Review Article
 

Metformin in Diabetes Management and Immune Modulation: A Comprehensive Review

Abstract

Metformin is a primary treatment for type 2 diabetes (T2D), well-known for its ability to lower blood glucose levels through both AMP-activated protein kinase (AMPK)-dependent and -independent pathways. Recent evidence suggests that metformin also possesses immunomodulatory properties, indicating its potential as a therapeutic agent that extends beyond metabolic regulation. This review summarizes the current understanding of metformin's dual roles in managing diabetes and modulating the immune system. It also explores the underlying mechanisms, clinical implications, and potential directions for future research.

1. Cook DG CJPSJBSHT. Diabetes and infection: assessing the association with glycaemic control in population-based studies. lancet Diabetes Endocrinol. 2016;4(2):148-158.
2. Poursamimi J. A Review of the Prospective Effects of Methadone on Peripheral. Sci World J. 2025;2025(1):8483881.
3. Geerlings SE HA. Immune dysfunction in patients with diabetes mellitus (DM). FEMS Immunol Med Microbiol. 1999;26(3-4):259-265.
4. Xing C ZBDSSLNGCJZCZHHZQJZX. Association of glomerular complement C4c deposition with the progression of diabetic kidney disease in patients with type 2 diabetes. Front Immunol. 2020;11(2073):1-13. doi:https://doi.org/10.3389/fimmu.2020.02073
5. Lenzi A CMCFBIPAMFCCBLCVMSBM. Quantitative changes in serum IL-8, TNF-α and TGF-β1 levels depending on compensation stage in type 2 diabetic patients. Int J Diabetes Metab. 2009;17(2):59-62.
6. Bonaventura P, Benedetti G, Albarède F, Miossec P. Zinc and its role in immunity and inflammation. Autoimmun Rev. 2015;14(4):277-285. doi:10.1016/j.autrev.2014.11.008
7. Lecube A, Pachón G, Petriz J, Hernández C, Simó R. Phagocytic activity is impaired in type 2 diabetes mellitus and increases after metabolic improvement. PLoS One. 2011;6(8):e23366. doi:10.1371/journal.pone.0023366
8. Zhou T, Xu X, Du M, Zhao T, Wang J. A preclinical overview of metformin for the treatment of type 2 diabetes. Biomed Pharmacother. 2018;106:1227-1235. doi:10.1016/j.biopha.2018.07.085
9. Mueller NT, Differding MK, Zhang M, et al. Metformin Affects Gut Microbiome Composition and Function and Circulating Short- Chain Fatty Acids: A Randomized Trial. Diabetes Care. 2021;44(7):1462-1471.
10. Soukas AA, Hao H WL. Metformin as anti-aging therapy: is it for everyone? Trends Endocrinol Metab. 2019;30(10):745-55.
11. Kheirandish M, Mahboobi H, Yazdanparast M, Kamal W KM. Anti-Cancer Effects of Metformin: Recent Evidences for its Role in Prevention and Treatment of Cancer. Curr Drug Metab. 2018;19(9):793-7.
12. Driver C, Bamitale KD, Kazi A, Olla M, Nyane NA OP. Cardioprotective effects of metformin. J Cardiovasc Pharmacol. 2018;72(2):121-127. doi:10.1097/FJC.0000000000000599
13. Mohammadi Y RFA. Effect of metformin on the expression of SNARE proteins in the skeletal muscle of rats with type 2 diabetes. J Sci Res Med Sci. 2021;28(3):270-278.
14. Song S, Andrikopoulos S, Filippis C, Thorburn AW, Khan D, Proietto J. Mechanism of fat-induced hepatic gluconeogenesis: effect of metformin. Am J Physiol Metab. 2001;281(2):E275-82.
15. Kim YD, Park KG, Lee YS, et al. Metformin inhibits hepatic gluconeogenesis through AMP-activated protein kinase–dependent regulation of the orphan nuclear receptor SHP. Diabetes. 2008;57(2):306-314.
