Articles
 

T Cell Immune Responses in Psoriasis

Abstract

A central role for T cells and their cytokines in the pathogenesis of psoriasis has been proposed; however, there are controversies over the details of this issue. The goal of this study is to summarise currently available data on the importance of T cells in psoriasis pathogenesis.
A  systematic  review  of  the  English  medical  literature  was  conducted  by  searching PubMed, Embase, ISI Web of Knowledge, and Iranian databases including Iranmedex, and SID for studies on associations between the involvement of T cell subsets and psoriasis.
The results of the present study indicate that alterations in the number and function of different subsets of T-cells are associated with psoriasis.
It   appears   that   studies   on   T   cell   subsets   contributed   to   understanding   the immunopathogenesis  of  psoriasis.  In  addition,  it  may  have  provided  novel  therapeutic opportunities in ameliorating immunopathologies.

1. Perera GK, Di Meglio P, Nestle FO. Psoriasis. Annu Rev Pathol 2012; 7:385-422.

2. Weigle N, McBane S. Psoriasis. Am Fam Physician 2013;87:626-33.

3. Raychaudhuri SP. A cutting edge overview: psoriatic disease. Clin Rev Allergy Immunol 2013; 44(2):109-13.

4. Monteleone G, Pallone F, MacDonald TT, Chimenti S, Costanzo A. Psoriasis: from pathogenesis to novel therapeutic approaches. Clin Sci (Lond) 2010; 120(1):1-11.

5. Mrowietz U. Cyclosporine as maintenance therapy in patients with severe psoriasis. J Am Acad Dermatol 2013;69(2):308-9.

6. Swimberghe S, Ghislain PD, Daci E, Allewaert K, Denhaerynck K, Hermans C, et al. Clinical, Quality of Life, Patient Adherence, and Safety Outcomes of Short- Course (12 Weeks) Treatment with Cyclosporine in Patients with Severe Psoriasis (the Practice Study). Ann Dermatol 2013; 25(1):28-35.

7. Wrone-Smith T, Nickoloff BJ. Dermal injection of immunocytes induces psoriasis. J Clin Invest 1996; 98(8):1878-87.

8. Bos JD, Hagenaars C, Das PK, Krieg SR, Voorn WJ, Kapsenberg ML. Predominance of "memory" T cells (CD4+, CDw29+) over "naive" T cells (CD4+, CD45R+) in both normal and diseased human skin. Arch Dermatol Res 1989; 281(1):24-30.

9. Friedrich M, Krammig S, Henze M, Döcke WD, Sterry W, Asadullah K. Flow cytometric characterization of lesional T cells in psoriasis: intracellular cytokine and surface antigen expression indicates an activated, memory/effector type 1 immunophenotype. Arch Dermatol Res 2000; 292(10):519-21.

10. Morganroth GS, Chan LS, Weinstein GD, Voorhees JJ, Cooper KD. Proliferating cells in psoriatic dermis are comprised primarily of T cells, endothelial cells, and factor XIIIa+ perivascular dendritic cells. J Invest Dermatol 1991; 96(3):333-40.

11. Fuhlbrigge RC, Kieffer JD, Armerding D, Kupper TS.Cutaneous lymphocyte antigen is a specialized form of PSGL-1 expressed on skin-homing T cells. Nature 1997;389(6654):978-81.

12. Braun-Falco O, Christophers E. Structural aspects of initial psoriatic lesions. Arch Dermatol Forsch 1974;251(2):95-110.

13. Bos JD, De Rie MA. The pathogenesis of psoriasis:immunological facts and speculations. Immunol Today 1999; 20(1):40-6.

14. Prinz JC. The role of T cells in psoriasis. J Eur Acad Dermatol Venereol 2003; 17(3):257-70.

15. Ghoreschi K, Laurence A, Yang XP, Hirahara K, O'Shea JJ. T helper 17 cell heterogeneity and pathogenicity in autoimmune disease. Trends Immunol 2011; 32(9):395-401.

16. Gaffen SL.Structure and signalling in the IL-17 receptor family. Nat Rev Immunol 2009; 9(8):556-67.

17. Annunziato F, Cosmi L, Santarlasci V, Maggi L, Liotta F, Mazzinghi B, et al. Phenotypic and functional features of human Th17 cells.J Exp Med 2007; 204(8):1849-61.

