Original Article
 

Diagnostic Value of the Combination of Serum TH1/TH2 Cytokines, Procalcitonin, and High-sensitivity C-reactive Protein for Predicting the Severity of Pneumonia

Abstract

T helper 1 (TH1) and T helper 2 (TH2) cells can secrete various proinflammatory and anti-inflammatory factors, which can serve as indicators for predicting the severity of pneumonia. However, they are rarely used in combination with procalcitonin (PCT) and high-sensitivity C-reactive protein (hsCRP) detection to predict the severity of pneumonia. The purpose of this study is to investigate the combination of serum TH1/TH2 cytokines, PCT, and hsCRP for predicting the severity of community-acquired pneumonia (CAP).
This study observed 58 inpatients with CAP. Analyses were conducted on the serum levels of TH1/TH2 cytokines, PCT, and hsCRP; imaging examination results; underlying diseases; pathogens; and the pneumonia severity index (PSI).
The severe pneumonia group showed significantly higher PSI scores, age, and complication rates. Serum IL-2 was notably elevated in severe cases, while a combination of PCT, IL-4, TNF-α, and IFN-γ effectively predicted severe pneumonia, with an AUC of 0.712. Specific alterations in cytokines and biomarkers were identified as risk factors for higher PSI, complications, and prolonged hospitalization.
The combined detection of PCT, IL-4, TNF-α, and IFN-γ provides a potential tool for predicting severe CAP, and distinct biomarker profiles are associated with different clinical outcomes.

