The Experimental Autoimmune Encephalomyelitis (EAE) Model: A Gateway to Successful Translation of Multiple Sclerosis Therapies
Abstract
Multiple sclerosis (MS) is a neuroinflammatory disorder that is characterized by demyelination, neurodegeneration, and immune dysregulation. The experimental autoimmune encephalomyelitis (EAE) model has helped to elucidate MS pathophysiology and test therapies. This review synthesizes current literature on the development, applications, and translational significance of EAE models in MS research. It discusses various EAE induction protocols, including active and passive immunization, and highlights advancements such as humanized mice and induced pluripotent stem cell (iPSC)-derived neuronal models. The review evaluates the role of EAE in identifying immune pathways, validating therapeutic agents like glatiramer acetate and natalizumab, and exploring precision medicine approaches through biomarker discovery. The EAE model replicated the key features of MS, including inflammation, demyelination, and axonal loss, facilitating therapy development. However, its predictive validity faces limitations, such as heterogeneity in disease induction, underrepresentation of chronic progression, and species differences. Innovations, such as humanized mouse models and iPSC-derived neurons, show promise in addressing these challenges. EAE research has advanced biomarker-based personalized treatments, although further validation is required. Despite its widespread use, EAE has limitations in terms of variability in disease induction, incomplete MS feature replication, species-specific responses, and clinical translation. Addressing these limitations remains crucial for therapeutic development, focusing on analyzing model limitations and strategies to overcome translational barriers. This review offers immunologists a comprehensive overview of EAE's contributions of EAE to MS research and its potential to inform the development of novel therapeutic approaches for this debilitating disease.
2. Papiri G, D’Andreamatteo G, Cacchiò G, Alia S, Silvestrini M, Paci C, et al. Multiple Sclerosis: Inflammatory and Neuroglial Aspects. Curr Issues Mol Biol. 2023;45(2):1443-70.
3. McGinley MP, Goldschmidt CH, Rae-Grant AD. Diagnosis and treatment of multiple sclerosis: a review. Jama. 2021; 325(8):765-79.
4. Ford H. Clinical presentation and diagnosis of multiple sclerosis. Clin Med (Lond). 2020;20(4):380-3.
5. Goodin DS, Khankhanian P, Gourraud P-A, Vince N. The nature of genetic and environmental susceptibility to multiple sclerosis. PLoS One. 2021;16(3):e0246157.
6. Talanki Manjunatha R, Habib S, Sangaraju SL, Yepez D, Grandes XA. Multiple Sclerosis: Therapeutic Strategies on the Horizon. Cureus. 2022;14(5):e24895.
7. Yang JH, Rempe T, Whitmire N, Dunn-Pirio A, Graves JS. Therapeutic Advances in Multiple Sclerosis. Front Neurol. 2022;13.
8. Gadhave DG, Sugandhi VV, Jha SK, Nangare SN, Gupta G, Singh SK, et al. Neurodegenerative disorders: Mechanisms of degeneration and therapeutic approaches with their clinical relevance. Ageing Res Rev. 2024; 99:102357.
9. Gold R, Linington C, Lassmann H. Understanding pathogenesis and therapy of multiple sclerosis via animal models: 70 years of merits and culprits in experimental autoimmune encephalomyelitis research. Brain. 2006;129(8):1953-71.
10. Khoy K, Mariotte D, Defer G, Petit G, Toutirais O, Le Mauff B. Natalizumab in multiple sclerosis treatment: from biological effects to immune monitoring. Frontiers in immunology. 2020;11:549842.
11. Voskuhl RR, MacKenzie-Graham A. Chronic experimental autoimmune encephalomyelitis is an excellent model to study neuroaxonal degeneration in multiple sclerosis. Front Mol Neurosci. 2022;15.
12. Hamilton AM, Forkert ND, Yang R, Wu Y, Rogers JA, Yong VW, et al. Central nervous system targeted autoimmunity causes regional atrophy: a 9.4T MRI study of the EAE mouse model of Multiple Sclerosis. Sci Rep. 2019;9(1):8488.
13. Kiani AK, Pheby D, Henehan G, Brown R, Sieving P, Sykora P, et al. Ethical considerations regarding animal experimentation. J Prev Med Hyg. 2022;63(2 Suppl 3):E255-e66.
14. Robinson AP, Harp CT, Noronha A, Miller SD. The experimental autoimmune encephalomyelitis (EAE) model of MS: utility for understanding disease pathophysiology and treatment. Handb Clin Neurol. 2014;122:173-89.
