Review Article
 

Cracking the Human Cytomegalovirus Code: Trinary Challenges of Latency, Immune Evasion, and Correlates of Protection

Abstract

Human cytomegalovirus (HCMV) poses a significant challenge to vaccine development due to its complex biology characterized by latency, immune evasion strategies, and undefined correlates of protection (CoPs). HCMV latency allows the virus to evade immune surveillance by remaining in a quiescent state in host cells, with the risk of reactivation triggered by immune damage or cell differentiation. In addition, HCMV employs an arsenal of immune evasion strategies, including modulating MHC expression, inhibiting natural killer (NK) cell activity, and subverting antibody-mediated responses, so these mechanisms further complicate vaccine design. Despite these obstacles, advances in basic research in immunology and vaccine technologies offer new opportunities. Strategies such as targeting latency-associated mechanisms, using memory inflation of CMV-specific T cells to induce long-term tissue-resident immunity, and developing immunogens that antagonize viral immunoevasins are promising approaches. New platforms, including mRNA and vector-based vaccines, show the potential to elicit robust humoral and cellular responses against key viral antigens such as glycoprotein B, pentamer complex, and pp65. In addition, adjuvants that restore impaired NK and T cell function could improve vaccine effectiveness. This review examines the molecular and immunological barriers to HCMV vaccine development and highlights innovative approaches to address these challenges. By addressing the complexities of latency, immune evasion, and CoPs, we propose a roadmap for developing a multimodal vaccine that can provide effective and durable protection against HCMV infections.

1. ES M. Cytomegaloviruses and their replication. Fields Virol. 1996.
2. Ghonemy TA, Farag SE, Soliman SA, El-Okely A, El-Hendy Y. Epidemiology and risk factors of chronic kidney disease in the El-Sharkia Governorate, Egypt. Saudi J Kidney Dis Transpl. 2016;27(1):111-7.
3. Pass RF. Cytomegalovirus. Fields Virol. 2001:2675-705.
4. Sester U, Gärtner BC, Wilkens H, Schwaab B, Wössner R, Kindermann I, et al. Differences in CMV‐specific T‐cell levels and long‐term susceptibility to CMV infection after kidney, heart and lung transplantation. Am J Transplant. 2005;5(6):1483-9.
5. Khoury J, Storch G, Bohl D, Schuessler R, Torrence S, Lockwood M, et al. Prophylactic versus preemptive oral valganciclovir for the management of cytomegalovirus infection in adult renal transplant recipients. Am J Transplant. 2006;6(9):2134-43.
6. Blakney AK, Ip S, Geall AJ. An update on self-amplifying mRNA vaccine development. Vaccines. 2021;9(2):97.
7. Modlin JF, Arvin AM, Fast P, Myers M, Plotkin S, Rabinovich R. Vaccine development to prevent cytomegalovirus disease: report from the National Vaccine Advisory Committee. Clini Infect Dis. 2004;39(2):233-9.
8. Riley Jr HD. History of the cytomegalovirus. South Med J. 1997;90(2):184-90.
9. Plotkin S. The history of vaccination against cytomegalovirus. Med Microbiol Immunol. 2015;204:247-54.
10. Chandramouli S, Ciferri C, Nikitin PA, Caló S, Gerrein R, Balabanis K, et al. Structure of HCMV glycoprotein B in the postfusion conformation bound to a neutralizing human antibody. Nat Commun. 2015;6(1):8176.
11. Gomes A, Baraniak I, Lankina A, Moulder Z, Holenya P, Atkinson C, et al. The cytomegalovirus gB/MF59 vaccine candidate induces antibodies against an antigenic domain controlling cell-to-cell spread. Nat Commun. 2023;14(1):1041.
12. Abate DA, Watanabe S, Mocarski ES. Major human cytomegalovirus structural protein pp65 (ppUL83) prevents interferon response factor 3 activation in the interferon response. J Virol. 2004;78(20):10995-1006.
13. Kabanova A, Perez L, Lilleri D, Marcandalli J, Agatic G, Becattini S, et al. Antibody-driven design of a human cytomegalovirus gHgLpUL128L subunit vaccine that selectively elicits potent neutralizing antibodies. Proc Soc Exp Biol Med. 2014;111(50):17965-70.
14. Lilleri D, Kabanova A, Revello MG, Percivalle E, Sarasini A, Genini E, et al. Fetal human cytomegalovirus transmission correlates with delayed maternal antibodies to gH/gL/pUL128-130-131 complex during primary infection. PloS one. 2013;8(3):e59863.
15. Bia FJ, Griffith BP, Tarsio M, Hsiung G. Vaccination for the prevention of maternal and fetal infection with guinea pig cytomegalovirus. J Infect Dis. 1980;142(5):732-8.
16. Harrison CJ, Britt WJ, Chapman NM, Mullican J, Tracy S. Reduced congenital cytomegalovirus (CMV) infection after maternal immunization with a guinea pig CMV glycoprotein before gestational primary CMV infection in the guinea pig model. J Infect Dis. 1995;172(5):1212-20.
17. Bourne N, Schleiss MR, Bravo FJ, Bernstein DI. Preconception immunization with a cytomegalovirus (CMV) glycoprotein vaccine improves pregnancy outcome in a guinea pig model of congenital CMV infection. J Infect Dis. 2001;183(1):59-64.
18. Schleiss MR, Bourne N, Stroup G, Bravo FJ, Jensen NJ, Bernstein DI. Protection against congenital cytomegalovirus infection and disease in guinea pigs, conferred by a purified recombinant glycoprotein B vaccine. J Infect Dis. 2004;189(8):1374-81.
19. Schleiss MR, Stroup G, Pogorzelski K, McGregor A. Protection against congenital cytomegalovirus (CMV) disease, conferred by a replication-disabled, bacterial artificial chromosome (BAC)-based DNA vaccine. Vaccine. 2006;24(37-39):6175-86.
20. Schleiss MR, Lacayo JC, Belkaid Y, McGregor A, Stroup G, Rayner J, et al. Preconceptual administration of an alphavirus replicon UL83 (pp65 homolog) vaccine induces humoral and cellular immunity and improves pregnancy outcome in the guinea pig model of congenital cytomegalovirus infection. J Infect Dis. 2007;195(6):789-98.
21. Elek S, Stern H. Development of a vaccine against mental retardation caused by cytomegalovirus infection in utero. Lancet. 1974;303(7845):1-5.
22. Just M, Buergin-Wolff A, Emoedi G, Hernandez R. Immunisation trials with live attenuated cytomegalovirus TOWNE 125. Infection. 1975;3(2):111-4.
23. Neff BJ, Weibel RE, Buynak EB, McLean AA, Hilleman MR. Clinical and laboratory studies of live cytomegalovirus vaccine Ad-169. Proc Soc Exp Biol Med. 1979;160(1):32-7.