18. Acosta-Rodriguez EV, Rivino L, Geginat J, Jarrossay D, Gattorno M, Lanzavecchia A, et al. Surface phenotype and antigenic specificity of human interleukin 17- producing T helper memory cells. Nat Immunol 2007;8(6):639-46.

19. Acosta-Rodriguez EV, Napolitani G, Lanzavecchia A, Sallusto F. Interleukins 1beta and 6 but not transforming growth factor-beta are essential for the differentiation of interleukin 17-producing human T helper cells. Nat Immunol 2007; 8(9):942-9.

20. Wilson NJ, Boniface K, Chan JR, McKenzie BS, Blumenschein WM, Mattson JD, et al. Development, cytokine profile and function of human interleukin 17-producing helper T cells. Nat Immunol 2007;8(9):950-7.

21. Chen Z, Tato CM, Muul L, Laurence A, O'Shea JJ.Distinct regulation of interleukin-17 in human T helper lymphocytes. Arthritis Rheum 2007; 56(9):2936-46.

22. Yang L, Anderson DE, Baecher-Allan C, Hastings WD, Bettelli E, Oukka M, et al. IL-21 and TGF-beta are required for differentiation of human T(H)17 cells. Nature 2008; 454(7202):350-2.

23. Manel N, Unutmaz D, Littman DR. The differentiation of human T(H)-17 cells requires transforming growth factor- beta and induction of the nuclear receptor RORgammat. Nat Immunol 2008; 9(6):641-9.

24. Ye P, Rodriguez FH, Kanaly S, Stocking KL, Schurr J, Schwarzenberger P, et al. Requirement of interleukin 17 receptor signaling for lung CXC chemokine and granulocyte colony-stimulating factor expression, neutrophil recruitment, and host defense. J Exp Med 2001; 194(4):519-27.

25. Huang W, Na L, Fidel PL, Schwarzenberger P.Requirement of interleukin-17A for systemic anti- Candida albicans host defense in mice. J Infect Dis 2004;190(3):624-31.

26. van de Veerdonk FL, Gresnigt MS, Kullberg BJ, van der Meer JW, Joosten LA, Netea MG. Th17 responses and host defense against microorganisms: an overview. BMB Rep 2009; 42(12):776-87.

27. Pelletier M, Maggi L, Micheletti A, Lazzeri E, Tamassia N, Costantini C, Cosmi L, et al. Evidence for a cross-talk between human neutrophils and Th17 cells. Blood 2010;115(2):335-43.

28. Ouyang W, Kolls JK, Zheng Y. The biological functions of T helper 17 cell effector cytokines in inflammation. Immunity 2008; 28(4):454-67.

29. Kao CY, Chen Y, Thai P, Wachi S, Huang F, Kim C, et al. IL-17 markedly up-regulates beta-defensin-2 expression in human airway epithelium via JAK and NF- kappaB signaling pathways. J Immunol 2004;173(5):3482-91.

30. Liang SC, Tan XY, Luxenberg DP, Karim R, Dunussi- Joannopoulos K, Collins M, et al. Interleukin (IL)-22 and IL-17 are coexpressed by Th17 cells and cooperatively enhance expression of antimicrobial peptides. J Exp Med 2006; 203(10):2271-9.

31. Kao CY, Huang F, Chen Y, Thai P, Wachi S, Kim C, et al. Up-regulation of CC chemokine ligand 20 expression in human airway epithelium by IL-17 through a JAK- independent but MEK/NF-kappaB-dependent signaling pathway. J Immunol 2005; 175(10):6676-85.

32. Edwards LJ, Robins RA, Constantinescu CS. Th17/Th1 phenotype in demyelinating disease. Cytokine 2010; 50(2):19-23.

33. Emamaullee JA, Davis J, Merani S, Toso C, Elliott JF, Thiesen A, et al. Inhibition of Th17 cells regulates autoimmune diabetes in NOD mice. Diabetes 2009;58(6):1302-11.

34. Katsifis GE, Rekka S, Moutsopoulos NM, Pillemer S, Wahl SM. Systemic and local interleukin-17 and linked cytokines associated with Sjögren's syndrome immunopathogenesis. Am J Pathol 2009; 175(3):1167-77.