15. Lazarević M, Stanisavljević S, Nikolovski N, Dimitrijević M, Miljković Đ. Complete Freund's adjuvant as a confounding factor in multiple sclerosis research. Front Immunol. 2024;15:1353865.
16. Constantinescu CS, Farooqi N, O'Brien K, Gran B. Experimental autoimmune encephalomyelitis (EAE) as a model for multiple sclerosis (MS). Br J Pharmacol. 2011;164(4):1079-106.
17. J. van der Star B, YS Vogel D, Kipp M, Puentes F, Baker D, Amor S. In vitro and in vivo models of multiple sclerosis. CNS Neurol Disord Drug Targets. 2012;11(5):570-88.
18. Yan Y, Zhao Q, Huang Y, Yang JY, Zou J, Ao C, et al. Experimental Autoimmune Encephalomyelitis Animal Models Induced by Different Myelin Antigens Exhibit Differential Pharmacologic Responses to Anti-Inflammatory Drugs. J Immunol Sci. 2022;6(1):18-24.
19. Kroenke MA, Carlson TJ, Andjelkovic AV, Segal BM. IL-12–and IL-23–modulated T cells induce distinct types of EAE based on histology, CNS chemokine profile, and response to cytokine inhibition. J Exp Med. 2008;205(7):1535-41.
18. Steinman L, Patarca R, Haseltine W. Experimental encephalomyelitis at age 90, still relevant and elucidating how viruses trigger disease. J Exp Med. 2023;220(2).
19. Nichols JM, Kaplan BLF. Age-Dependent Effects of Transgenic 2D2 Mice Used to Induce Passive Experimental Autoimmune Encephalomyelitis in C57BL/6 Mice. Neuroimmunomodulation. 2023;30(1):291-301.
20. deLuca LES, Pikor NB, O’Leary J, Galicia-Rosas G, Ward LA, Defreitas D, et al. Substrain differences reveal novel disease-modifying gene candidates that alter the clinical course of a rodent model of multiple sclerosis. J Immunology. 2010;184(6):3174-85.
21. Steinman L, Patarca R, Haseltine W. Experimental encephalomyelitis at age 90, still relevant and elucidating how viruses trigger disease. J Exp Med. 2023;220(2).
22. Nichols JM, Kaplan BLF. Age-Dependent Effects of Transgenic 2D2 Mice Used to Induce Passive Experimental Autoimmune Encephalomyelitis in C57BL/6 Mice. Neuroimmunomodulation. 2023;30(1):291-301.
23. Fazazi MR, Doss PMIA, Pereira R, Fudge N, Regmi A, Joly-Beauparlant C, et al. Myelin-reactive B cells exacerbate CD4+ T cell-driven CNS autoimmunity in an IL-23-dependent manner. Nat Comm. 2024;15(1):5404.
24. McCarthy DP, Richards MH, Miller SD. Mouse models of multiple sclerosis: experimental autoimmune encephalomyelitis and Theiler's virus-induced demyelinating disease. Methods Mol Biol (Clifton, NJ). 2012;900:381-401.
25. Mannara F, Valente T, Saura J, Graus F, Saiz A, Moreno B. Passive Experimental Autoimmune Encephalomyelitis in C57BL/6 with MOG: Evidence of Involvement of B Cells. PLoS One. 2012;7(12):e52361.
26. Rossi B, Constantin G. Live Imaging of Immune Responses in Experimental Models of Multiple Sclerosis. Front Immunol. 2016;7.
27. Kulkarni P, Yellanki S, Medishetti R, Sriram D, Saxena U, Yogeeswari P. Novel Zebrafish EAE model: A quick in vivo screen for multiple sclerosis. Mult Scler Relat Disord. 2017;11:32-9.
28. Maktabi B, Collins A, Safee R, Bouyer J, Wisner AS, Williams FE, et al. Zebrafish as a Model for Multiple Sclerosis. Biomedicines. 2024;12(10):2354.
29. Smith C. The potential of zebrafish as drug discovery research tool in immune-mediated inflammatory disease. Inflammopharmacology. 2024;32(4):2219-2233.
30. Burrows DJ, McGown A, Jain SA, De Felice M, Ramesh TM, Sharrack B, et al. Animal models of multiple sclerosis: From rodents to zebrafish. Mult Scler. 2019;25(3):306-24.
