrier disruption and central nervous system inflammation. Nat Med 2007;13(10):1173-5.
16. Bettelli E, Carrier Y, Gao W, Korn T, Strom TB, Oukka M, Weiner HL, Kuchroo VK. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 2006; 441(7090):235-8.
17. Veldhoen M, Hocking RJ, Atkins CJ, Locksley RM, Stockinger B, et al. TGFbeta in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity, 2006. 24(2):179-89.
18. Zhou L, Ivanov II, Spolski R, Min R, Shenderov K, Egawa T, et al. IL-6 programs T(H)-17 cell differentiation by promoting sequential engagement of the IL-21 and IL-
23 pathways. Nat Immunol 2007; 8(9):967-74.19. Laurence A, Tato CM, Davidson TS, Kanno Y, Chen Z, Yao Z, et al., Interleukin-2 signaling via STAT5 constrains T helper 17 cell generation. Immunity 2007;26(3):371-81.
20. Gorham JD, Güler ML, Fenoglio D, Gubler U, Murphy KM. Low dose TGF-beta attenuates IL-12 responsiveness in murine Th cells. J Immunol 1998; 161(4):1664-70.
21. Magram J, Connaughton SE, Warrier RR, Carvajal DM,Wu CY, Ferrante J, et al., IL-12-deficient mice are defective in IFN gamma production and type 1 cytokine responses. Immunity 1996; 4(5):471-81.
22. Wu C, Ferrante J, Gately MK, Magram J.Characterization of IL-12 receptor beta1 chain (IL-12Rbeta1)-deficient mice: IL-12Rbeta1 is an essential component of the functional mouse IL-12 receptor. J Immunol 1997; 159(4):1658-65.
23. Wu C, Wang X, Gadina M, O'Shea JJ, Presky DH, Magram J. IL-12 receptor beta 2 (IL-12R beta 2)-deficient mice are defective in IL-12-mediated signaling despite the presence of high affinity IL-12 binding sites. J Immunol 2000; 165(11):6221-8.
24. Lee YK, Turner H, Maynard CL, Oliver JR, Chen D, Elson CO, et al. Late Developmental Plasticity in the T Helper 17 Lineage. Immunity 2009; 30(1):92-107.
25. Lexberg MH, Taubner A, Förster A, Albrecht I, Richter A, Kamradt T, et al. Th memory for interleukin-17 expression is stable in vivo. Eur J Immunol 2008;38(10):2654-64.
26. Xu L, Kitani A, Fuss I, Strober W. Cutting edge: regulatory T cells induce CD4+CD25-Foxp3- T cells or are self-induced to become Th17 cells in the absence of exogenous TGF-beta. J Immunol 2007;. 178(11):6725-9.
27. Osorio F, LeibundGut-Landmann S, Lochner M, Lahl K, Sparwasser T, Eberl G, et al. DC activated via dectin-1 convert Treg into IL-17 producers. Eur J Immunol 2008;38(12):3274-81.
28. Wei G, Wei L, Zhu J, Zang C, Hu-Li J, Yao Z, et al.Global mapping of H3K4me3 and H3K27me3 reveals specificity and plasticity in lineage fate determination of differentiating CD4+ T cells. Immunity 2009; 30(1):155-67.
29. Annunziato F, Cosmi L, Santarlasci V, Maggi L, Liotta F,Mazzinghi B, Parente E, et al. Phenotypic and functional features of human Th17 cells. J Exp Med 2007;204(8):1849-61.
30. Kebir H, Ifergan I, Alvarez JI, Bernard M, Poirier J, Arbour N, et al. Preferential recruitment of interferon- gamma-expressing TH17 cells in multiple sclerosis. Ann Neurol 2009; 66(3):390-402.
31. Wilson NJ, Boniface K, Chan JR, McKenzie BS, Blumenschein WM, Mattson JD, et al. Development, cytokine profile and function of human interleukin 17- producing helper T cells. Nat Immunol 2007; 8(9):950-7.
32. Acosta-Rodriguez EV, Napolitani G, Lanzavecchia A, Sallusto F. Interleukins 1beta and 6 but not transforming growth factor-beta are essential for the differentiation of interleukin 17-producing human T helper cells. Nat Immunol 2007; 8(9):942-9.
33. Jäger A, Dardalhon V, Sobel RA, Bettelli E, Kuchroo VK.Th1, Th17, and Th9 effector cells induce experimental autoimmune encephalomyelitis with different pathological phenotypes. J Immunol 2009; 183(11):7169-77.
34. Domingues HS, Mues M, Lassmann H, Wekerle H,Krishnamoorthy G. Functional and pathogenic differences of Th1 and Th17 cells in experimental autoimmune encephalomyelitis. PLoS One 2010; 5(11): e15531.
35. O'Connor RA, Prendergast CT, Sabatos CA, Lau CW, Leech MD, Wraith DC, et al. Cutting edge: Th1 cells facilitate the entry of Th17 cells to the central nervous system during experimental autoimmune encephalomyelitis. J Immunol 2008; 181(6):3750-4.
36. Kroenke MA, Carlson TJ, Andjelkovic AV, Segal BM.IL-12- and IL-23-modulated T cells induce distinct types of EAE based on histology, CNS chemokine profile, and response to cytokine inhibition. J Exp Med 2008;205(7):1535-1541.
37. McGeachy MJ, Cua DJ. The link between IL-23 and Th17 cell-mediated immune pathologies. Semin Immunol 2007; 19(6):372-6.
38. Ivanov II, Zhou L, Littman DR. Transcriptional regulation of Th17 cell differentiation. Semin Immunol 2007;19(6):409-17.
39. Weaver CT, Harrington LE, Mangan PR, Gavrieli M, Murphy KM. Th17: an effector CD4 T cell lineage with regulatory T cell ties. Immunity 2006; 24(6):677-88.
40. Cooke A. Th17 cells in inflammatory conditions. RevDiabet Stud 2006; 3(2):72-5.
41. Korn T, Oukka M, Kuchroo V, Bettelli E. Th17 cells: effector T cells with inflammatory properties. Semin Immunol 2007; 19(6):362-71.
42. Awasthi A, Riol-Blanco L, Jäger A, Korn T, Pot C, Galileos G, et al., Cutting edge: IL-23 receptor gfp reporter mice reveal distinct populations of IL-17- producing cells. J Immunol 2009; 182(10):5904-8.

Files
IssueVol 13, No 2 (2014) QRcode
SectionArticles
Keywords
CD4-Positive T-Lymphocytes Interleukin-17 Interleukin-23 Myelin- Oligodendrocyte Glycoprotein Th 17 Cells

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
1.
Taherian M, Razavi AR, Izad M, Boghozian R, Namdari H, Ghayedi M, Rahimzadeh P, Bidad K, Salehi E. The Role of Interleukin-23 in Stability of In Vitro T Helper-17 Cells. Iran J Allergy Asthma Immunol. 1;13(2):131-137.