35. Jacobs JP, Wu HJ, Benoist C, Mathis D. IL-17-producing T cells can augment autoantibody-induced arthritis. Proc Natl Acad Sci U S A 2009; 106(51):21789-94.

36. Hemdan NY, Birkenmeier G, Wichmann G, Abu El-Saad AM, Krieger T, Conrad K, et al. Interleukin-17- producing T helper cells in autoimmunity. Autoimmun Rev 2010; 9(11):785-92.

37. Hsu HC, Yang P, Wang J, Wu Q, Myers R, Chen J, et al.Interleukin 17-producing T helper cells and interleukin 17 orchestrate autoreactive germinal center development in autoimmune BXD2 mice. Nat Immunol 2008; 9(2):166-75.

38. Lowes MA, Kikuchi T, Fuentes-Duculan J, Cardinale I, Zaba LC, Haider AS, et al. Psoriasis vulgaris lesions contain discrete populations of Th1 and Th17 T cells. J Invest Dermatol 2008; 128(5):1207-11.

39. Ma HL, Liang S, Li J, Napierata L, Brown T, Benoit S, et al. IL-22 is required for Th17 cell-mediated pathology in a mouse model of psoriasis-like skin inflammation. J Clin Invest 2008; 118(2):597-607.

40. Watanabe H, Kawaguchi M, Fujishima S, Ogura M, Matsukura S, Takeuchi H, et al. Functional characterization of IL-17F as a selective neutrophil attractant in psoriasis. J Invest Dermatol 2009;129(3):650-6.

41.Capon F, Di Meglio P, Szaub J, Prescott NJ, Dunster C, Baumber L, et al. Sequence variants in the genes for the interleukin-23 receptor (IL23R) and its ligand (IL12B) confer protection against psoriasis. Hum Genet 2007;122(2):201-6.

42. Cargill M, Schrodi SJ, Chang M, Garcia VE, Brandon R, Callis KP, et al. A large-scale genetic association study confirms IL12B and leads to the identification of IL23R as psoriasis-risk genes. Am J Hum Genet 2007;80(2):273-90.

43. Nair RP, Duffin KC, Helms C, Ding J, Stuart PE, Goldgar D, et al.Collaborative Association Study of Psoriasis. Genome-wide scan reveals association of psoriasis with IL-23 and NF-kappaB pathways. Nat Genet 2009;41(2):199-204.

44. Nair RP, Ruether A, Stuart PE, Jenisch S, Tejasvi T, Hiremagalore R, et al. Polymorphisms of the IL12B and IL23R genes are associated with psoriasis. J Invest Dermatol 2008; 128(7):1653-61.

45. Chizzolini C, Chicheportiche R, Alvarez M, de Rham C, Roux-Lombard P, Ferrari-Lacraz S, et al. Prostaglandin E2 synergistically with interleukin-23 favors human Th17 expansion. Blood 2008; 112(9):3696-703.

46. Fujishima S, Watanabe H, Kawaguchi M, Suzuki T, Matsukura S, Homma T, et al. Involvement of IL-17F via the induction of IL-6 in psoriasis. Arch Dermatol Res 2010; 302(7):499-505.

47. Goodman WA, Levine AD, Massari JV, Sugiyama H, McCormick TS, Cooper KD. IL-6 signaling in psoriasis prevents immune suppression by regulatory T cells. J Immunol 2009; 183(5):3170-6.

48. van der Fits L, Mourits S, Voerman JS, Kant M, Boon L, Laman JD, et al. Imiquimod-induced psoriasis-like skin inflammation in mice is mediated via the IL-23/IL-17 axis. J Immunol 2009; 182(9):5836-45.

49. Hong K, Chu A, Lúdvíksson BR, Berg EL, Ehrhardt RO.IL-12, independently of IFN-gamma, plays a crucial role in the pathogenesis of a murine psoriasis-like skin disorder. J Immunol 1999;162:7480-91.

50. Chen DY, Chen YM, Chen HH, Hsieh CW, Lin CC, Lan JL. Increasing levels of circulating Th17 cells and interleukin-17 in rheumatoid arthritis patients with an inadequate response to anti-TNF-α therapy. Arthritis Res Ther 2011; 13(4):R126.