24. Plotkin SA, Starr SE, Friedman HM, Brayman K, Harris S, Jackson S, et al. Effect of Towne live virus vaccine on cytomegalovirus disease after renal transplant: a controlled trial. Annal Int Med. 1991;114(7):525-31.
25. Plotkin SA, Higgins R, Kurtz JB, Morris PJ, Campbell Jr DA, Shope TC, et al. Multicenter trial of Towne strain attenuated virus vaccine in seronegative renal transplant recipients. Transplantation. 1994;58(11):1176-8.
26. Gönczöl E, Berencsi K, Pincus S, Endresz V, Méric C, Paoletti E, Plotkin SA. Preclinical evaluation of an ALVAC (canarypox)-human cytomegalovirus glycoprotein B vaccine candidate. Vaccine. 1995;13(12):1080-5.
27. Adler SP, Hempfling SH, Starr SE, Plotkin SA, Riddell S. Safety and immunogenicity of the Towne strain cytomegalovirus vaccine. Pediatr Infect Dis J. 1998;17(3):200-6.
28. Adler SP, Plotkin SA, Gonczol E, Cadoz M, Meric C, Wang JB, et al. A canarypox vector expressing cytomegalovirus (CMV) glycoprotein B primes for antibody responses to a live attenuated CMV vaccine (Towne). Pediatr Infect Dis J. 1999;180(3):843-6.
29. Frey SE, Harrison C, Pass RF, Yang E, Boken D, Sekulovich RE, et al. Effects of antigen dose and immunization regimens on antibody responses to a cytomegalovirus glycoprotein B subunit vaccine. Pediatr Infect Dis J. 1999;180(5):1700-3.
30. Pass RF, Duliege A-M, Boppana S, Sekulovich R, Percell S, Britt W, Burke RL. A subunit cytomegalovirus vaccine based on recombinant envelope glycoprotein B and a new adjuvant. Pediatr Infect Dis J. 1999;180(4):970-5.
31. Berencsi K, Gyulai Z, Gönczöl E, Pincus S, Cox WI, Michelson S, et al. A canarypox vector–expressing cytomegalovirus (CMV) phosphoprotein 65 induces long-lasting cytotoxic T cell responses in human CMV-seronegative subjects. Pediatr Infect Dis J. 2001;183(8):1171-9.
32. Mitchell DK, Holmes SJ, Burke RL, Duliege AM, Adler SP. Immunogenicity of a recombinant human cytomegalovirus gB vaccine in seronegative toddlers. Pediatr Infect Dis J. 2002;21(2):133-8.
33. Heineman TC, Schleiss M, Bernstein DI, Spaete RR, Yan L, Duke G, et al. A phase 1 study of 4 live, recombinant human cytomegalovirus Towne/Toledo chimeric vaccines. J Infect Dis. 2006;193(10):1350-60.
34. John S, Yuzhakov O, Woods A, Deterling J, Hassett K, Shaw CA, Ciaramella G. Multi-antigenic human cytomegalovirus mRNA vaccines that elicit potent humoral and cell-mediated immunity. Vaccine. 2018;36(12):1689-99.
35. Crough T, Khanna R. Immunobiology of human cytomegalovirus: from bench to bedside. Clin Microbiol Rev. 2009;22(1):76-98.
36. Froberg MK. CMV escapes! Ann Clin Lab Sci. 2004;34(2):123-30.
37. Collins-McMillen D, Buehler J, Peppenelli M, Goodrum F. Molecular determinants and the regulation of human cytomegalovirus latency and reactivation. Viruses. 2018;10(8):444.
38. Krishna BA, Miller WE, O’Connor CM. US28: HCMV’s swiss army knife. Viruses. 2018;10(8):445.
39. Reddehase MJ, Lemmermann NA. Cellular reservoirs of latent cytomegaloviruses. Med Microbiol Immunol. 2019;208(3):391-403.
40. Dupont L, Reeves MB. Cytomegalovirus latency and reactivation: recent insights into an age old problem. Rev Med Virol. 2016;26(2):75-89.
41. Griffiths P, Reeves M. Pathogenesis of human cytomegalovirus in the immunocompromised host. Nat Rev Microbiol. 2021;19(12):759-73.
42. Dooley AL, O’Connor CM. Regulation of the MIE locus during HCMV latency and reactivation. Pathogens. 2020;9(11):869.
43. Reeves M, Lehner P, Sissons J, Sinclair J. An in vitro model for the regulation of human cytomegalovirus latency and reactivation in dendritic cells by chromatin remodelling. J General Virol. 2005;86(11):2949-54.
44. Reeves M, MacAry P, Lehner P, Sissons J, Sinclair J. Latency, chromatin remodeling, and reactivation of human cytomegalovirus in the dendritic cells of healthy carriers. Proc Natl Acad Sci U S A. 2005;102(11):4140-5.
45. Bain M, Mendelson M, Sinclair J. Ets-2 Repressor Factor (ERF) mediates repression of the human cytomegalovirus major immediate-early promoter in undifferentiated non-permissive cells. J General Virol. 2003;84(1):41-9.
46. Wright E, Bain M, Teague L, Murphy J, Sinclair J. Ets-2 repressor factor recruits histone deacetylase to silence human cytomegalovirus immediate-early gene expression in non-permissive cells. J General Virol. 2005;86(3):535-44.
47. Sinclair J. Chromatin structure regulates human cytomegalovirus gene expression during latency, reactivation and lytic infection. Biochim Biophys Acta. 2010;1799(3-4):286-95.
48. Rauwel B, Jang SM, Cassano M, Kapopoulou A, Barde I, Trono D. Release of human cytomegalovirus from latency by a KAP1/TRIM28 phosphorylation switch. Elife. 2015;4:e06068.
49. Rossetto CC, Tarrant-Elorza M, Pari GS. Cis and trans acting factors involved in human cytomegalovirus experimental and natural latent infection of CD14 (+) monocytes and CD34 (+) cells. PLoS Pathogens. 2013;9(5):e1003366.
50. Diggins NL, Skalsky RL, Hancock MH. Regulation of latency and reactivation by human cytomegalovirus miRNAs. Pathogens. 2021;10(2):200.
51. O’Connor CM. Cytomegalovirus (CMV) Infection and Latency. MDPI; 2021. p. 342.
52. Trgovcich J, Cebulla C, Zimmerman P, Sedmak DD. Human cytomegalovirus protein pp71 disrupts major histocompatibility complex class I cell surface expression. J Virol. 2006;80(2):951-63.
53. Fu Y-Z, Su S, Gao Y-Q, Wang P-P, Huang Z-F, Hu M-M, et al. Human cytomegalovirus tegument protein UL82 inhibits STING-mediated signaling to evade antiviral immunity. Cell Host Microbe. 2017;21(2):231-43.