16. Salani B, Del Rio A, Marini C, Sambuceti G, Cordera R, D. M. Metformin, cancer and glucose metabolism. Endocr Relat Cancer. 2014;21(6):R461-71.
17. Wang C, Liu F, Yuan Y, et al. Metformin Suppresses Lipid Accumulation in Skeletal Muscle by Promoting Fatty Acid Oxidation. Clin Lab. 2014;60(6):887-96.
18. Aatsinki SM, Buler M, Salomäki H, Koulu M, Pavek P, Hakkola J. Metformin induces PGC-1α expression and selectively affects hepatic PGC-1α functions. Br J Pharmacol. 2014;171(9):2351-2363. doi:10.1111/bph.12585
19. Iorio R, Celenza G PS. Mitophagy: Molecular Mechanisms, New Concepts on Parkin Activation and the Emerging Role of AMPK/ULK1 Axis. Cells. 2021;11(1):30-55.
20. Xiang M, Yuan X, Zhang N, et al. Effects of exercise, metformin, and combination treatments on type 2 diabetic mellitus-induced muscle atrophy in db/db mice: Crosstalk between autophagy and the proteasome. J Physiol Biochem. 2024;80(1):235-247.
21. Longo S, Rizza S, Federici M. Microbiota-gut-brain axis: relationships among the vagus nerve, gut microbiota, obesity, and diabetes. Acta Diabetol. 2023;60(8):1007-1017. doi:10.1007/s00592-023-02088-x
22. Foretz M, Guigas B, Bertrand L, Pollak M, Viollet B. Metformin: From Mechanisms of Action to Therapies. Cell Metab. 2014;20(6):953-966.
23. Foretz M, Guigas B, Viollet B. Metformin: update on mechanisms of action and repurposing potential. Nat Rev Endocrinol. 2023;19(8):460-476.
24. Zafar-Mohammadi K, Poursamimi J, Atabaki M. NLRP3 inflammasome activation and its inhibitory drugs in connection with COVID-19 infection. Eur J Inflamm. 2022;20:1721727X221130984.
25. Yang F, Qin Y, Wang Y, et al. Metformin Inhibits the NLRP3 Inflammasome via AMPK/mTOR-dependent Effects in Diabetic Cardiomyopathy. Int J Biol Sci. 2019;15(5):1010-1019.
26. Cameron AR, Morrison VL, Levin D, et al. Anti-inflammatory effects of metformin irrespective of diabetes status. Circ Res. 2016;119(5):652-665.
27. Kalender A, Selvaraj A, Kim SY, Gulati P, Brûlé S, Viollet B, Kemp BE, Bardeesy N, Dennis P, Schlager JJ MA. Metformin, independent of AMPK, inhibits mTORC1 in a rag GTPase-dependent manner. Cell Metab. 2010;11(5):390-401.
28. Duan W, Ding Y, Yu X, et al. Metformin mitigates autoimmune insulitis by inhibiting Th1 and Th17 responses while promoting Treg production. Am J Transl Res. 2019;11(4):2393-2402. http://www.ncbi.nlm.nih.gov/pubmed/31105845%0Ahttp://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC6511786
29. Zhao M, Li XW, Chen DZ, et al. Neuro-Protective role of metformin in patients with acute stroke and type 2 diabetes mellitus via ampk/mammalian target of rapamycin (mTOR) signaling pathway and oxidative stress. Med Sci Monit. 2019;25:2186-2194. doi:10.12659/MSM.911250
30. Xiao N, Wang J, Wang T, Xiong X, Zhou J, Su X. Metformin abrogates pathological TNF-α-producing B cells through mTOR-dependent metabolic reprogramming in polycystic ovary syndrome. Elife. 2022;11(e74713):1-19. doi:10.7554/eLife.74713
31. Lee SY, Moon SJ, Kim EK, et al. Metformin suppresses systemic autoimmunity in Roquinsan/san mice through inhibiting B cell differentiation into plasma cells via regulation of AMPK/mTOR/STAT3. J Immunol. 2017;198(7):2661-70.