51. Strzępa A, Szczepanik M. IL-17-expressing cells as a potential therapeutic target for treatment of immunological disorders. Pharmacol Rep 2011; 63(1):30-44.

52. Wang F, Smith N, Maier L, Xia W, Hammerberg C, Chubb H, et al. Etanercept suppresses regenerative hyperplasia in psoriasis by acutely downregulating epidermal expression of IL-19, IL-20 and IL-24. Br J Dermatol 2012; 167(1):92-102.

53. Mosmann TR, Cherwinski H, Bond MW, Giedlin MA, Coffman RL. Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J Immunol 1986; 136(7):2348-57.

54. Uyemura K, Yamamura M, Fivenson DF, Modlin RL, Nickoloff BJ. The cytokine network in lesional and lesion-free psoriatic skin is characterized by a T-helper type 1 cell-mediated response. J Invest Dermatol 1993;101(5):701-5.

55. Schlaak JF, Buslau M, Jochum W, Hermann E, Girndt M, Gallati H, et al. T cells involved in psoriasis vulgaris belong to the Th1 subset. J Invest Dermatol 1994;102(2):145-9.

56. Vanaki E, Ataei M, Sanati MH, Mansouri P, Mahmoudi M, Jadali Z. Expression patterns of Th1/Th2 transcription factors in patients with guttate psoriasis.Acta Microbiol Immunol Hung 2013; 60(2):163-74.

57. Jadali Z, Izad M, Eslami MB, Mansouri P, Safari R, Bayatian P, et al. Th1/Th2 cytokines in psoriasis. Iranian J Publ Health 2007; 36:1-6.

58. Pietrzak AT, Zalewska A, Chodorowska G, Krasowska D, Michalak-Stoma A, Nockowski P, et al. Cytokines and anticytokines in psoriasis. Clin Chim Acta 2008; 394(1-2):7-21.

59. Ghoreschi K, Thomas P, Breit S, Dugas M, Mailhammer R, van Eden W, et al. Interleukin-4 therapy of psoriasis induces Th2 responses and improves human autoimmune disease. Nat Med 2003; 9(1):40-6.

60. Szabo SJ, Kim ST, Costa GL, Zhang X, Fathman CG, Glimcher LH. A novel transcription factor, T-bet, directs Th1 lineage commitment. Cell 2000; 100(6):655-69.

61. Lantelme E, Mantovani S, Palermo B, Campanelli R, Sallusto F, Giachino C.Kinetics of GATA-3 gene expression in early polarizing and committed human T cells. Immunology 2001; 102(2):123-30.

62. Zhu K, Ye J, Wu M, Cheng H. Expression of Th1 and Th2 cytokine-associated transcription factors, T-bet and GATA-3, in peripheral blood mononuclear cells and skin lesions of patients with psoriasis vulgaris. Arch Dermatol Res 2010; 302(7):517-23.

63. Sabat R, Philipp S, Höflich C, Kreutzer S, Wallace E, Asadullah K, et al. Immunopathogenesis of psoriasis. Exp Dermatol 2007; 16(10):779-98.

64. Abbas AK, Murphy KM, Sher A. Functional diversity of helper T lymphocytes. Nature 1996; 383(6603):787-93.

65. Ghoreschi K, Mrowietz U, Röcken M. A molecule solves psoriasis? Systemic therapies for psoriasis inducing interleukin 4 and Th2 responses. J Mol Med 2003;81:471-80.

66. Barna M, Snijdewint FG, van der Heijden FL, Bos JD, Kapsenberg ML. Characterization of lesional psoriatic skin T lymphocyte clones. Acta Derm Venereol Suppl (Stockh) 1994; 186:9-11.

67. Vollmer S, Menssen A, Trommler P, Schendel D, Prinz JC. T lymphocytes derived from skin lesions of patients with psoriasis vulgaris express a novel cytokine pattern that is distinct from that of T helper type 1 and T helper type 2 cells. Eur J Immunol 1994; 24(10):2377-82.

68. Prens E, Hegmans J, Lien RC, Debets R, Troost R, van Joost T, et al. Increased expression of interleukin-4 receptors on psoriatic epidermal cells. Am J Pathol 1996;148(5):1493-502.