54. Krishna BA, Poole EL, Jackson SE, Smit MJ, Wills MR, Sinclair JH. Latency-associated expression of human cytomegalovirus US28 attenuates cell signaling pathways to maintain latent infection. MBio. 2017;8(6):10.
55. Zhu D, Pan C, Sheng J, Liang H, Bian Z, Liu Y, et al. Human cytomegalovirus reprogrammes haematopoietic progenitor cells into immunosuppressive monocytes to achieve latency. Nat Microbiol. 2018;3(4):503-13.
56. Krishna BA, Humby MS, Miller WE, O’Connor CM. Human cytomegalovirus G protein-coupled receptor US28 promotes latency by attenuating c-fos. Proc Natl Acad Sci U S A. 2019;116(5):1755-64.
57. Taylor-Wiedeman J, Sissons JP, Borysiewicz LK, Sinclair J. Monocytes are a major site of persistence of human cytomegalovirus in peripheral blood mononuclear cells. J General Virol. 1991;72(9):2059-64.
58. Kondo K, Xu J, Mocarski ES. Human cytomegalovirus latent gene expression in granulocyte-macrophage progenitors in culture and in seropositive individuals. Proc Natl Acad Sci U S A. 1996;93(20):11137-42.
59. Mendelson M, Monard S, Sissons P, Sinclair J. Detection of endogenous human cytomegalovirus in CD34+ bone marrow progenitors. J General Virol. 1996;77(12):3099-102.
60. Hahn G, Jores R, Mocarski ES. Cytomegalovirus remains latent in a common precursor of dendritic and myeloid cells. Proc Natl Acad Sci U S A. 1998;95(7):3937-42.
61. Poole E, Juss JK, Krishna B, Herre J, Chilvers ER, Sinclair J. Alveolar macrophages isolated directly from human cytomegalovirus (HCMV)–seropositive individuals are sites of HCMV reactivation in vivo. J Infect Dis. 2015;211(12):1936-42.
62. Stern L, Withers B, Avdic S, Gottlieb D, Abendroth A, Blyth E, Slobedman B. Human cytomegalovirus latency and reactivation in allogeneic hematopoietic stem cell transplant recipients. Front Microbiol. 2019;10:1186.
63. Sindre H, Tjoonnfjord G, Rollag H, Ranneberg-Nilsen T, Veiby OP, Beck S, et al. Human cytomegalovirus suppression of and latency in early hematopoietic progenitor cells. 1996.
64. Sinclair J, Sissons P. Latency and reactivation of human cytomegalovirus. J General Virol. 2006;87(7):1763-79.
65. Doniger J, Muralidhar S, Rosenthal LJ. Human cytomegalovirus and human herpesvirus 6 genes that transform and transactivate. Clin Microbiol Rev. 1999;12(3):367-82.
66. Hale AE, Collins-McMillen D, Lenarcic EM, Igarashi S, Kamil JP, Goodrum F, Moorman NJ. FOXO transcription factors activate alternative major immediate early promoters to induce human cytomegalovirus reactivation. Proc Natl Acad Sci U S A. 2020;117(31):18764-70.
67. Krishna BA, Wass AB, O’Connor CM. Activator protein-1 transactivation of the major immediate early locus is a determinant of cytomegalovirus reactivation from latency. Proc Natl Acad Sci U S A. 2020;117(34):20860-7.
68. Tang Q, Li L, Maul GG. Mouse cytomegalovirus early M112/113 proteins control the repressive effect of IE3 on the major immediate-early promoter. J Virol. 2005;79(1):257-63.
69. Collins-McMillen D, Kamil J, Moorman N, Goodrum F. Control of immediate early gene expression for human cytomegalovirus reactivation. Front Cell Infect Microbiol. 2020;10:476.
70. Heald-Sargent TA, Forte E, Liu X, Thorp EB, Abecassis MM, Zhang ZJ, Hummel MA. New insights into the molecular mechanisms and immune control of cytomegalovirus reactivation. Transplantation. 2020;104(5):e118-e24.
71. Döcke W, Fietze E, Syrbe U, von Baehr R, Volk H, Prösch S, et al. Cytomegalovirus reactivation and tumour necrosis factor. Lancet. 1994;343(8892):268-9.
72. Kropp KA, Robertson KA, Sing G, Rodriguez-Martin S, Blanc M, Lacaze P, et al. Reversible inhibition of murine cytomegalovirus replication by gamma interferon (IFN-γ) in primary macrophages involves a primed type I IFN-signaling subnetwork for full establishment of an immediate-early antiviral state. J Virol. 2011;85(19):10286-99.
73. Reeves MB, Compton T. Inhibition of inflammatory interleukin-6 activity via extracellular signal-regulated kinase–mitogen-activated protein kinase signaling antagonizes human cytomegalovirus reactivation from dendritic cells. J Virol. 2011;85(23):12750-8.
74. Degli-Esposti MA, Hill GR. Immune control of cytomegalovirus reactivation in stem cell transplantation. Blood. 2022;139(9):1277-88.
75. Hassan N, Eldershaw S, Stephens C, Kinsella F, Craddock C, Malladi R, et al. CMV reactivation initiates long-term expansion and differentiation of the NK cell repertoire. Front Immunol. 2022;13:935949.
76. Mihalić A, Železnjak J, Lisnić B, Jonjić S, Juranić Lisnić V, Brizić I. Immune surveillance of cytomegalovirus in tissues. Cell Mol Immunol. 2024:1-23.
77. Smith NA, Chan GC, O’Connor CM. Modulation of host cell signaling during cytomegalovirus latency and reactivation. J Virol. 2021;18:1-17.
78. Murphy JC, Fischle W, Verdin E, Sinclair JH. Control of cytomegalovirus lytic gene expression by histone acetylation. EMBO J. 2002.
79. Kew VG, Yuan J, Meier J, Reeves MB. Mitogen and stress activated kinases act co-operatively with CREB during the induction of human cytomegalovirus immediate-early gene expression from latency. PLoS Pathogens. 2014;10(6):e1004195.
80. Isern E, Gustems M, Messerle M, Borst E, Ghazal P, Angulo A. The activator protein 1 binding motifs within the human cytomegalovirus major immediate-early enhancer are functionally redundant and act in a cooperative manner with the NF-κB sites during acute infection. J Virol. 2011;85(4):1732-46.
81. Chan G, Bivins-Smith ER, Smith MS, Yurochko AD. NF-κB and phosphatidylinositol 3-kinase activity mediates the HCMV-induced atypical M1/M2 polarization of monocytes. Virus Res. 2009;144(1-2):329-33.
82. Kim JH, Collins-McMillen D, Buehler JC, Goodrum FD, Yurochko AD. Human cytomegalovirus requires epidermal growth factor receptor signaling to enter and initiate the early steps in the establishment of latency in CD34+ human progenitor cells. J Virol. 2017;91(5):10.1128/jvi. 01206-16.
