Articles
 

Effects of Imatinib Mesylate in Mouse Models of Multiple Sclerosis and In vitro Determinants

Abstract

Experimental  autoimmune  encephalomyelitis (EAE)  is  a  mouse  model  for  multiple sclerosis (MS), This autoimmune disease is mainly mediated by adaptive and innate immune responses that lead to an inflammatory demyelination and axonal damage. Imatinib mesylate is a  selective protein  tyrosine kinase inhibitor  with immunomodulatory  properties  that abrogates multiple signal transduction pathways in immune cells. In the present research, our aim was to test the therapeutic efficacy of imatinib in experimental model of MS.
We  performed  EAE  induction  in  23  female  C57  mice  by  myelin oligodendrocyte glycoprotein-35-55 (MOG35-55) in  Complete  Freund’s  Adjuvant (CFA) emulsion  and  used imatinib for treatment of EAE. The clinical evaluation and histopathology were assessed. Also for in vitro analysis, we used U-87 MG, C6 and WEHI-164 cell lines to evaluate the inhibitory effects of imatinib in cell proliferation, as well as pro-inflammatory cytokines (TNF-α, IL-1β, IL-6) and matrix metalloproteinase (MMP) secretion.
Our findings demonstrated that this drug had beneficial effects on EAE by attenuation in the severity and a delay in the onset of disease. In vitro, imatinib inhibited cell proliferation, MMP-2 expression and  activity and  also attenuated  the  production  of  proinflammatory cytokines.
Imatinib with its potential therapeutic effects and immunomodulatory properties may be considered, after additional necessary tests and trials, for treatment of MS.