31. Zhu X-Y, Guo S-Y, Xia B, Li C-Q, Wang L, Wang Y-H. Development of zebrafish demyelination model for evaluation of remyelination compounds and RORγt inhibitors. J Pharmacol Toxicol Methods. 2019;98:106585.
32. Brand RM, Diddens J, Friedrich V, Pfaller M, Radbruch H, Hemmer B, et al. Siponimod Inhibits the Formation of Meningeal Ectopic Lymphoid Tissue in Experimental Autoimmune Encephalomyelitis. Neurol Neuroimmunol Neuroinflamm. 2022;9(1).
33. Mansilla MJ, Presas-Rodríguez S, Teniente-Serra A, González-Larreategui I, Quirant-Sánchez B, Fondelli F, et al. Paving the way towards an effective treatment for multiple sclerosis: advances in cell therapy. Cell Mol Immunol. 2021;18(6):1353-74.
34. ‘t Hart BA, van Kooyk Y, Geurts JJG, Gran B. The primate autoimmune encephalomyelitis model; a bridge between mouse and man. Ann Clin Transl Neurol. 2015;2(5):581-93.
35. Berg I, Härvelid P, Zürrer WE, Rosso M, Reich DS, Ineichen BV. Which experimental factors govern successful animal-to-human translation in multiple sclerosis drug development? A systematic review and meta-analysis. EBioMedicine. 2024;110:105434.
36. Maxwell DL, Orian JM. Cerebellar pathology in multiple sclerosis and experimental autoimmune encephalomyelitis: current status and future directions. J Cent Nerv Syst Dis. 2023;15:11795735231211508.
37. Shafiek MS, Mekky RY, Nassar NN, El-Yamany MF, Rabie MA. Vortioxetine ameliorates experimental autoimmune encephalomyelitis model of multiple sclerosis in mice via activation of PI3K/Akt/CREB/BDNF cascade and modulation of serotonergic pathway signaling. Eur J Pharmacol. 2024;982:176929.
38. Park H, Song J, Jeong H-W, Grönloh ML, Koh BI,
Bovay E, et al. Apelin modulates inflammation and leukocyte recruitment in experimental autoimmune encephalomyelitis. Nat Comm. 2024;15(1):6282.
39. Coutinho Costa VG, Araújo SE-S, Alves-Leon SV, Gomes FCA. Central nervous system demyelinating diseases: glial cells at the hub of pathology. Front Immunol. 2023;14.
40. Zhao X, Jacob C. Mechanisms of Demyelination and Remyelination Strategies for Multiple Sclerosis. Int J Mol Sci. 2023;24(7):6373.
41. Theophanous S, Sargiannidou I, Kleopa KA. Glial Cells as Key Regulators in Neuroinflammatory Mechanisms Associated with Multiple Sclerosis. Int J Mol Sci. 2024;25(17):9588.
42. Cheng Y-J, Wang F, Feng J, Yu B, Wang B, Gao Q, et al. Prolonged myelin deficits contribute to neuron loss and functional impairments after ischaemic stroke. Brain. 2024;147(4):1294-311.
43. Tran LN, Loew SK, Franco SJ. Notch signaling plays a dual role in regulating the neuron-to-oligodendrocyte switch in the developing dorsal forebrain. J Neurolsci. 2023;43(41):6854-71.
44. Makar TK, Guda PR, Ray S, Andhavarapu S, Keledjian
K, Gerzanich V, et al. Immunomodulatory therapy
with glatiramer acetate reduces endoplasmic reticulum stress and mitochondrial dysfunction in experimental autoimmune encephalomyelitis. Sci Rep. 2023;13(1):5635.
45. Zerimech S, Nguyen H, Vandenbark AA, Offner H, Baltan S. Novel therapeutic for multiple sclerosis protects white matter function in EAE mouse model. Front Mol Med. 2023;3.
46. Makar TK, Guda PR, Ray S, Andhavarapu S, Keledjian K, Gerzanich V, et al. Immunomodulatory therapy with glatiramer acetate reduces endoplasmic reticulum stress and mitochondrial dysfunction in experimental autoimmune encephalomyelitis. Sci Rep. 2023;13(1):5635.
47. Friese MA, Montalban X, Willcox N, Bell JI, Martin R, Fugger L. The value of animal models for drug development in multiple sclerosis. Brain. 2006;129(8):1940-52.