83. Mahmud J, Miller MJ, Altman AM, Chan GC. Human cytomegalovirus glycoprotein-initiated signaling mediates the aberrant activation of Akt. J Virol. 2020;94(16):10.1128/jvi. 00167-20.
84. Purushothaman P, Uppal T, Verma SC. Molecular biology of KSHV lytic reactivation. Viruses. 2015;7(1):116-53.
85. Le Sage V, Cinti A, Amorim R, Mouland AJ. Adapting the stress response: viral subversion of the mTOR signaling pathway. Viruses. 2016;8(6):152.
86. Altman AM, Mahmud J, Nikolovska-Coleska Z, Chan G. HCMV modulation of cellular PI3K/AKT/mTOR signaling: new opportunities for therapeutic intervention? Antiviral Res. 2019;163:82-90.
87. Chang M, Brown HJ, Collado-Hidalgo A, Arevalo JM, Galic Z, Symensma TL, et al. β-Adrenoreceptors reactivate Kaposi's sarcoma-associated herpesvirus lytic replication via PKA-dependent control of viral RTA. J Virol. 2005;79(21):13538-47.
88. Vischer HF, Leurs R, Smit MJ. HCMV-encoded G-protein-coupled receptors as constitutively active modulators of cellular signaling networks. Trends Pharmacol Sci. 2006;27(1):56-63.
89. Keller MJ, Wu AW, Andrews JI, McGonagill PW, Tibesar EE, Meier JL. Reversal of human cytomegalovirus major immediate-early enhancer/promoter silencing in quiescently infected cells via the cyclic AMP signaling pathway. J Virol. 2007;81(12):6669-81.
90. Bomfim GF, Priviero F, Poole E, Tostes RC, Sinclair JH, Stamou D, et al. Cytomegalovirus and Cardiovascular Disease: A Hypothetical Role for Viral G-Protein-Coupled Receptors in Hypertension. Am J Hypertension. 2023;36(9):471-80.
91. Söderberg-Nauclér C, Fish KN, Nelson JA. Reactivation of latent human cytomegalovirus by allogeneic stimulation of blood cells from healthy donors. Cell. 1997;91(1):119-26.
92. Matalka KZ, Sidki A, Abdul-Malik SM, Thewaini A-J. Academic stress—influence on Epstein-Barr virus and cytomegalovirus reactivation, cortisol, and prolactin. Lab Med. 2000;31(3):163-8.
93. Klopack ET. Chronic Stress and Latent Virus Reactivation: Effects on Immune Aging, Chronic Disease Morbidity, and Mortality. J Gerontol. 2023;78(10):1707-16.
94. Wendland K, Thielke M, Meisel A, Mergenthaler P. Intrinsic hypoxia sensitivity of the cytomegalovirus promoter. Cell Death Dis. 2015;6(10):e1905-e.
95. Mallet C, Cochard J, Leclercq S, Trapp-Fragnet L, Chouteau P, Denesvre C. Hypoxia and HIF-1 trigger Marek’s Disease Virus reactivation in lymphoma-derived latently infected T lymphocytes. J Virol. 2022;96(5):e01427-21.
96. Kowalik TF. The DNA damage response induced by infection with human cytomegalovirus and other viruses. Viruses. 2014;6(5):2155-85.
97. Wu X, Zhou X, Wang S, Mao G. DNA damage response (DDR): a link between cellular senescence and human cytomegalovirus. Virol J. 2023;20(1):250.
98. Zangger N, Oxenius A. T cell immunity to cytomegalovirus infection. Curr Opin Immunol. 2022;77:102185.
99. Larbi A, Fulop T. From “truly naïve” to “exhausted senescent” T cells: when markers predict functionality. Cytometry Part A. 2014;85(1):25-35.
100. Verma K, Ogonek J, Varanasi PR, Luther S, Bünting I, Thomay K, et al. Human CD8+ CD57-TEMRA cells: Too young to be called" old". PLoS One. 2017;12(5):e0177405.
101. Pera A, Vasudev A, Tan C, Kared H, Solana R, Larbi A. CMV induces expansion of highly polyfunctional CD4+ T cell subset coexpressing CD57 and CD154. J Leucocyte Biol. 2017;101(2):555-66.
102. Tian Y, Babor M, Lane J, Schulten V, Patil VS, Seumois G, et al. Unique phenotypes and clonal expansions of human CD4 effector memory T cells re-expressing CD45RA. Nat Commun. 2017;8(1):1473.
103. Zhang W, Morris AB, Peek EV, Karadkhele G, Robertson JM, Kissick HT, Larsen CP. CMV status drives distinct trajectories of CD4+ T cell differentiation. Front Immunol. 2021;12:620386.
104. Juno JA, Van Bockel D, Kent SJ, Kelleher AD, Zaunders JJ, Munier CML. Cytotoxic CD4 T cells—friend or foe during viral infection? Front Immunol. 2017;8:19.
105. Lyu M, Wang S, Gao K, Wang L, Zhu X, Liu Y, et al. Dissecting the landscape of activated CMV-stimulated CD4+ T cells in humans by linking single-cell RNA-seq with T-cell receptor sequencing. Front Immunol. 2021;12:779961.
106. Verma S, Weiskopf D, Gupta A, McDonald B, Peters B, Sette A, Benedict CA. Cytomegalovirus-specific CD4 T cells are cytolytic and mediate vaccine protection. J Virol. 2016;90(2):650-8.
107. Walton SM, Mandaric S, Torti N, Zimmermann A, Hengel H, Oxenius A. Absence of cross-presenting cells in the salivary gland and viral immune evasion confine cytomegalovirus immune control to effector CD4 T cells. PLoS Pathogens. 2011;7(8):e1002214.
108. Thom JT, Weber TC, Walton SM, Torti N, Oxenius A. The salivary gland acts as a sink for tissue-resident memory CD8+ T cells, facilitating protection from local cytomegalovirus infection. Cell Rep. 2015;13(6):1125-36.
109. Brizić I, Šušak B, Arapović M, Huszthy PC, Hiršl L, Kveštak D, et al. Brain‐resident memory CD8+ T cells induced by congenital CMV infection prevent brain pathology and virus reactivation. Europ J Immunol. 2018;48(6):950-64.
110. Brizić I, Hiršl L, Šustić M, Golemac M, Britt WJ, Krmpotić A, Jonjić S. CD4 T cells are required for maintenance of CD8 T RM cells and virus control in the brain of MCMV-infected newborn mice. Med Microbiol Immunol. 2019;208:487-94.
111. Klenerman P, Oxenius A. T cell responses to cytomegalovirus. Nat Rev Immunol. 2016;16(6):367-77.
112. Cicin-Sain L. Cytomegalovirus memory inflation and immune protection. Med Microbiol Immunol. 2019;208(3):339-47.
113. Munks MW, Rott K, Nesterenko PA, Smart SM, Williams V, Tatum A, et al. CD8 T Cell Memory Inflation is Driven by Latent CMV Infection of Lymphatic Endothelial Cells. bioRxiv. 2022:2022.02. 10.479848.