1. Murphy AC, Lalor SJ, Lynch MA, Mills KH. Infiltration of Th1 and Th17 cells and activation of microglia in the CNS during the course of experimental autoimmune encephalomyelitis. Brain Behav Immun 2010;24(4):641-51.
2. Sriram S. Role of glial cells in innate immunity and their role in CNS demyelination. J Neuroimmunol 2011;239(1-2):13-20.
3. Mirshafiey A, Kianiaslani M. Autoantigens and autoantibodies in multiple sclerosis. Iran J Allergy Asthma Immunol. 2013 28; 12(4):292-303.
4. Banati RB, Gehrmann J, Schubert P, Kreutzberg GW.Cytotoxicity of microglia. Glia 1993; 7(1):111-8.
5. Dong Y, Benveniste EN. Immune function of astrocytes.Glia 2001; 36(2):180-90.
6. Benveniste EN, Sparacio SM, Norris JG, Grenett HE, Fuller GM. Induction and regulation of interleukin-6 gene expression in rat astrocytes. J Neuroimmunol 1990;30(2-3):201-12.
7. Gold SM, Sasidhar MV, Morales LB, Du S, Sicotte NL, Tiwari-Woodruff SK, et al. Estrogen treatment decreases matrix metalloproteinase (MMP)-9 in autoimmune demyelinating disease through estrogen receptor alpha (ERalpha). Lab Invest 2009; 89(10):1076-83.
8. Walker EJ, Rosenberg GA. Divergent role for MMP-2 in myelin breakdown and oligodendrocyte death following transient global ischemia. J Neurosci Res 2010;88(4):764-73.
9. Galboiz Y, Shapiro S, Lahat N, Rawashdeh H, Miller A.Matrix metalloproteinases and their tissue inhibitors as markers of disease subtype and response to interferon- beta therapy in relapsing and secondary-progressive multiple sclerosis patients. Ann Neurol 2001; 50(4):443-51.
10. Appel S, Boehmler AM, Grünebach F, Müller MR, Rupf A, Weck MM, et al. Imatinib mesylate affects the development and function of dendritic cells generated from CD34+ peripheral blood progenitor cells. Blood 2004; 103(2):538-44.
11. Cwynarski K, Laylor R, Macchiarulo E, Goldman J, Lombardi G, Melo JV, et al. Imatinib inhibits the activation and proliferation of normal T lymphocytes in vitro. Leukemia 2004; 18(8):1332-9.
12. Iyoda M, Shibata T, Kawaguchi M, Yamaoka T, Akizawa T. Preventive and therapeutic effects of imatinib in Wistar-Kyoto rats with anti-glomerular basement membrane glomerulonephritis. Kidney Int 2009; 75(10):1060-70.
13. Paniagua RT, Sharpe O, Ho PP, Chan SM, Chang A, Higgins JP, et al. Selective tyrosine kinase inhibition by imatinib mesylate for the treatment of autoimmune arthritis. J Clin Invest 2006; 116(10):2633-42.
14. Noubade R, Krementsov DN, Del Rio R, Thornton T, Nagaleekar V, Saligrama N, et al. Activation of p38 MAPK in CD4 T cells controls IL-17 production and autoimmune encephalomyelitis. Blood 2011;118(12):3290-300.
15. Schneider C, Schuetz G, Zollner TM. Acute neuroinflammation in Lewis rats - a model for acute multiple sclerosis relapses. J Neuroimmunol 2009;213(1-2):84-90.
16. Terabe F, Kitano M, Kawai M, Kuwahara Y, Hirano T, Arimitsu J, et al. Imatinib mesylate inhibited rat adjuvant arthritis and PDGF-dependent growth of synovial fibroblast via interference with the Akt signaling pathway. Mod Rheumatol 2009; 19(5):522-9.
17. Akashi N, Matsumoto I, Tanaka Y, Inoue A, Yamamoto K, Umeda N, et al. Comparative suppressive effects of tyrosine kinase inhibitors imatinib and nilotinib in models of autoimmune arthritis. Mod Rheumatol 2011;21(3):267-75.
18. Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 1983; 65(1-2):55-63.
19. Khorramizadeh MR, Aalizadeh N, Pezeshki M, Ghahary A, Zeraati H, Berahmeh A, et al. Determination of gelatinase A using a modified indirect hemagglutination assay in human prostate cancer screening and assessment of its correlation with prostate-specific antigen parameters. Int J Urol 2005; 12(7):637-43.
20. John GR. Investigation of astrocyte - oligodendrocyte interactions in human cultures. Methods Mol Biol 2012;814:401-14.
21. Gao H, Lee BN, Talpaz M, Donato NJ, Cortes JE, Kantarjian HM, et al. Imatinib mesylate suppresses cytokine synthesis by activated CD4 T cells of patients with chronic myelogenous leukemia. Leukemia 2005;19(11):1905-11.