48. Qin X, Guo BT, Wan B, Fang L, Lu L, Wu L, et al. Regulation of Th1 and Th17 cell differentiation and amelioration of experimental autoimmune encephalomyelitis by natural product compound berberine. J Immunol. 2010;185(3):1855-63.
49. David B, Sandra A. Mouse Models of Multiple Sclerosis: Lost in Translation? Curr Pharm Des. 2015;21(18):2440-52.
50. Faber H, Kurtoic D, Krishnamoorthy G, Weber P, Pütz B, Müller-Myhsok B, et al. Gene Expression in Spontaneous Experimental Autoimmune Encephalomyelitis Is Linked to Human Multiple Sclerosis Risk Genes. Front Immunol. 2020;11.
51. ’t Hart BA, Luchicchi A, Schenk GJ, Killestein J, Geurts JJG. Multiple sclerosis and drug discovery: A work of translation. eBioMedicine. 2021;68.
52. Chen M, Gran B, Costello K, Johnson K, Martin R, Dhib-Jalbut SJMSJ. Glatiramer acetate induces a Th2-biased response and crossreactivity with myelin basic protein in patients with MS. Mult Scler J. 2001;7(4):209-19.
53. Rasouli J, Casella G, Ishikawa LLW, Thome R, Boehm A, Ertel A, et al. IFN-β Acts on Monocytes to Ameliorate CNS Autoimmunity by Inhibiting Pro-inflammatory Cross-Talk Between Monocytes and Th Cells. Front Immunol. 2021;12.
54. Rommer PS, Milo R, Han MH, Satyanarayan S, Sellner J, Hauer L, et al. Immunological Aspects of Approved MS Therapeutics. Front Immunol. 2019;10:1564.
55. Tresse E, Riera-Ponsati L, Jaberi E, Sew WQG, Ruscher K, Issazadeh-Navikas S. IFN-β rescues neurodegeneration by regulating mitochondrial fission via STAT5, PGAM5, and Drp1. EMBO J. 2021;40(11):e106868.
56. Sarıkaya C, Gacar G, Efendi H. Effect of Fingolimod on Lymphocyte Subsets in Patients With Relapsing Multiple Sclerosis. Cureus. 2024;16(10):e70715.
57. Jakobs M, Hörbelt-Grünheidt T, Hadamitzky M, Bihorac J, Salem Y, Leisengang S, et al. The Effects of Fingolimod (FTY720) on Leukocyte Subset Circulation cannot be Behaviourally Conditioned in Rats. J Neuroimmune Pharmacol. 2024;19(1):18.
58. Zhang J, Zhang ZG, Li Y, Ding X, Shang X, Lu M, et al. Fingolimod treatment promotes proliferation and differentiation of oligodendrocyte progenitor cells in mice with experimental autoimmune encephalomyelitis. Neurobiol Dis. 2015;76:57-66.
59. Di Dario M, Colombo E, Govi C, De Feo D, Messina MJ, Romeo M, et al. Myeloid cells as target of fingolimod action in multiple sclerosis. Neurol Neuroimmunol Neuroinflam. 2015;2(6):e157.
60. Dominguez-Mozo MI, Galán V, Ramió-Torrentà L, Quiroga A, Quintana E, Villar LM, et al. A two-years real-word study with fingolimod: early predictors of efficacy and an association between EBNA-1 IgG titers and multiple sclerosis progression. Front Immunol 2024;15.
61. Sánchez-Sanz A, Muñoz-Viana R, Sabín-Muñoz J, Moreno-Torres I, Brea-Álvarez B, Rodríguez-De la Fuente O, et al. Response to Fingolimod in Multiple Sclerosis Patients Is Associated with a Differential Transcriptomic Regulation. Int J Mol Sci. 2024; 25(3):1372.
62. Gonzalez-Lorenzo M, Ridley B, Minozzi S, Del Giovane C, Peryer G, Piggott T, et al. Immunomodulators and immunosuppressants for relapsing-remitting multiple sclerosis: a network meta-analysis. Cochrane Database Syst Rev. 2024;1(1):Cd011381.
63. Cao L, Li M, Yao L, Yan P, Wang X, Yang Z, et al. Siponimod for multiple sclerosis. Cochrane Database Syst Rev. 2021; 11(11):Cd013647.
64. Behrangi N, Heinig L, Frintrop L, Santrau E, Kurth J, Krause B, et al. Siponimod ameliorates metabolic oligodendrocyte injury via the sphingosine-1 phosphate receptor 5. Proc Natl Acad Sci U S A. 2022; 119(40):e2204509119.