32. Chen X, Ma J, Yao Y, et al. Metformin prevents BAFF activation of Erk1/2 from B-cell proliferation and survival by impeding mTOR-PTEN/Akt signaling pathway. Int Immunopharmacol. 2021;96(107771):1-10.
33. Kang KY, Kim YK, Yi H, et al. Metformin downregulates Th17 cells differentiation and attenuates murine autoimmune arthritis. Int Immunopharmacol. 2013;16(1):85-92. doi:10.1016/j.intimp.2013.03.020
34. Hyer SL. Metformin is not significantly different from insulin for preventing fetal macrosomia in women with gestational diabetes. BMJ Evidence-Based Med. 2012;17(3):88-89.
35. He M, Deng M, Wang J, et al. Efficacy and tolerability of sitagliptin and metformin compared with insulin as an initial therapy for newly diagnosed diabetic patients with severe hyperglycaemia. Exp Ther Med. 2021;21(3). doi:10.3892/etm.2021.9649
36. Saha MR, Ara S, Rahman AS, Rahman S, Hossain MI, Badhon NM. Glycemic Control by Combination Therapy of Sitagliptin-Metformin Versus Metformin Alone. KYAMC J. 2020;11(3):50-153. doi:10.3329/kyamcj.v11i3.49874
37. He M, Wang J, Deng M, Shi B, Sui J. Sitagliptin compared with glimepiride combined with metformin as an initial therapy in newly diagnosed diabetes patients with severe hyperglycaemia: A randomized controlled non-inferiority study. J Xi’an Jiaotong Univ (Medical Sci. 2021;42(1). doi:10.7652/jdyxb202101016
38. Nguyen N. C., Pham H. T., Pham D. T., et al. Comparison of 3 medicine groups used to control glycemic and glycated hemoglobin levels in newly diagnosed type 2 diabetes patients. Open Access Maced J Med Sci. 2021;9. doi:10.3889/oamjms.2021.4672
39. Song XX, Jiang T, Kang K, Wen Z. Efficacy of sitagliptin combined with metformin in the initial treatment of type 2 diabetes with non-alcoholic fatty liver. Chinese J New Drugs. 2014;23(2):215-218.
40. Skandalis K, Spirova M, Gaitanis G, Tsartsarakis A, Bassukas ID. Drug-induced bullous pemphigoid in diabetes mellitus patients receiving dipeptidyl peptidase-IV inhibitors plus metformin. J Eur Acad Dermatology Venereol. 2012;26(2):249-253. doi:10.1111/j.1468-3083.2011.04062.x
41. Soliman AR, Fathy A, Khashab S, Shaheen N. Is Sitagliptin a Favorable Anti-Obesity Drug in New Onset Diabetes after Renal Transplantation? Transplant J. 2012;94(10S):1045. doi:10.1097/00007890-201211271-02070
42. Memon A, Shaikh KR, Ata MA, Soomro UA, Shaikh S, Siddiqui SS. Comparative study of Sitagliptin versus Metformin as an Initial Monotherapy in newly diagnosed Type 2 Diabetic subjects. Rawal Med J. 2022;47(3):532-.
43. Ke W, Liu J, Li H, Liu L, Wan X, Li Y. The insulin daily doses changing and the effect of antihyperglycemic agents during continuous insulin infusion. Diabetes. 2014;63(1701):A598-A598.
44. Billings LK, Jablonski KA, Warner AS, et al. Variation in Maturity-Onset Diabetes of the Young genes influence response to interventions for diabetes prevention. J Clin Endocrinol Metab. 2017;102(8):2678-2689.
45. Sam WJ, Roza O, Hon YY, et al. Effects of SLC22A1 Polymorphisms on Metformin-Induced Reductions in Adiposity and Metformin Pharmacokinetics in Obese Children With Insulin Resistance. J Clin Pharmacol. 2017;57(2):219-229.