114. Welten SP, Yermanos A, Baumann NS, Wagen F, Oetiker N, Sandu I, et al. Tcf1+ cells are required to maintain the inflationary T cell pool upon MCMV infection. Nat Communications. 2020;11(1):2295.
115. Khan S, Zimmermann A, Basler M, Groettrup M, Hengel H. A cytomegalovirus inhibitor of gamma interferon signaling controls immunoproteasome induction. J Virol. 2004;78(4):1831-42.
116. Hutchinson S, Sims S, O'Hara G, Silk J, Gileadi U, Cerundolo V, Klenerman P. A dominant role for the immunoproteasome in CD8+ T cell responses to murine cytomegalovirus. PloS one. 2011;6(2):e14646.
117. Almehmadi M, Flanagan BF, Khan N, Alomar S, Christmas SE. Increased numbers and functional activity of CD 56+ T cells in healthy cytomegalovirus positive subjects. Immunology. 2014;142(2):258-68.
118. Sottile R, Panjwani MK, Lau CM, Daniyan AF, Tanaka K, Barker JN, et al. Human cytomegalovirus expands a CD8+ T cell population with loss of BCL11B expression and gain of NK cell identity. Sci Immunol. 2021;6(63):eabe6968.
119. Grutza R, Moskorz W, Senff T, Bäcker E, Lindemann M, Zimmermann A, et al. NKG2Cpos NK cells regulate the expansion of cytomegalovirus-specific CD8 T cells. J Immunol. 2020;204(11):2910-7.
120. Watzl C. Adaptive responses of innate lymphocytes. Nat Immunol. 2018;19(5):426-7.
121. Gumá M, Busch LK, Salazar‐Fontana LI, Bellosillo B, Morte C, García P, López‐Botet M. The CD94/NKG2C killer lectin‐like receptor constitutes an alternative activation pathway for a subset of CD8+ T cells. Europ J Immunol. 2005;35(7):2071-80.
122. Sung H, Schleiss MR. Update on the current status of cytomegalovirus vaccines. Exp Rev Vaccines. 2010;9(11):1303-14.
123. Anderholm K, Bierle CJ, Schleiss MR. Cytomegalovirus vaccines: current status and future prospects. Drugs. 2016;76:1625-45.
124. Gerna G, Lilleri D. Human cytomegalovirus (HCMV) infection/re-infection: development of a protective HCMV vaccine. New Microbiol. 2019;42(1):1-20.
125. Vieira Braga FA, Hertoghs KM, van Lier RA, van Gisbergen KP. Molecular characterization of HCMV-specific immune responses: Parallels between CD8(+) T cells, CD4(+) T cells, and NK cells. Eur J Immunol. 2015;45(9):2433-45.
126. Siebels S, Czech-Sioli M, Spohn M, Schmidt C, Theiss J, Indenbirken D, et al. Merkel cell polyomavirus DNA replication induces senescence in human dermal fibroblasts in a kap1/trim28-dependent manner. Mbio. 2020;11(2):10.
127. Sayyad Z, Acharya D, Gack MU. TRIM Proteins: Key Regulators of Immunity to Herpesvirus Infection. Viruses. 2024;16(11):1738.
128. Dunn W, Chou C, Li H, Hai R, Patterson D, Stolc V, et al. Functional profiling of a human cytomegalovirus genome. Proc Natl Acad Sci U S A. 2003;100(24):14223-8.
129. Davison AJ, Akter P, Cunningham C, Dolan A, Addison C, Dargan DJ, et al. Homology between the human cytomegalovirus RL11 gene family and human adenovirus E3 genes. J General Virol. 2003;84(3):657-63.
130. Llano M, Gumá M, Ortega M, Angulo A, López‐Botet M. Differential effects of US2, US6 and US11 human cytomegalovirus proteins on HLA class Ia and HLA‐E expression: impact on target susceptibility to NK cell subsets. Europ J Immunol. 2003;33(10):2744-54.
131. Fielding CA, Weekes MP, Nobre LV, Ruckova E, Wilkie GS, Paulo JA, et al. Control of immune ligands by members of a cytomegalovirus gene expansion suppresses natural killer cell activation. Elife. 2017;6:e22206.
132. Berry R, Watson GM, Jonjic S, Degli-Esposti MA, Rossjohn J. Modulation of innate and adaptive immunity by cytomegaloviruses. Nat Rev Immunol. 2020;20(2):113-27.
133. LIR HUI. The Human Cytomegalovirus MHC Class I. J Immunol. 2007;178:4473-81.
134. Jones TR, Hanson LK, Sun L, Slater JS, Stenberg RM, Campbell AE. Multiple independent loci within the human cytomegalovirus unique short region down-regulate expression of major histocompatibility complex class I heavy chains. J Virol. 1995;69(8):4830-41.
135. Gewurz BE, Gaudet R, Tortorella D, Wang EW, Ploegh HL, Wiley DC. Antigen presentation subverted: structure of the human cytomegalovirus protein US2 bound to the class I molecule HLA-A2. Proc Natl Acad Sci U S A. 2001;98(12):6794-9.
136. Lilley BN, Ploegh HL, Tirabassi RS. Human cytomegalovirus open reading frame TRL11/IRL11 encodes an immunoglobulin G Fc-binding protein. J Virol. 2001;75(22):11218-21.
137. Fielding CA, Aicheler R, Stanton RJ, Wang EC, Han S, Seirafian S, et al. Two novel human cytomegalovirus NK cell evasion functions target MICA for lysosomal degradation. PLoS pathogens. 2014;10(5):e1004058.
138. McSharry BP, Forbes SK, Cao JZ, Avdic S, Machala EA, Gottlieb DJ, et al. Human Cytomegalovirus Upregulates Expression of the Lectin Galectin 9 via Induction of Beta Interferon. J Virol. 2014;88(18):10990-4.
139. Wagenknecht N, Reuter N, Scherer M, Reichel A, Müller R, Stamminger T. Contribution of the major ND10 proteins PML, hDaxx and Sp100 to the regulation of human cytomegalovirus latency and lytic replication in the monocytic cell line THP-1. Viruses. 2015;7(6):2884-907.
140. Biolatti M, Dell'Oste V, Pautasso S, Von Einem J, Marschall M, Plachter B, et al. Regulatory interaction between the cellular restriction factor IFI16 and viral pp65 (pUL83) modulates viral gene expression and IFI16 protein stability. J Virol. 2016;90(18):8238-50.