22. Seggewiss R, Loré K, Greiner E, Magnusson MK, Price DA, Douek DC, et al. Imatinib inhibits T-cell receptor- mediated T-cell proliferation and activation in a dose- dependent manner. Blood 2005; 105(6):2473-9.
23. DeBoy CA, Rus H, Tegla C, Cudrici C, Jones MV, Pardo CA, et al. FLT-3 expression and function on microglia in multiple sclerosis. Exp Mol Pathol 2010;89(2):109-16.
24. Dewar AL, Cambareri AC, Zannettino AC, Miller BL, Doherty KV, Hughes TP, et al. Macrophage colony- stimulating factor receptor c-fms is a novel target of imatinib. Blood 2005; 105(8):3127-32.
25. Juurikivi A, Sandler C, Lindstedt KA, Kovanen PT, Juutilainen T, Leskinen MJ, et al. Inhibition of c-kit tyrosine kinase by imatinib mesylate induces apoptosis in mast cells in rheumatoid synovia: a potential approach to the treatment of arthritis. Ann Rheum Dis 2005;64(8):1126-31.
26. Sayed BA, Christy AL, Walker ME, Brown MA.Meningeal mast cells affect early T cell central nervous system infiltration and blood-brain barrier integrity through TNF: a role for neutrophil recruitment? J Immunol 2010; 184(12):6891-900.
27. Diaz-Sanchez M, Williams K, DeLuca GC, Esiri MM.Protein co-expression with axonal injury in multiple sclerosis plaques. Acta Neuropathol 2006; 111(4):289-99.
28. Liuzzi GM, Latronico T, Fasano A, Carlone G, Riccio P.Interferon-beta inhibits the expression of metalloproteinases in rat glial cell cultures: implications for multiple sclerosis pathogenesis and treatment. Mult Scler 2004; 10(3):290-7.
29. Fainardi E, Castellazzi M, Tamborino C, Trentini A, Manfrinato MC, Baldi E, et et al. Potential relevance of cerebrospinal fluid and serum levels and intrathecal synthesis of active matrix metalloproteinase-2 (MMP-2) as markers of disease remission in patients with multiple sclerosis. Mult Scler 2009; 15(5):547-54.
30. Anthony DC, Ferguson B, Matyzak MK, Miller KM, Esiri MM, Perry VH. Differential matrix metalloproteinase expression in cases of multiple sclerosis and stroke. Neuropathol Appl Neurobiol 1997;23(5):406-15.
31. Maeda A, Sobel RA. Matrix metalloproteinases in the normal human central nervous system, microglial nodules, and multiple sclerosis lesions. J Neuropathol Exp Neurol 1996; 55(3):300-9.
32. Newman TA, Woolley ST, Hughes PM, Sibson NR, Anthony DC, Perry VH. T-cell- and macrophage- mediated axon damage in the absence of a CNS-specific immune response: involvement of metalloproteinases. Brain 2001; 124(Pt 11):2203-14.
33. Dong M, Liu R, Guo L, Li C, Tan G. Pathological findings in rats with experimental allergic encephalomyelitis. APMIS 2008; 116(11):972-84.
34. Shiryaev SA, Savinov AY, Cieplak P, Ratnikov BI, Motamedchaboki K, Smith JW, et al. Matrix metalloproteinase proteolysis of the myelin basic protein isoforms is a source of immunogenic peptides in autoimmune multiple sclerosis. PLoS One 2009;4(3):e4952.
35. Benesová Y, Vasku A, Novotná H, Litzman J, Stourac P, Beránek M, et al. Matrix metalloproteinase-9 and matrix metalloproteinase-2 as biomarkers of various courses in multiple sclerosis. Mult Scler 2009;15(3):316-22.
36. Schultz JD, Rotunno S, Erben P, Sommer JU, Anders C, Stern-Straeter J, et al. Down-regulation of MMP-2 expression due to inhibition of receptor tyrosine kinases by imatinib and carboplatin in HNSCC. Oncol Rep 2011; 25(4):1145-51.
37. Crespo O, Kang SC, Daneman R, Lindstrom TM, Ho PP, Sobel RA, et al. Tyrosine kinase inhibitors ameliorate autoimmune encephalomyelitis in a mouse model of multiple sclerosis. J Clin Immunol 2011;31(6):1010-20.
38. Hirota S, Isozaki K, Moriyama Y, Hashimoto K, Nishida T, Ishiguro S, et al. Gain-of-function mutations of c-kit in human gastrointestinal stromal tumors. Science 1998;279(5350):577-80.

Files
IssueVol 13, No 3 (2014) QRcode
SectionArticles
Keywords
Experimental autoimmune encephalomyelitis Imatinib mesylate Matrix metalloproteinase-2 Multiple Sclerosis

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
1.
Azizi G, Haidari MR, Khorramizadeh M, Naddafi F, Sadria R, Javanbakht MH, Sedaghat R, Tofighi Zavareh F, Mirshafiey A. Effects of Imatinib Mesylate in Mouse Models of Multiple Sclerosis and In vitro Determinants. Iran J Allergy Asthma Immunol. 1;13(3):198-206.