46. Rotroff DM, Yee SW, Zhou K, et al. Genetic Variants in CPA6 and PRPF31 Are Associated With Variation in Response to Metformin in Individuals With Type 2 Diabetes. Diabetes. 2018;67(7):1428-1440.
47. Pearson ER, Starkey BJ, Powell RJ, Gribble FM, Clark PM, Hattersley AT. Genetic cause of hyperglycaemia and response to treatment in diabetes. Lancet. 2003;362(9392):1275-1281. doi:10.1016/S0140-6736(03)14571-0
48. Pedersen AK, Gormsen LC, Nielsen S, N J, Bjerre M. Metformin Improves the Prerequisites for FGF21 Signaling in Patients With Type 2 Diabetes. J Clin Endocrinol Metab. 2024;109(2):e552-61.
49. Konopka AR, Laurin JL, Schoenberg HM, et al. Metformin inhibits mitochondrial adaptations to aerobic exercise training in older adults. Aging Cell. 2019;18(1):e12880-92.
50. Ciaraldi TP, Kong AP, Chu NV, et al. Regulation of glucose transport and insulin signaling by troglitazone or metformin in adipose tissue of type 2 diabetic subjects. Diabetes. 2002;51(1):30-6.
51. Yen FS, Wei JC, Shih YH, Hsu CC, CM. H. Metformin use and the risk of bacterial pneumonia in patients with type 2 diabetes. Sci Rep. 2022;12(1):3270-3279.
52. Zmijewski JW, Lorne E, Zhao X, et al. Mitochondrial Respiratory Complex I Regulates Neutrophil Activation and Severity of Lung Injury. Am J Respir Crit Care Med. 2008;178(2):168-179.
53. Ma Z, Patel N, Vemparala P, Krishnamurthy M. Metformin is associated with favorable outcomes in patients with COVID‑19 and type 2 diabetes mellitus. Sci Rep. 2022;12(1):5553-5560.
54. Clegg LE, Jing Y, Penland RC, et al. Cardiovascular and renal safety of metformin in patients with diabetes and moderate or severe chronic kidney disease: Observations from the EXSCEL and SAVOR-TIMI 53 cardiovascular outcomes trials. Diabetes, Obes Metab. 2021;23(5):1101-1110. doi:10.1111/dom.14313
55. Hsu WH, Hsiao PJ, Lin PC, Chen SC, Lee MY, Shin SJ. Effect of metformin on kidney function in patients with type 2 diabetes mellitus and moderate chronic kidney disease. Oncotarget. 2018;9(4):5416-5423. doi:10.18632/oncotarget.23387
56. Kwon S, Kim YC, Park JY, et al. The Long-term Effects of Metformin on Patients With Type 2 Diabetic Kidney Disease. Diabetes Care. 2020;43(5):948-55.
57. Biradar V, Moran JL, Peake SL, Peter JV. Metformin-associated lactic acidosis (MALA): clinical profile and outcomes in patients admitted to the intensive care unit. Crit Care Resusc. 2010;12(3):191-5.
58. Scarpello JH, Hodgson E, Howlett HC. Effect of metformin on bile salt circulation and intestinal motility in type 2 diabetes mellitus. Diabet Med. 1998;15(8):651-656. doi:10.1002/(SICI)1096-9136(199808)15:8<651::AID-DIA628>3.0.CO;2-A
59. Nabrdalik K, Hendel M, Irlik K, et al. Gastrointestinal adverse events of metformin treatment in patients with type 2 diabetes mellitus: A systematic review, meta-analysis and meta- regression of randomized controlled trial. Front Endocrinol (Lausanne). 2022;13(975912):1-17.
60. Kim J, Ahn CW, Fang S, Lee HS, Park JS. Association between metformin dose and vitamin B12 deficiency in patients with type 2 diabetes. Medicine (Baltimore). 2019;98(46):e17918.
61. Mazokopakis EE, Starakis IK. Recommendations for diagnosis and management of metformin-induced vitamin B12 (Cbl) deficienc. Diabetes Res Clin Pract. 2012;97(3):359-367.