141. Biolatti M, Dell'Oste V, Pautasso S, Gugliesi F, von Einem J, Krapp C, et al. Human cytomegalovirus tegument protein pp65 (pUL83) dampens type I interferon production by inactivating the DNA sensor cGAS without affecting STING. J Virol. 2018;92(6):10.
142. Biolatti M, Gugliesi F, Dell’Oste V, Landolfo S. Modulation of the innate immune response by human cytomegalovirus. Infect Genet Evol. 2018;64:105-14.
143. Lau J. Investigating the Role of Human Cytomegalovirus Protein LUNA in Regulating Viral Gene Expression during Latency 2019.
144. Groves IJ, Jackson SE, Poole EL, Nachshon A, Rozman B, Schwartz M, et al. Bromodomain proteins regulate human cytomegalovirus latency and reactivation allowing epigenetic therapeutic intervention. Proc Natl Acad Sci U S A. 2021;118(9):e2023025118.
145. Matthews SM, Groves IJ, O'Connor CM. Chromatin control of human cytomegalovirus infection. Mbio. 2023;14(4):e00326-23.
146. Biolatti M, Dell’Oste V, Scutera S, Gugliesi F, Griffante G, De Andrea M, et al. The viral tegument protein pp65 impairs transcriptional upregulation of IL-1β by human cytomegalovirus through inhibition of NF-kB activity. Viruses. 2018;10(10):567.
147. Fu Y-Z, Su S, Zou H-M, Guo Y, Wang S-Y, Li S, et al. Human cytomegalovirus DNA polymerase subunit UL44 antagonizes antiviral immune responses by suppressing IRF3-and NF-κB-mediated transcription. J Virol. 2019;93(11):10.
148. Lau B, Kerr K, Gu Q, Nightingale K, Antrobus R, Suárez NM, et al. Human cytomegalovirus long non-coding RNA1. 2 suppresses extracellular release of the pro-inflammatory cytokine IL-6 by blocking NF-κB activation. Front Cell Infect Microbiol. 2020;10:361.
149. Feng L, Li W, Wu X, Li X, Yang X, Ran Y, et al. Human cytomegalovirus UL23 attenuates signal transducer and activator of transcription 1 phosphorylation and type i interferon response. Front Microbiol. 2021;12:692515.
150. Aoyagi M, Gaspar M, Shenk TE. Human cytomegalovirus UL69 protein facilitates translation by associating with the mRNA cap-binding complex and excluding 4EBP1. Proc Natl Acad Sci U S A. 2010;107(6):2640-5.
151. Goldmacher VS. vMIA, a viral inhibitor of apoptosis targeting mitochondria. Biochimie. 2002;84(2-3):177-85.
152. Omoto S, Guo H, Talekar GR, Roback L, Kaiser WJ, Mocarski ES. Suppression of RIP3-dependent necroptosis by human cytomegalovirus. J Biol Chemistry. 2015;290(18):11635-48.
153. Diggins NL, Hancock MH. HCMV miRNA targets reveal important cellular pathways for viral replication, latency, and reactivation. Non-coding RNA. 2018;4(4):29.
154. Wang D, Bresnahan W, Shenk T. Human cytomegalovirus encodes a highly specific RANTES decoy receptor. Proc Natl Acad Sci U S A. 2004;101(47):16642-7.
155. Vomaske J, Nelson JA, Streblow DN. Human Cytomegalovirus US28: a functionally selective chemokine binding receptor. Infectious Disorders-Drug Targets (Formerly Current Drug Targets-Infectious Disorders). 2009;9(5):548-56.
156. Lüttichau HR. The cytomegalovirus UL146 gene product vCXCL1 targets both CXCR1 and CXCR2 as an agonist. J Biol Chemistry. 2010;285(12):9137-46.
157. Berg C, Wedemeyer MJ, Melynis M, Schlimgen RR, Hansen LH, Våbenø J, et al. The non-ELR CXC chemokine encoded by human cytomegalovirus UL146 genotype 5 contains a C-terminal β-hairpin and induces neutrophil migration as a selective CXCR2 agonist. PLoS Pathogens. 2022;18(3):e1010355.
158. Hu L, Wen Z, Chen J, Chen Y, Jin L, Shi H, et al. The cytomegalovirus UL146 gene product vCXCL1 promotes the resistance of hepatic cells to CD8+ T cells through up-regulation of PD-L1. Biochem Biophysical Res Communications. 2020;532(3):393-9.
159. Tadagaki K, Tudor D, Gbahou F, Tschische P, Waldhoer M, Bomsel M, et al. Human cytomegalovirus-encoded UL33 and UL78 heteromerize with host CCR5 and CXCR4 impairing their HIV coreceptor activity. Blood. 2012;119(21):4908-18.
160. Della Chiesa M, Falco M, Muccio L, Bertaina A, Locatelli F, Moretta A. Impact of HCMV infection on NK cell development and function after HSCT. Front Immunol. 2013;4:458.
161. Rölle A, Brodin P. Immune adaptation to environmental influence: the case of NK cells and HCMV. Trends Immunol. 2016;37(3):233-43.
162. Patel M, Vlahava V-M, Forbes SK, Fielding CA, Stanton RJ, Wang EC. HCMV-encoded NK modulators: lessons from in vitro and in vivo genetic variation. Front Immunol. 2018;9:2214.
163. Cederarv M, Söderberg-Nauclér C, Odeberg J. HCMV infection of PDCs deviates the NK cell response into cytokine-producing cells unable to perform cytotoxicity. Immunobiology. 2009;214(5):331-41.
164. Vieira Braga FA, Hertoghs KM, van Lier RA, van Gisbergen KP. Molecular characterization of HCMV‐specific immune responses: Parallels between CD8+ T cells, CD4+ T cells, and NK cells. Europ J Immunol. 2015;45(9):2433-45.
165. Wilkinson GW, Tomasec P, Stanton RJ, Armstrong M, Prod’homme V, Aicheler R, et al. Modulation of natural killer cells by human cytomegalovirus. J Clin Virol. 2008;41(3):206-12.
166. Goldberger T, Mandelboim O, editors. The use of microRNA by human viruses: lessons from NK cells and HCMV infection. Seminars Immunopathol. 2014: Springer.
167. Halenius A, Gerke C, Hengel H. Classical and non-classical MHC I molecule manipulation by human cytomegalovirus: so many targets—but how many arrows in the quiver? Cell Mol Immunol. 2015;12(2):139-53.
168. Bozzano F, Della Chiesa M, Pelosi A, Antonini F, Ascierto ML, Del Zotto G, et al. HCMV-controlling NKG2C+ NK cells originate from novel circulating inflammatory precursors. J Allergy Clin Immunol. 2021;147(6):2343-57.
169. Park B, Oh H, Lee S, Song Y, Shin J, Sung YC, et al. The MHC class I homolog of human cytomegalovirus is resistant to down-regulation mediated by the unique short region protein (US) 2, US3, US6, and US11 gene products. J Immunol. 2002;168(7):3464-9.
