Original Article
 

Effects of Propofol–remifentanil on Apoptotic Molecules, Plasma CXCL10, and CXCL13 in Pancreatic Cancer Patients

Abstract

This study aimed to investigate whether propofol-remifentanil anesthesia offers superior perioperative outcomes compared to propofol-fentanyl in pancreatic cancer surgery patients, with a focus on its effects on apoptotic molecules, plasma CXCL10/CXCL13 levels, and postoperative recovery.
A total of 150 pancreatic cancer patients were divided into 2 cohorts receiving either propofol-fentanyl (control group, n=75) or propofol-remifentanil (study group, n=75) anesthesia. We measured perioperative hemodynamics (cardiac index [CI], mean arterial pressure [MAP], heart rate [HR]), T-cell subsets, postoperative recovery indices (eye-opening time, extubation time, spontaneous respiration recovery time), sedation and analgesia levels (via Ramsay sedation score [RSS] and visual analog scale [VAS]), plasma CXCL10/CXCL13 levels, and apoptosis-related proteins (Survivin, Bax, Caspase-4, Bcl-2) using enzyme-linked immunosorbent assays (ELISAs). Adverse reactions were also recorded.
The study group exhibited significant advantages in hemodynamic stability and immune preservation. Despite similar baseline cardiovascular parameters, the remifentanil group maintained better CI, MAP, and HR stability during and after surgery. Flow cytometry analysis revealed better preservation of T-cell immunity (CD4+, CD3+, CD4+/CD8+ T cells) at 24 hours post-surgery. The intervention group also demonstrated accelerated postoperative recovery with significantly reduced emergence times (eye-opening, extubation, spontaneous respiration). Notably, the study group had more favorable inflammatory profiles (lower CXCL10/CXCL13 levels) and enhanced apoptotic responses (modulated Bax, Caspase-4, Survivin, and Bcl-2 expression). Clinical outcomes were superior in the study group, with significantly fewer adverse events (2 vs. 9 patients).
Propofol-remifentanil anesthesia provides effective sedation and analgesia in pancreatic cancer surgery, modulates key biological pathways related to apoptosis and inflammation, and improves postoperative recovery. These findings suggest that the choice of anesthesia regimen may have significant implications for perioperative outcomes and potentially long-term prognosis in pancreatic cancer patients. Future research should further explore the underlying mechanisms and long-term clinical benefits of this anesthesia strategy.