69. Hart PH, Vitti GF, Burgess DR, Whitty GA, Piccoli DS, Hamilton JA.Potential antiinflammatory effects of interleukin 4: suppression of human monocyte tumor necrosis factor alpha, interleukin 1, and prostaglandin E2. Proc Natl Acad Sci U S A 1989; 86(10):3803-7.

70. Vannier E, Miller LC, Dinarello CA. Coordinated antiinflammatory effects of interleukin 4: interleukin 4 suppresses interleukin 1 production but up-regulates gene expression and synthesis of interleukin 1 receptor antagonist. Proc Natl Acad Sci U S A 1999; 89(9):4076-80.

71. Campbell DJ, Koch MA.Phenotypical and functional specialization of FOXP3+ regulatory T cells. Nat Rev Immunol 2011; 11(2):119-30.

72. Shimizu J, Yamazaki S, Takahashi T, Ishida Y, Sakaguchi S. Stimulation of CD25(+)CD4(+) regulatory T cells through GITR breaks immunological self- tolerance. Nat Immunol 2002; 3(2):135-42.

73. McHugh RS, Whitters MJ, Piccirillo CA, Young DA, Shevach EM, Collins M, et al. CD4(+)CD25(+) immunoregulatory T cells: gene expression analysis reveals a functional role for the glucocorticoid-induced TNF receptor. Immunity 2002; 16(2):311-23.

74. Lehmann J, Huehn J, de la Rosa M, Maszyna F, Kretschmer U, Krenn V, et al. Expression of the integrin alpha Ebeta 7 identifies unique subsets of CD25+ as well as CD25- regulatory T cells. Proc Natl Acad Sci U S A 2002; 99(20):13031-6.

75. Liu H, Leung BP. CD4+CD25+ regulatory T cells in health and disease. Clin Exp Pharmacol Physiol 2006;33(5-6):519-24.

76. Vignali DA, Collison LW, Workman CJ. How regulatory T cells work.Nat Rev Immunol 2008; 8(7):523-32.

77. Clark RA. Skin-resident T cells: the ups and downs of on site immunity. J Invest Dermatol 2010; 130(2):362-70.

78. Teraki Y, Shiohara T. IFN-gamma-producing effector CD8+ T cells and IL-10-producing regulatory CD4+ T cells in fixed drug eruption. J Allergy Clin Immunol 2003; 112(3):609-15.

79. Vukmanovic-Stejic M, Agius E, Booth N, Dunne PJ, Lacy KE, Reed JR, et al. The kinetics of CD4+Foxp3+ T cell accumulation during a human cutaneous antigen- specific memory response in vivo. J Clin Invest 2008;118(11):3639-50.

80. Bettini M, Vignali DA. Regulatory T cells and inhibitory cytokines in autoimmunity. Curr Opin Immunol 2009;21(6):612-8.

81.Sugiyama H, Gyulai R, Toichi E, Garaczi E, Shimada S, Stevens SR, et al. Dysfunctional blood and target tissue CD4+CD25high regulatory T cells in psoriasis: mechanism underlying unrestrained pathogenic effector T cell proliferation. J Immunol 2005; 174(1):164-73.

82. Zhang K, Li X, Yin G, Liu Y, Niu X, Hou R. Functional characterization of CD4+CD25+ regulatory T cells differentiated in vitro from bone marrow-derived haematopoietic cells of psoriasis patients with a family history of the disorder. Br J Dermatol 2008; 158(2):298-305.

83.Grossman RM, Krueger J, Yourish D, Granelli-Piperno A, Murphy DP, May LT, et al.Interleukin 6 is expressed in high levels in psoriatic skin and stimulates proliferation of cultured human keratinocytes. Proc Natl Acad Sci U S A 1989; 86(16):6367-71.

84. Pasare C, Medzhitov R. Toll pathway-dependent blockade of CD4+CD25+ T cell-mediated suppression by dendritic cells. Science 2003; 299(5609):1033-6.

85.Valencia X, Stephens G, Goldbach-Mansky R, Wilson M, Shevach EM, Lipsky PE. TNF downmodulates the function of human CD4+CD25hi T-regulatory cells. Blood 2006; 108(1):253-61.