170. Kim Y, Park B, Cho S, Shin J, Cho K, Jun Y, Ahn K. Human cytomegalovirus UL18 utilizes US6 for evading the NK and T-cell responses. PLoS Pathogens. 2008;4(8):e1000123.
171. Yang Z, Bjorkman PJ. Structure of UL18, a peptide-binding viral MHC mimic, bound to a host inhibitory receptor. Proc Natl Acad Sci U S A. 2008;105(29):10095-100.
172. Kleijnen MF, Huppa JB, Lucin P, Mukherjee S, Farrell H, Campbell AE, et al. A mouse cytomegalovirus glycoprotein, gp34, forms a complex with folded class I MHC molecules in the ER which is not retained but is transported to the cell surface. EMBO J. 1997.
173. Hoare HL, Sullivan LC, Pietra G, Clements CS, Lee EJ, Ely LK, et al. Structural basis for a major histocompatibility complex class Ib–restricted T cell response. Nat Immunol. 2006;7(3):256-64.
174. Corbett AJ, Forbes CA, Moro D, Scalzo AA. Extensive sequence variation exists among isolates of murine cytomegalovirus within members of the m02 family of genes. J General Virol. 2007;88(3):758-69.
175. Sullivan LC, Walpole NG, Farenc C, Pietra G, Sum MJ, Clements CS, et al. A conserved energetic footprint underpins recognition of human leukocyte antigen-E by two distinct αβ T cell receptors. J Biol Chemistry. 2017;292(51):21149-58.
176. Stern-Ginossar N, Elefant N, Zimmermann A, Wolf DG, Saleh N, Biton M, et al. Host immune system gene targeting by a viral miRNA. Science. 2007;317(5836):376-81.
177. Raulet DH, Gasser S, Gowen BG, Deng W, Jung H. Regulation of ligands for the NKG2D activating receptor. Annual Rev Immunol. 2013;31(1):413-41.
178. Charpak-Amikam Y, Kubsch T, Seidel E, Oiknine-Djian E, Cavaletto N, Yamin R, et al. Human cytomegalovirus escapes immune recognition by NK cells through the downregulation of B7-H6 by the viral genes US18 and US20. Sci Rep. 2017;7(1):8661.
179. Dunn C, Chalupny NJ, Sutherland CL, Dosch S, Sivakumar P, Johnson DC, Cosman D. Human cytomegalovirus glycoprotein UL16 causes intracellular sequestration of NKG2D ligands, protecting against natural killer cell cytotoxicity. J Exp Med. 2003;197(11):1427-39.
180. Lodoen M, Ogasawara K, Hamerman JA, Arase H, Houchins JP, Mocarski ES, Lanier LL. NKG2D-mediated natural killer cell protection against cytomegalovirus is impaired by viral gp40 modulation of retinoic acid early inducible 1 gene molecules. J Exp Med. 2003;197(10):1245-53.
181. Smith L, McWhorter A, Masters L, Shellam G, Redwood A. Laboratory strains of murine cytomegalovirus are genetically similar to but phenotypically distinct from wild strains of virus. J Virol. 2008;82(13):6689-96.
182. Arapovic J, Lenac T, Antulov R, Polic B, Ruzsics Z, Carayannopoulos LN, et al. Differential susceptibility of RAE-1 isoforms to mouse cytomegalovirus. J Virol. 2009;83(16):8198-207.
183. Martins JP, Andoniou CE, Fleming P, Kuns RD, Schuster IS, Voigt V, et al. Strain-specific antibody therapy prevents cytomegalovirus reactivation after transplantation. Science. 2019;363(6424):288-93.
184. Kubin M, Cassiano L, Chalupny J, Chin W, Cosman D, Fanslow W, et al. ULBP1, 2, 3: novel MHC class I-related molecules that bind to human cytomegalovirus glycoprotein UL16, activate NK cells. Eur J Immunol. 2001;31(5):1428-37.
185. Patel M, Vlahava VM, Forbes SK, Fielding CA, Stanton RJ, Wang ECY. HCMV-Encoded NK Modulators: Lessons From in vitro and in vivo Genetic Variation. Front Immunol. 2018;9:2214.
186. Arnon TI, Achdout H, Levi O, Markel G, Saleh N, Katz G, et al. Inhibition of the NKp30 activating receptor by pp65 of human cytomegalovirus. Nat Immunol. 2005;6(5):515-23.
187. Charpak-Amikam Y, Kubsch T, Seidel E, Oiknine-Djian E, Cavaletto N, Yamin R, et al. Human cytomegalovirus escapes immune recognition by NK cells through the downregulation of B7-H6 by the viral genes US18 and US20. Sci Rep. 2017;7(1):8661.
188. Lilley BN, Ploegh HL, Tirabassi RS. Human cytomegalovirus open reading frame TRL11/IRL11 encodes an immunoglobulin G Fc-binding protein. J Virol. 2001;75(22):11218-21.
189. Atalay R, Zimmermann A, Wagner M, Borst E, Benz C, Messerle M, Hengel H. Identification and expression of human cytomegalovirus transcription units coding for two distinct Fcgamma receptor homologs. J Virol. 2002;76(17):8596-608.
190. Sprague ER, Reinhard H, Cheung EJ, Farley AH, Trujillo RD, Hengel H, Bjorkman PJ. The human cytomegalovirus Fc receptor gp68 binds the Fc CH2-CH3 interface of immunoglobulin G. J Virol. 2008;82(7):3490-9.
191. Cortese M, Calò S, D'Aurizio R, Lilja A, Pacchiani N, Merola M. Recombinant human cytomegalovirus (HCMV) RL13 binds human immunoglobulin G Fc. PLoS One. 2012;7(11):e50166.
192. Ndjamen B, Joshi DS, Fraser SE, Bjorkman PJ. Characterization of Antibody Bipolar Bridging Mediated by the Human Cytomegalovirus Fc Receptor gp68. J Virol. 2016;90(6):3262-7.
193. Hsu JL, van den Boomen DJ, Tomasec P, Weekes MP, Antrobus R, Stanton RJ, et al. Plasma membrane profiling defines an expanded class of cell surface proteins selectively targeted for degradation by HCMV US2 in cooperation with UL141. PLoS Pathog. 2015;11(4):e1004811.
194. Smith W, Tomasec P, Aicheler R, Loewendorf A, Nemčovičová I, Wang EC, et al. Human cytomegalovirus glycoprotein UL141 targets the TRAIL death receptors to thwart host innate antiviral defenses. Cell Host Microbe. 2013;13(3):324-35.
195. Gabanti E, Bruno F, Lilleri D, Fornara C, Zelini P, Cane I, et al. Human cytomegalovirus (HCMV)-specific CD4+ and CD8+ T cells are both r equired for prevention of HCMV disease in seropositive solid-organ tra nsplant recipients. PloS one. 2014;9(8):e106044.