62. Mastroianni A, Ciniselli CM, Panella R, Macciotta A, Cavalleri A, Venturelli E, Taverna F, Mazzocchi A, Bruno E, Muti P BF. Monitoring vitamin B12 in women treated with metformin for primary prevention of breast cancer and age-related chronic diseases. Nutrients. 2019;11(5):1020-1031. doi:10.3390/nu11051020
63. Dunne F, Newman C, Alvarez-Iglesias A, et al. Early metformin in gestational diabetes: a randomized clinical trial. JAMA. 2023;330(16):1547-56.
64. Tang T, Glanville J, Orsi N, Barth JH, AH. B. The use of metformin for women with PCOS undergoing IVF treatment. Hum Reprod. 2006;21(6):1416-1425.
65. Jensterle M, Ferjan S, Janez A. The maintenance of long-term weight loss after semaglutide withdrawal in obese women with PCOS treated with metformin: a 2-year observational study. Front Endocrinol (Lausanne). 2024;15(April):1-10. doi:10.3389/fendo.2024.1366940
66. Lambova SN. Pleiotropic Effects of Metformin in Osteoarthritis. Life. 2023;13(2):437-449.
67. Kim JW, Choe JY, Park SH. Metformin and its therapeutic applications in autoimmune inflammatory rheumatic disease. Korean J Intern Med. 2021;37(1):13-26.
68. Abdelgaied MY, Rashad MH, El-Tayebi HM, Solayman MH. The impact of metformin use on the outcomes of relapse-remitting multiple sclerosis patients receiving interferon beta 1a: an exploratory prospective phase II open- label randomized controlled trial. J Neurol. 2024;271(3):1124-1132.
69. Abdalla MS, Alarfaj SJ, Saif DS, et al. The AMPK modulator metformin as adjunct to methotrexate in patients with rheumatoid arthritis: A proof-of-concept, randomized, double-blind, placebo-controlled trial. Int Immunopharmacol. 2021;95(107575):1-9. doi:https://doi.org/10.1016/j.intimp.2021.107575
70. Zhang L, Zhou Y, Jiang S, et al. Effects of metformin therapy on HMGB1 levels in rheumatoid arthritis patients. Eur J Med Res. 2023;28(1):512-520.
71. Pan F, Wang Y, Lim YZ, et al. Metformin for Knee Osteoarthritis in Patients With Overweight or ObesityA Randomized Clinical Trial. JAMA. 2025;e253471. doi:10.1001/jama.2025.3471
72. Halabitska I, Petakh P, Kamyshnyi O. Metformin as a disease-modifying therapy in osteoarthritis: bridging metabolism and joint health. Front Pharmacol. 2025;16(1567544):1-18. doi:10.3389/fphar.2025.1567544
73. Alimoradi N, Ramezani A, Tahami M, Firouzabadi N. Metformin Exhibits Anti-Inflammatory Effects by Regulating microRNA-451/CXCL16 and B Cell Leukemia/Lymphoma 2 in Patients With Osteoarthritis. ACR Open Rheumatol. 2025;7(1):e11755.
74. Karim A, Waheed A, F A, Qaisar R. Metformin effects on plasma zonulin levels correlate with enhanced physical performance in osteoarthritis patients with diabetes. Inflammopharmacology. 2024;32(5):3195-203.
75. Aiad AA, El-Haggar SM, El-Barbary AM, El-Afify DR. Metformin as adjuvant therapy in obese knee osteoarthritis patients. Inflammopharmacology. 2024;32(4):2349-59.
76. Yan S, Dong W, Li Z, et al. Metformin regulates chondrocyte senescence and proliferation through microRNA-34a/SIRT1 pathway in osteoarthritis. J Orthop Surg Res. 2023;18(1):198-208.