86. Quaglino P, Ortoncelli M, Comessatti A, Ponti R, Novelli M, Bergallo M, et al. Circulating CD4+CD25 bright FOXP3+ T cells are up-regulated by biological therapies and correlate with the clinical response in psoriasis patients. Dermatology 2009; 219(3):250-8.

87. Chen L, Shen Z, Wang G, Fan P, Liu Y. Dynamic frequency of CD4+CD25+Foxp3+ Treg cells in psoriasis vulgaris. J Dermatol Sci 2008; 51(3):200-3.

88. Morishima N, Mizoguchi I, Okumura M, Chiba Y, Xu M, Shimizu M, et al. A pivotal role for interleukin-27 in CD8+ T cell functions and generation of cytotoxic T lymphocytes. J Biomed Biotechnol 2010; 2010:605483.

89. Valdimarsson H. The genetic basis of psoriasis. Clin Dermatol 2007; 25(6):563-7.

90. Schön MP, Boehncke WH. Psoriasis. N Engl J Med 2005;352(18):1899-912.

91. Christophers E. Psoriasis--epidemiology and clinical spectrum. Clin Exp Dermatol 2001; 26(4):314-20.

92. Austin LM, Coven TR, Bhardwaj N, Steinman R, Krueger JG. Intraepidermal lymphocytes in psoriatic lesions are activated GMP-17(TIA-1)+CD8+CD3+ CTLs as determined by phenotypic analysis. J Cutan Pathol 1998; 25(2):79-88.

93. Paukkonen K, Naukkarinen A, Horsmanheimo M. The development of manifest psoriatic lesions is linked with the invasion of CD8 + T cells and CD11c + macrophages into the epidermis. Arch Dermatol Res 1992; 284(7):375-9.

94. Valdimarsson H, Baker BS, Jónsdóttir I, Powles A, Fry L.Psoriasis: a T-cell-mediated autoimmune disease induced by streptococcal superantigens? Immunol Today 1995;16(3):145-9.

95. Nickoloff BJ, Wrone-Smith T. Injection of pre-psoriatic skin with CD4+ T cells induces psoriasis. Am J Pathol 1999; 155(1):145-58.

96. Tan JT, Ernst B, Kieper WC, LeRoy E, Sprent J, Surh CD. Interleukin (IL)-15 and IL-7 jointly regulate homeostatic proliferation of memory phenotype CD8+ cells but are not required for memory phenotype CD4+ cells. J Exp Med 2002; 195(12):1523-32.

97. Gröne A. Keratinocytes and cytokines. Vet Immunol Immunopathol 2002; 88(1-2):1-12.

98. Chang JC, Smith LR, Froning KJ, Schwabe BJ, Laxer JA, Caralli LL, et al. CD8+ T cells in psoriatic lesions preferentially use T-cell receptor V beta 3 and/or V beta 13.1 genes. Proc Natl Acad Sci U S A 1994; 91(20):9282-6.

99. Menssen A, Trommler P, Vollmer S, Schendel D, Albert E, Gürtler L, et al. Evidence for an antigen-specific cellular immune response in skin lesions of patients with psoriasis vulgaris. J Immunol 1995; 155(8):4078-83.

100. Nickoloff BJ. The immunologic and genetic basis of psoriasis.Arch Dermatol 1999; 135(9):1104-10.

101. Vollmer S, Menssen A, Prinz JC. Dominant lesional T cell receptor rearrangements persist in relapsing psoriasis but are absent from nonlesional skin: evidence for a stable antigen-specific pathogenic T cell response in psoriasis vulgaris. J Invest Dermatol 2001; 117(5):1296-301.

102. Deguchi M, Ohtani H, Sato E, Naito Y, Nagura H, Aiba S, et al. Proliferative activity of CD8(+) T cells as an important clue to analyze T cell-mediated inflammatory dermatoses. Arch Dermatol Res 2001; 293(9):442-7.

103. Gudjonsson JE, Johnston A, Sigmundsdottir H, Valdimarsson H. Immunopathogenic mechanisms in psoriasis. Clin Exp Immunol 2004; 135(1):1-8.

104. Bovenschen HJ, Vissers WH, Seyger MM, van de Kerkhof PC. Selective persistence of dermal CD8+ T cells in lesional plaque psoriasis after clobetasol-17 propionate treatment. Acta Derm Venereol 2005;85(2):113-7.