65. Spiezia AL, Scalia G, Petracca M, Caliendo D, Moccia M, Fiore A, et al. Effect of siponimod on lymphocyte subsets in active secondary progressive multiple sclerosis and clinical implications. J Neurol. 2024;271(7):4281-91.
66. Weier A, Enders M, Kirchner P, Ekici A, Bigaud M, Kapitza C, et al. Impact of Siponimod on Enteric and Central Nervous System Pathology in Late-Stage Experimental Autoimmune Encephalomyelitis. Int J Mol Sci. 22022;23(22):14209.
67. Simon M, Ipek R, Homola GA, Rovituso DM, Schampel A, Kleinschnitz C, et al. Anti-CD52 antibody treatment depletes B cell aggregates in the central nervous system in a mouse model of multiple sclerosis. J Neuroinflammation. 2018;15(1):225.
68. Gabelić T, Barun B, Adamec I, Krbot Skorić M, Habek M. Product review on MAbs (alemtuzumab and ocrelizumab) for the treatment of multiple sclerosis. Hum Vaccin Immunother. 2021;17(11):4345-62.
69. Ziemssen T, Bass AD, Berkovich R, Comi G, Eichau S, Hobart J, et al. Efficacy and Safety of Alemtuzumab Through 9 Years of Follow-up in Patients with Highly Active Disease: Post Hoc Analysis of CARE-MS I and II Patients in the TOPAZ Extension Study. CNS Drugs. 2020;34(9):973-88.
70. Von Essen MR, Chow HH, Holm Hansen R, Buhelt S, Sellebjerg F. Immune reconstitution following alemtuzumab therapy is characterized by exhausted T cells, increased regulatory control of pro-inflammatory T cells and reduced B cell control. Front immunol. 2023; 14:1249201.
71. Roos I, Hughes S, McDonnell G, Malpas CB, Sharmin S, Boz C, et al. Rituximab vs Ocrelizumab in Relapsing-Remitting Multiple Sclerosis. JAMA Neurol. 2023;80(8):789-97.
72. Lin M, Zhang J, Zhang Y, Luo J, Shi S. Ocrelizumab for multiple sclerosis. Cochrane Database Syst Rev. 2022;5(5):Cd013247.
73. Curran C, Vaitaitis G, Waid D, Volmer T, Alverez E, Wagner DH. Ocrevus reduces TH40 cells, a biomarker of systemic inflammation, in relapsing multiple sclerosis (RMS) and in progressive multiple sclerosis (PMS). J Neuroimmunol. 2023;374:578008.
74. Shahi SK, Freedman SN, Dahl RA, Karandikar NJ, Mangalam AK. Scoring disease in an animal model of multiple sclerosis using a novel infrared-based automated activity-monitoring system. Sci Rep. 2019;9(1):19194.
75. Thomann AS, McQuade CA, Pinjušić K, Kolz A, Schmitz R, Kitamura D, et al. A B cell–driven EAE mouse model reveals the impact of B cell–derived cytokines on CNS autoimmunity. Proc Natl Acad Sci U S A. 2023;120(47):e2300733120.
76. Steinman L, Zamvil SS. Virtues and pitfalls of EAE for the development of therapies for multiple sclerosis. Trends Immunol. 2005;26(11):565-71.
77. Aharoni R, Milo R, Arnon R. Glatiramer Acetate for the Treatment of Multiple Sclerosis: From First-Generation Therapy to Elucidation of Immunomodulation and Repair. Pharmacol Rev. 2024;76(6):1133-58.
78. Melnikov M, Sharanova S, Sviridova A, Rogovskii V, Murugina N, Nikolaeva A, et al. The influence of glatiramer acetate on Th17-immune response in multiple sclerosis. PLoS One. 2020; 15(10):e0240305.
79. Lereim RR, Nytrova P, Guldbrandsen A, Havrdova EK, Myhr K-M, Barsnes H, et al. Natalizumab promotes anti-inflammatory and repair effects in multiple sclerosis. PLoS One. 2024; 19(3):e0300914.
80. Chataway J, De Angelis F, Connick P, Parker RA, Plantone D, Doshi A, et al. Efficacy of three neuroprotective drugs in secondary progressive multiple sclerosis (MS-SMART): a phase 2b, multiarm, double-blind, randomised placebo-controlled trial. Lancet Neurol. 2020; 19(3):214-25.