1. Klein AP. Pancreatic cancer epidemiology: understanding the role of lifestyle and inherited risk factors. Nat Rev Gastroenterol Hepatol. 2021;18(7):493-502.
2. Kolbeinsson HM, Chandana S, Wright GP, Chung M, et al. Pancreatic cancer: a review of current treatment and novel therapies. J Investig Surg. 2023;36(1):2129884.
3. Karunakaran M, Barreto SG. Surgery for pancreatic cancer: current controversies and challenges. Future Oncol. 2021;17(36):5135-62.
4. Tang R, Xu J, Wang W, Meng Q, Shao C, Zhang Y, et al. Targeting neoadjuvant chemotherapy-induced metabolic reprogramming in pancreatic cancer promotes anti-tumor immunity and chemo-response. Cell Rep Med. 2023;4(10):101234.
5. Lai HC, Kuo YW, Huang YH, Chan SM, Cheng KI, Wu ZF, et al. Pancreatic cancer and microenvironments: implications of anesthesia. Cancers (Basel). 2022;14(11).
6. Vellinga R, Hannivoort LN, Introna M, Touw DJ, Absalom AR, Eleveld DJ, et al. Prospective clinical validation of the Eleveld propofol pharmacokinetic-pharmacodynamic model in general anaesthesia. Br J Anaesth. 2021;126(2):386-94.
7. Xu Y, Pan S, Jiang W, Xue F, Zhu X, et al. Effects of propofol on the development of cancer in humans. Cell Prolif. 2020;53(8):e12867.
8. Duan J, Ju X, Wang X, Liu N, Xu S, Wang S. Effects of remimazolam and propofol on emergence agitation in elderly patients undergoing hip replacement: a clinical, randomized, controlled study. Drug Des Devel Ther. 2023;17:2669-78.
9. Chen H, Ding X, Xiang G, Xu L, Liu Q, Fu Q, et al. Correction: analysis of the efficacy of subclinical doses of esketamine in combination with propofol in non-intubated general anesthesia procedures - a systematic review and meta-analysis. BMC Anesthesiol. 2023;23(1):355.
10. Lai HC, Lee MS, Liu YT, Lin KT, Hung KC, Chen JY, et al. Propofol-based intravenous anesthesia is associated with better survival than desflurane anesthesia in pancreatic cancer surgery. PLoS One. 2020;15(5):e0233598.
11. Hughes LM, Irwin MG, Nestor CC. Alternatives to remifentanil for the analgesic component of total intravenous anaesthesia: a narrative review. Anaesthesia. 2023;78(5):620-5.
12. Yang S, Zhao H, Wang H, Zhang H, An Y, et al. Comparison between remifentanil and other opioids in adult critically ill patients: a systematic review and meta-analysis. Medicine (Baltimore). 2021;100(38):e27275.
13. Maharaj AR, Montana MC, Hornik CP, Kharasch ED, et al. Opioid use in treated and untreated obstructive sleep apnoea: remifentanil pharmacokinetics and pharmacodynamics in adult volunteers. Br J Anaesth. 2025;134(3):681-92.
14. Abad-Torrent A, Martínez-Vázquez P, Somma J, Hsu YW, Izquierdo E, et al. Remifentanil pharmacodynamics during conscious sedation using algometry: a more clinically relevant pharmacodynamic model. Br J Anaesth. 2022;129(6):868-78.
15. Gao X, Mi Y, Guo N, Luan J, Xu H, Hu Z, et al. The mechanism of propofol in cancer development: an updated review. Asia Pac J Clin Oncol. 2020;16(2):e3-e11.
16. Sridharan K, Sivaramakrishnan G. Comparison of fentanyl, remifentanil, sufentanil and alfentanil in combination with propofol for general anesthesia: a systematic review and meta-analysis of randomized controlled trials. Curr Clin Pharmacol. 2019;14(2):116-24.
17. Kelliher LJS, Krige A. Anaesthesia for pancreatic surgery. Anesthesiol Clin. 2022;40(1):107-17.
18. Chen Y, Zhang J, Li F, et al. Inhibitory role of remifentanil in hepatic ischemia-reperfusion injury through activation of Fmol/Parkin signaling pathway: a study based on network pharmacology analysis and high-throughput sequencing. Phytomedicine. 2024;128:155300.
19. Huhn AS, Hobelmann JG, Oyler GA, Strain EC, et al. Protracted renal clearance of fentanyl in persons with opioid use disorder. Drug Alcohol Depend. 2020;214:108147.
20. Palikuqi B, Nguyen DT, Li G, Schreiner R, Pellegata AF, Liu Y, et al. Adaptable haemodynamic endothelial cells for organogenesis and tumorigenesis. Nature. 2020;585(7825):426-32.
21. Sugitani J, Ito R, Mise Y, Fujii T, Furuya R, Fujisawa M, et al. Pancreatoduodenectomy with superior mesenteric vein resection and non-reconstruction for pancreatic head cancer paying particular attention to hemodynamics. Langenbecks Arch Surg. 2024;409(1):273.
22. Tu K, Tian L, Zhu Q, Bai K, Li L, Fu M, et al. Intraoperative Opioid-Free Anesthesia with Dexmedetomidine and Esketamine Versus Conventional General Anesthesia in Laparoscopic Cholecystectomy at 3,600 m: A Randomized Trial on Hemodynamic Stability and Postoperative Recovery. High altitude medicine & biology. 2025.
23. Wu Z, Zheng Y, Sheng J, Han Y, Yang Y, Pan H, et al. CD3(+) CD4(-) CD8(-) (double-negative) T cells in inflammation, immune disorders and cancer. Front Immunol. 2022;13:816005.
24. Cancer discovery. Correction: the pancreatic cancer microbiome promotes oncogenesis by induction of innate and adaptive immune suppression. Cancer Discov. 2020;10(12):1988.
25. Lu XY, Chen M, Chen DH, Li Y, Liu PT, Liu Y, et al. Remifentanil on T lymphocytes, cognitive function and inflammatory cytokines of patients undergoing radical surgery for cervical cancer. Eur Rev Med Pharmacol Sci. 2018;22(9):2854-9.