1. Jafarzadeh A, Arabi Z, Ahangar-Parvin R, Mohammadi-Kordkhayli M, Nemati M. Ginger extract modulates the expression of chemokines CCL20 and CCL22 and their receptors (CCR6 and CCR4) in the central nervous system of mice with experimental autoimmune encephalomyelitis. J.Drug Res. 2017;67(11):632-9.
2. Burrell AM, Handel AE, Ramagopalan SV, Ebers GC, Morahan JM. Epigenetic mechanisms in multiple sclerosis and the major histocompatibility complex (MHC). Discov 2011;11(58):187-96.
3. Winquist RJ, Kwong A, Ramachandran R, Jain J. The complex etiology of multiple sclerosis. Biochem Pharmacol. 2007;74(9):1321-9.
4. Rossbach M. Small non-coding RNAs as novel therapeutics. Curr. Mol. Med. 2010;10(4):361-8.
5. Thamilarasan M, Koczan D, Hecker M, Paap B, Zettl UK. MicroRNAs in multiple sclerosis and experimental autoimmune encephalomyelitis. Autoimmun. Rev. 2012;11(3):174-9.
6. Moriyama M, Nakamura S. Th1/Th2 Immune Balance and Other T Helper Subsets in IgG4-Related Disease. Curr Top Microbiol Immunol. 2017;401:75-83. doi: 10.1007/82_2016_40. PMID: 27744510.
7. Guimarães PM, Scavuzzi BM, Stadtlober NP, Franchi Santos LFDR, Lozovoy MAB, Iriyoda TMV, Costa NT, Reiche EMV, Maes M, Dichi I, Simão ANC. Cytokines in systemic lupus erythematosus: far beyond Th1/Th2 dualism lupus: cytokine profiles. Immunol Cell Biol. 2017;95(9):824-831. doi: 10.1038/icb.2017.53. Epub 2017 Jun 26. PMID: 28649995.
8. Ramirez JA, Wiemken TL, Peyrani P, Arnold FW, Kelley R, Mattingly WA, Nakamatsu R, Pena S, Guinn BE, Furmanek SP, Persaud AK, Raghuram A, Fernandez F, Beavin L, Bosson R, Fernandez-Botran R, Cavallazzi R, Bordon J, Valdivieso C, Schulte J, Carrico RM; University of Louisville Pneumonia Study Group. Adults Hospitalized With Pneumonia in the United States: Incidence, Epidemiology, and Mortality. Clin Infect Dis. 2017;65(11):1806-12. doi: 10.1093/cid/cix647. PMID: 29020164.
9. Terunuma H, Deng X, Dewan Z, Fujimoto S, Yamamoto N. Potential role of NK cells in the induction of immune responses: implications for NK cell-based immunotherapy for cancers and viral infections. Int Rev Immunol. 2008;27(3):93-110. doi: 10.1080/08830180801911743. PMID: 18437601.
10. Calum HP, Moser C, Jensen PO, Bjarnsholt T, Givskov M, Høiby N. Early IL-2 treatment of mice with Pseudomonas aeruginosa pneumonia induced PMN-dominating response and reduced lung pathology. APMIS. 2020 Dec;128(12):647-653. doi: 10.1111/apm.13072. Epub 2020. PMID: 32794206.
11. Idriss HT, Naismith JH. TNF alpha and the TNF receptor superfamily: structure-function relationship(s). Microsc Res Tech. 2000;50(3):184-95. doi: 10.1002/1097-0029(20000801)50:3<184:AID-JEMT2>3.0.CO;2-H. PMID: 10891884.
12. Kim SH, Kyu Cho H, Jeon CH, Sung Ock H, Shin B, Wi YM. Diagnostic value of serum KL-6 and IL-6 levels in critically ill patients with COVID-19-associated pneumonia. J Infect. 2022;85(5):573-607. doi: 10.1016/j.jinf.2022.08.016. Epub 2022 Aug 28. PMID: 36041645; PMCID: PMC9420199.
13. Xu B, Han L. Predictive Value of CRP, PCT and ESR on Piperacillin-Tazobactam in Treating Chronic Obstructive Pulmonary Disease with Pneumonia. Clin Lab. 2023;69(4). doi: 10.7754/Clin.Lab.2022.220640. PMID: 37057952.
14. Forrest AD, Poliektov NE, Easley KA, Michopoulos V, Ravi M, Cheedarla N, Neish AS, Cheedarla S, Roback JD, Dunlop AL, Badell ML, Dude CM. Characterization of the inflammatory response to COVID-19 illness in pregnancy. Cytokine. 2023;170:156319. doi: 10.1016/j.cyto.2023.156319. Epub 2023 Aug 4. PMID: 37544133.
15. Gou X, Yuan J, Wang H, Wang X, Xiao J, Chen J, Liu S, Yin Y, Zhang X. IL-6 During Influenza- Streptococcus pneumoniae Co-Infected Pneumonia-A Protector. Front Immunol. 2020;10:3102. doi: 10.3389/fimmu.2019.03102. PMID: 32038632; PMCID: PMC6985362.
16. Mulligan MS, Jones ML, Vaporciyan AA, Howard MC, Ward PA. Protective effects of IL-4 and IL-10 against immune complex-induced lung injury. J Immunol. 1993;151(10):5666-74. PMID: 7901280.
17. Li S, Wang L, Zhang Y, Ma L, Zhang J, Zu J, Wu X. Role of Interleukin-4 (IL-4) in Respiratory Infection and Allergy Caused by Early-Life Chlamydia Infection. J Microbiol Biotechnol. 2021;31(8):1109-14. doi: 10.4014/jmb.2104.04028. PMID: 34226412; PMCID: PMC9705988.
18. Myasnikov AL, Berns SA, Talyzin PA, Ershov FI. [Interferon gamma in the treatment of patients with moderate COVID-19]. Vopr Virusol. 2021;66(1):47-54. Russian. doi: 10.36233/0507-4088-24. PMID: 33683065.
19. Lin T, Tu X, Zhao J, Huang L, Dai X, Chen X, Xu Y, Li W, Wang Y, Lou J, Wu S, Zhang H. Microbiological diagnostic performance of metagenomic next-generation sequencing compared with conventional culture for patients with community-acquired pneumonia. Front Cell Infect Microbiol. 2023 Mar 16;13:1136588. doi: 10.3389/fcimb.2023.1136588. Erratum in: Front Cell Infect Microbiol. 2023;13:1233180. doi: 10.3389/fcimb.2023.1233180. Erratum in: Front Cell Infect Microbiol. 2023 Aug 14;13:1205802. doi: 10.3389/fcimb.2023.1205802. PMID: 37009509; PMCID: PMC10061305.
20. Ma J, Li L, Qie X, Zhao Q, Zhang L, Xu N, Li X, Guo H, Li H, Lv J, Li J. Value of Combined Detection of PCT, CRP, and FIB in Differentiating Viral Infection from Bacterial Infection in Severe Pneumonia. Clin Lab. 2023;69(11). doi: 10.7754/Clin.Lab.2023.230325. PMID: 37948500.
21. Ito A, Ishida T. Diagnostic markers for community-acquired pneumonia. Ann Transl Med. 2020;8(9):609. doi: 10.21037/atm.2020.02.182. PMID: 32566635; PMCID: PMC7290537.
Files
IssueArticles in Press QRcode
SectionOriginal Article(s)
Keywords
Community-acquired pneumonia High-sensitivity C-reactive protein Procalcitonin Serum TH1/TH2 cytokines

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
1.
Zeng H, Huang X, Zeng G, Qiu X, Li X, Zhang D, Zheng S. Diagnostic Value of the Combination of Serum TH1/TH2 Cytokines, Procalcitonin, and High-sensitivity C-reactive Protein for Predicting the Severity of Pneumonia. Iran J Allergy Asthma Immunol. 2025;:1-10.