81. Stamoula E, Siafis S, Dardalas I, Ainatzoglou A, Matsas A, Athanasiadis T, et al. Antidepressants on multiple sclerosis: a review of in vitro and in vivo models. Front Immunol. 2021;12:677879.
82. Melnikov M, Sviridova A, Rogovskii V, Oleskin A, Boziki M, Bakirtzis C, et al. Serotoninergic system targeting in multiple sclerosis: the prospective for pathogenetic therapy. Mult Scler Relat Disord. 2021;51:102888.
83. Sviridova A, Rogovskii V, Kudrin V, Pashenkov M, Boyko A, Melnikov M. The role of 5-HT2B-receptors in fluoxetine-mediated modulation of Th17-and Th1-cells in multiple sclerosis. J Neuroimmunol. 2021;356:577608.
84. Rotolo RA, Demuro J, Drummond G, Little C, Johns LD, Betz AJ. Prophylactic exposure to oral riluzole reduces the clinical severity and immune-related biomarkers of experimental autoimmune encephalomyelitis. J Neuroimmunol. 2021;356:577603.
85. San Hernandez AM, Singh C, Valero DJ, Nisar J, Ramirez JIT, Kothari KK, et al. Multiple sclerosis and serotonin: potential therapeutic applications. Cureus. 2020;12(11).
86. Liu W, Yu Z, Wang Z, Waubant EL, Zhai S, Benet LZ. Using an animal model to predict the effective human dose for oral multiple sclerosis drugs. Clin Transl Sci. 2023;16(3):467-77.
87. Wu L, Lu J, Lan T, Zhang D, Xu H, Kang Z, et al. Stem cell therapies: a new era in the treatment of multiple sclerosis. Front Neurol. 2024;15:1389697.
88. Allanach JR, Hardman BK, Fettig NM, Mouat I, Gu Y, Jean-Baptiste V, et al. Insights into the role of Epstein-Barr virus infection in multiple sclerosis using a novel humanized mouse model of disease. J Immunol. 2020; 204(1_Supplement):58.59-58.9.
89. Dedoni S, Scherma M, Camoglio C, Siddi C, Dazzi L, Puliga R, et al. An overall view of the most common experimental models for multiple sclerosis. Neurobiol Dis. 2023:106230.
90. Kametani Y, Ito R, Manabe Y, Kulski JK, Seki T, Ishimoto H, et al. PBMC-engrafted humanized mice models for evaluating immune-related and anticancer drug delivery systems. Front Mol Biosci. 2024;11:1447315.
91. Smith P. Animal models of multiple sclerosis. Curr Protoc. 2021;1(6):e185.
92. Papazian I, Kourouvani M, Dagkonaki A, Gouzouasis V, Dimitrakopoulou L, Markoglou N, et al. Spontaneous human CD8 T cell and autoimmune encephalomyelitis-induced CD4/CD8 T cell lesions in the brain and spinal cord of HLA-DRB1* 15-positive multiple sclerosis humanized immune system mice. eLife. 2024;12:RP88826.
93. Kerkering J, Muinjonov B, Rosiewicz KS, Diecke S, Biese C, Schiweck J, et al. iPSC-derived reactive astrocytes from patients with multiple sclerosis protect cocultured neurons in inflammatory conditions. J Clin Invest. 2023;133(13).
94. Rhodes KR, Tzeng SY, Iglesias M, Lee D, Storm K, Neshat SY, et al. Bioengineered particles expand myelin-specific regulatory T cells and reverse autoreactivity in a mouse model of multiple sclerosis. Sci Adv. 2023; 9(22):eadd8693.
95. Di Filippo M, Gaetani L, Centonze D, Hegen H, Kuhle J, Teunissen CE, et al. Fluid biomarkers in multiple sclerosis: from current to future applications. Lancet Reg Health Eur. 2024;44.
96. Gill AJ, Schorr EM, Gadani SP, Calabresi PA. Emerging imaging and liquid biomarkers in multiple sclerosis. Eur J Immunol. 2023;53(8):225-8.
Files | ||
Issue | Articles in Press | |
Section | Review Article(s) | |
Keywords | ||
Demyelination Experimental autoimmune encephalomyelitis Immunopathogenesis Inflammation Multiple sclerosis Precision medicine Translational research |
Rights and permissions | |
![]() |
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. |