77. Alimoradi N, Tahami M, Firouzabadi N, Haem E, Ramezani A. Metformin attenuates symptoms of osteoarthritis: role of genetic diversity of Bcl2 and CXCL16 in OA. Arthritis Res Ther. 2023;25(1):35-46. doi:10.1186/s13075-023-03025-7
78. Ruan G, Yuan S, Lou A, et al. Can metformin relieve tibiofemoral cartilage volume loss and knee symptoms in overweight knee osteoarthritis patients? Study protocol for a randomized, double-blind, and placebo-controlled trial. BMC Musculoskelet Disord. 2022;23(1). doi:10.1186/s12891-022-05434-2
79. Lu CH, Chung CH, Lee CH, et al. Combination COX-2 inhibitor and metformin attenuate rate of joint replacement in osteoarthritis with diabetes: A nationwide, retrospective, matched-cohort study in Taiwan. PLoS One. 2018;13(1):e0191242. doi:10.1371/journal.pone.0191242
80. Wang B, Glicksberg BS, Nadkarni GN, Vashishth D. Evaluation and management of COVID- 19- related severity in people with type 2 diabetes. BMJ Open Diabetes Res Care. 2021;9(1):e002299.
81. Wang J, Cooper JM, Gokhale K, et al. Association of Metformin with Susceptibility to COVID-19 in People with Type 2 Diabetes. J Clin Endocrinol Metab. 2021;106(5):1255-1268.
82. Hashemi P, Pezeshki S. Repurposing metformin for covid-19 complications in patients with type 2 diabetes and insulin resistance. Immunopharmacol Immunotoxicol. 2021;43(3):265-270. doi:10.1080/08923973.2021.1925294
83. Sebastián-Martín A, Sánchez BG, Mora-Rodríguez JM, Bort A DLI. Role of Dipeptidyl Peptidase-4 (DPP4) on COVID-19 Physiopathology. Biomedicines. 2022;10(8):2026-2047. doi:10.3390/biomedicines10082026
84. Petakh P, Griga V, Mohammed IB, Loshak K, Poliak I, Kamyshnyiy A. Effects of Metformin, Insulin on Hematological Parameters of COVID-19 Patients with Type 2 Diabetes. Med Arch. 2022;76(5):329-332.
85. Couselo-Seijas M, Almengló C, M Agra-Bermejo R, et al. Higher ACE2 expression levels in epicardial cells than subcutaneous stromal cells from patients with cardiovascular disease: Diabetes and obesity as possible enhancer. Eur J Clin Invest. 2021;51(5):e13463.
86. Ghany R, Palacio A, Dawkins E, et al. Metformin is associated with lower hospitalizations, mortality and severe coronavirus infection among elderly medicare minority patients in 8 states in USA. Diabetes Metab Syndr. 2021;15(2):513-518.
87. Hardin EM, Keller DR, Kennedy TP, Martins CH. Unanticipated Worsening of Glycemic Control Following a Mild COVID-19 Infection. Cureus. 2022;14(6):e26295.
88. Heald AH, Jenkins DA, Williams R, et al. The Risk Factors Potentially Influencing Hospital Admission in People with Diabetes, Following SARS-CoV-2 Infection: A Population-Level Analysis. Diabetes Ther. 2022;13(5):1007-1021.
89. Ouchi D, C VC, de Dios V, Giner-Soriano M, Morros R. Antidiabetic treatment and COVID-19 Outcomes: A population-based cohort study in primary health care in Catalonia during the first wave of the pandemic. Prim Care Diabetes. 2022;16(6):753-759.
90. Vordoni A, Theofilis P, Vlachopanos G, Koukoulaki M, Kalaitzidis RG. Metformin-associated lactic acidosis and acute kidney injury in the era of COVID-19. Front Biosci (Schol Ed). 2021;13(2):202-207.
Files
IssueArticles in Press QRcode
SectionReview Article(s)
Keywords
Diabetes Mellitus Type 2; Metformin; Innate Immunity; NLRP3 protein; Clinical trials

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
1.
Ghafari M, Poursamimi J, Asli F. Metformin in Diabetes Management and Immune Modulation: A Comprehensive Review. Iran J Allergy Asthma Immunol. 2025;:1-15.