26. Yang X, Wu X, Qin B, Wang Z, Zhu X, Huang S, et al. Effects of propofol anesthesia combined with remifentanil on inflammation, stress response and immune function in children undergoing tonsil and adenoid surgery. Cell Mol Biol (Noisy-le-Grand). 2022;68(2):87-93.
27. Bear AS, Vonderheide RH, O'Hara MH, et al. Challenges and opportunities for pancreatic cancer immunotherapy. Cancer Cell. 2020;38(6):788-802.
28. Li J, Zhu H, Wang Y, Chen J, He K, Wang S, et al. Remifentanil is superior to propofol for treating emergence agitation in adults after general anesthesia. Drug Des Devel Ther. 2024;18:341-50.
29. Malherbe S, Barker N. Mixing of propofol and remifentanil. Paediatr Anaesth. 2021;31(4):504-5.
30. Fort AC, Zack-Guasp RA. Anesthesia for patients with extensive trauma. Anesthesiol Clin. 2020;38(1):135-48.
31. Nolan JP, Sandroni C, Böttiger BW, Cariou A, Cronberg T, Friberg H, et al. European resuscitation council and European society of intensive care medicine guidelines 2021: post-resuscitation care. Intensive Care Med. 2021;47(4):369-421.
32. Michela DT, Rachele M, Alessia R, Daniela B, Marco R, Luigi T, et al. COVID-19 pandemic burnout in an Italian sample of anaesthesiologists: coping strategies, resilience and the capability of tolerating the uncertainty as preventing factors. Psychol Health Med. 2023;28(3):648-59.
33. Plens GM, Droghi MT, Alcala GC, Pereira SM, Wawrzeniak IC, Victorino JA, et al. Expiratory muscle activity counteracts positive end-expiratory pressure and is associated with fentanyl dose in patients with acute respiratory distress syndrome. Am J Respir Crit Care Med. 2024;209(5):563-72.
34. Baldo BA. Toxicities of opioid analgesics: respiratory depression, histamine release, hemodynamic changes, hypersensitivity, serotonin toxicity. Arch Toxicol. 2021;95(8):2627-42.
35. Zhu L, Zhou YY, Zhang Z, Yin SQ, Lv DD, Wu YL, et al. Remifentanil preconditioning promotes liver regeneration via upregulation of β-arrestin 2/ERK/cyclin D1 pathway. Biochem Biophys Res Commun. 2021;557:69-76.
36. Özcan MS, Aşcı H, Karabacak P, Özden ES, İmeci OB, Özmen Ö, et al. Remifentanil ameliorates lipopolysaccharide-induced neuroinflammation by regulating the phosphatidylinositol 3-kinase/serine-threonine protein kinase/hypoxia-inducible factor 1 alpha pathway. Pharmacol Res Perspect. 2025;13(1):e70071.
37. Limagne E, Nuttin L, Thibaudin M, Jacquin E, Aucagne R, Bon M, et al. MEK inhibition overcomes chemoimmunotherapy resistance by inducing CXCL10 in cancer cells. Cancer Cell. 2022;40(2):136-52.e12.
38. Yang C, Xu X, Wu M, Zhao Z, Feng Y, Liang W, et al. Huang-jin-shuang-shen decoction promotes CD8+ T-cell-mediated anti-tumor immunity by regulating chemokine CXCL10 in gastric cancer. Phytomedicine. 2024;135:156065.
39. Yin H, Chen Q, Gao S, Shoucair S, Xie Y, Habib JR, et al. The Crosstalk with CXCL10-Rich Tumor-Associated Mast Cells Fuels Pancreatic Cancer Progression and Immune Escape. Advanced science. 2025;12(14):e2417724.
40. Wang B, Wang M, Ao D, Wei X, et al. CXCL13-CXCR5 axis: regulation in inflammatory diseases and cancer. Biochim Biophys Acta Rev Cancer. 2022;1877(5):188799.
41. Cappoli N, Aceto P, Tabolacci E, Mezzogori D, Sollazzi L, Navarra P, et al. Effects of remifentanil on human C20 microglial pro-inflammatory activation. Eur Rev Med Pharmacol Sci. 2021;25(16):5268-74.
42. Zou R, Nishizawa D, Inoue R, Hasegawa J, Ebata Y, Nakayama K, et al. Effect of A118G (rs1799971) single-nucleotide polymorphism of the μ-opioid receptor OPRM1 gene on intraoperative remifentanil requirements in Japanese women undergoing laparoscopic gynecological surgery. Neuropsychopharmacol Rep. 2024;44(3):650-7.
43. Deng J, Xiong M, Liao C, Xiang T, et al. Effects of propofol on inflammatory response and activation of p38 MAPK signaling pathway in rats with ventilator-induced lung injury. Acta Cir Bras. 2021;36(10):e361004.
44. Reschke R, Gajewski TF. CXCL9 and CXCL10 bring the heat to tumors. Sci Immunol. 2022;7(73):eabq6509.
45. Hussain M, Liu J, Wang GZ, Zhou GB, et al. CXCL13 signaling in the tumor microenvironment. Adv Exp Med Biol. 2021;1302:71-90.
46. Ashrafizadeh M. Cell death mechanisms in human cancers: molecular pathways, therapy resistance and therapeutic perspective. J Cancer Biomol Ther. 2024;1(1):17-40.
47. Li J, Wang S, Huang S, Shao W, Zhang J, et al. Remifentanil anesthesia on the expression of apoptosis-related proteins Bcl-2 and Bax in rat myocardial cells with ischemia-reperfusion injury. Cell Mol Biol (Noisy-le-Grand). 2022;67(5):96-103.
48. Xiong J, Quan J, Qin C, Wang X, Dong Q, Zhang B, et al. Remifentanil pretreatment attenuates brain nerve injury in response to cardiopulmonary bypass by blocking AKT/NRF2 signal pathway. Immunopharmacol Immunotoxicol. 2022;44(4):574-85.
Files
IssueArticles in Press QRcode
SectionOriginal Article(s)
Keywords
Apoptosis CXCL10 Chemokine CXCL13 Chemokine Pancreatic neoplasms Propofol Remifentanil

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
1.
Li Y, Tian Y, Gao J, Dong C, Chu X. Effects of Propofol–remifentanil on Apoptotic Molecules, Plasma CXCL10, and CXCL13 in Pancreatic Cancer Patients. Iran J Allergy Asthma Immunol. 2026;:1-16.