105. Kohlmann WM, Urban W, Sterry W, Foerster J.Correlation of psoriasis activity with abundance of CD25+CD8+ T cells: conditions for cloning T cells from psoriatic plaques. Exp Dermatol 2004; 13(10):607-12.

106. Bovenschen HJ, Seyger MM, Van de Kerkhof PC.Plaque psoriasis vs. atopic dermatitis and lichen planus: a comparison for lesional T-cell subsets, epidermal proliferation and differentiation. Br J Dermatol 2005;153(1):72-8.

107. Servitje O, Bordas X, Serón D, Vidaller A, Moreno A, Curcó N, et al. Changes in T-cell phenotype and adhesion molecules expression in psoriatic lesions after low-dose cyclosporin therapy. J Cutan Pathol 1996; 23(5):431-6.

108. Kastelan M, Massari LP, Peternel S. The role of perforin mediated cell cytotoxicity in psoriasis. Lijec Vjesn 2010;132(11-12):361-4.

109. Bovenschen HJ, van Vlijmen-Willems IM, van de Kerkhof PC, van Erp PE. Identification of lesional CD4+ CD25+ Foxp3+ regulatory T cells in Psoriasis. Dermatology 2006; 213(2):111-7.

110. Brenner MB, McLean J, Dialynas DP, Strominger JL, Smith JA, Owen FL, et al. Identification of a putative second T-cell receptor. Nature 1986; 322(6075):145-9.

111. Carding SR, Egan PJ. Gammadelta T cells: functional plasticity and heterogeneity.Nat Rev Immunol 2002;2(5):336-45.

112. Hayday AC. [gamma][delta] cells: a right time and a right place for a conserved third way of protection. Annu Rev Immunol 2000; 18:975-1026.

113. Kabelitz D. γδ T-cells: cross-talk between innate and adaptive immunity. Cell Mol Life Sci 2011; 68(14):2331-3.

114. Aljurf M, Ezzat A, O Musa M. Emerging role of gammadelta T-cells in health and disease. Blood Rev 2002; 16(4):203-6.

115. Cai Y, Shen X, Ding C, Qi C, Li K, Li X, et al. Pivotal role of dermal IL-17-producing γδ T cells in skin inflammation. Immunity 2011; 35(4):596-610.

116. Sutton CE, Lalor SJ, Sweeney CM, Brereton CF, Lavelle EC, Mills KH. Interleukin-1 and IL-23 induce innate IL-17 production from gammadelta T cells, amplifying Th17 responses and autoimmunity. Immunity 2009; 31(2):331-41.

117. Laggner U, Di Meglio P, Perera GK, Hundhausen C, Lacy KE, Ali N, et al. Identification of a novel proinflammatory human skin-homing Vγ9Vδ2 T cell subset with a potential role in psoriasis. Immunol 2011;187(5):2783-93.

118. Montaudié H, Sbidian E, Paul C, Maza A, Gallini A, Aractingi S, et al. Methotrexate in psoriasis: a systematic review of treatment modalities, incidence, risk factors and monitoring of liver toxicity. J Eur Acad Dermatol Venereol 2011; 25( Suppl 2):12-8 doi.

119. Maza A, Montaudié H, Sbidian E, Gallini A, Aractingi S, Aubin F, et al. Oral cyclosporin in psoriasis: a systematic review on treatment modalities, risk of kidney toxicity and evidence for use in non-plaque psoriasis. J Eur Acad Dermatol Venereol 2011; 25 (Suppl 2):19-27.

120. Dayal S; Mayanka, Jain VK. Comparative evaluation of NBUVB phototherapy and PUVA photochemotherapy in chronic plaque psoriasis. Indian J Dermatol Venereol Leprol 2010; 76(5):533-7.

121. Jain VK. Comparative evaluation of NBUVB phototherapy and PUVA photochemotherapy in chronic plaque psoriasis. Indian J Dermatol Venereol Leprol 2010; 76:533-7.

Files
IssueVol 13, No 4 (2014) QRcode
SectionArticles
Keywords
Autoimmunity Cytokines Psoriasis T cells

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
1.
Jadali Z, Eslami MB. T Cell Immune Responses in Psoriasis. Iran J Allergy Asthma Immunol. 1;13(4):220-230.