196. Marchant A, Appay V, Van Der Sande M, Dulphy N, Liesnard C, Kidd M, et al. Mature CD8(+) T lymphocyte response to viral infection during fetal life. J Clin Invest. 2003;111(11):1747-55.
197. Hertoghs KM, Moerland PD, van Stijn A, Remmerswaal EB, Yong SL, van de Berg PJ, et al. Molecular profiling of cytomegalovirus-induced human CD8+ T cell differentiation. J Clin Invest. 2010;120(11):4077-90.
198. Elkington R, Walker S, Crough T, Menzies M, Tellam J, Bharadwaj M, Khanna R. Ex vivo profiling of CD8+-T-cell responses to human cytomegalovirus reveals broad and multispecific reactivities in healthy virus carriers. J Virol. 2003;77(9):5226-40.
199. Wills MR, Poole E, Lau B, Krishna B, Sinclair JH. The immunology of human cytomegalovirus latency: could latent infection be cleared by novel immunotherapeutic strategies? Cell Mol Immunol. 2015;12(2):128-38.
200. Elder E, Sinclair J. HCMV latency: what regulates the regulators? Med Microbiol Immunol. 2019;208(3-4):431-8.
201. Griffiths P, Reeves M. Pathogenesis of human cytomegalovirus in the immunocompromised host. Nat Rev Microbiol. 2021;19(12):759-73.
202. Sylwester AW, Mitchell BL, Edgar JB, Taormina C, Pelte C, Ruchti F, et al. Broadly targeted human cytomegalovirus-specific CD4+ and CD8+ T cells dominate the memory compartments of exposed subjects. J Exp Med. 2005;202(5):673-85.
203. Jackson SE, Mason GM, Wills MR. Human cytomegalovirus immunity and immune evasion. Virus Res. 2011;157(2):151-60.
204. Warren AP, Ducroq D, Lehner PJ, Borysiewicz LK. Human cytomegalovirus-infected cells have unstable assembly of major histocompatibility complex class I complexes and are resistant to lysis by cytotoxic T lymphocytes. J Virol. 1994;68:2822 - 9.
205. Manandhar T, Hò G-GT, Pump WC, Blasczyk R, Bade-Doeding C. Battle between Host Immune Cellular Responses and HCMV Immune Evasion. Int J Mol Sci. 2019;20.
206. Hengel H, Flohr T, Hämmerling GnJ, Koszinowski UH, Momburg F. Human cytomegalovirus inhibits peptide translocation into the endoplasmic reticulum for MHC class I assembly. J General Virol. 1996;77 ( Pt 9):2287-96.
207. Cebulla CM, Miller DM, Zhang Y, Rahill BM, Zimmerman PD, Robinson JM, Sedmak DD. Human Cytomegalovirus Disrupts Constitutive MHC Class II Expression1. J Immunol. 2002;169:167 - 76.
208. Park B, Oh H, Lee S, Song YJ, Shin J, Sung YC, et al. The MHC Class I Homolog of Human Cytomegalovirus Is Resistant to Down-Regulation Mediated by the Unique Short Region Protein (US)2, US3, US6, and US11 Gene Products1. J Immunol. 2002;168:3464 - 9.
209. Rehm A, Engelsberg A, Tortorella D, Körner IJ, Lehmann I, Ploegh HL, Höpken UE. Human Cytomegalovirus Gene Products US2 and US11 Differ in Their Ability To Attack Major Histocompatibility Class I Heavy Chains in Dendritic Cells. J Virol. 2002;76:5043 - 50.
210. Schempp S, Topp MS, Kessler T, Sampaio KL, Dennehy KM, Einsele H, et al. Deletion mutant of human cytomegalovirus lacking US2-US6 and US11 maintains MHC class I expression and antigen presentation by infected dendritic cells. Virus Res. 2011;155 2:446-54.
211. Trgovcich J, Cebulla CM, Zimmerman PD, Sedmak DD. Human Cytomegalovirus Protein pp71 Disrupts Major Histocompatibility Complex Class I Cell Surface Expression. J Virol. 2006;80:951 - 63.
212. Hesse J, Reyda S, Tenzer S, Besold K, Reuter N, Krauter S, et al. Human Cytomegalovirus pp71 Stimulates Major Histocompatibility Complex Class I Presentation of IE1-Derived Peptides at Immediate Early Times of Infection. J Virol. 2013;87:5229 - 38.
213. Nikmanesh Y, Karimi MH, Yaghobi R, Marashi SM, Mahmoudi M, Moravej A, Shahmahmoodi S. Improved Function and Maturation of Dendritic Cells Stimulated by Recombinant pp65 Protein: An in-vitro Design. Iranian J Immunol. 2019;16 1:11-25.
214. van der Wal FJ, Kikkert M, Wiertz E. The HCMV gene products US2 and US11 target MHC class I molecules for degradation in the cytosol. Curr Top Microbiol Immunol. 2002;269:37-55.
215. Oresić K, Noriega VM, Andrews L, Tortorella D. A Structural Determinant of Human Cytomegalovirus US2 Dictates the Down-regulation of Class I Major Histocompatibility Molecules*. J Biol Chemistry. 2006;281:19395 - 406.
216. Jun Y, Cho S, Lee M. Cytosolic interaction between MHC-I molecules and Derlin-1 is required for human cytomegalovirus US11-induced degradation of MHC-I molecules (P6122). J Immunol. 2013.
217. Cho S, Lee M, Jun Y. Forced interaction of cell surface proteins with Derlin-1 in the endoplasmic reticulum is sufficient to induce their dislocation into the cytosol for degradation. Biochem Biophys Res Commun. 2013;430 2:787-92.
218. Furman MH, Dey N, Tortorella D, Ploegh HL. The Human Cytomegalovirus US10 Gene Product Delays Trafficking of Major Histocompatibility Complex Class I Molecules. J Virol. 2002;76:11753 - 6.
219. Park B, Spooner E, Houser B, Strominger JL, Ploegh HL. The HCMV membrane glycoprotein US10 selectively targets HLA-G for degradation. J Exp Med. 2010;207:2033 - 41.
220. Odeberg J, Plachter B, Brandén L, Söderberg-Nauclér C. Human cytomegalovirus protein pp65 mediates accumulation of HLA-DR in lysosomes and destruction of the HLA-DR alpha-chain. Blood. 2003;101(12):4870-7.
221. Trgovcich J, Cebulla C, Zimmerman P, Sedmak DD. Human cytomegalovirus protein pp71 disrupts major histocompatibility complex class I cell surface expression. J Virol. 2006;80(2):951-63.
222. Avdic S, McSharry BP, Steain M, Poole E, Sinclair J, Abendroth A, Slobedman B. Human Cytomegalovirus-Encoded Human Interleukin-10 (IL-10) Homolog Amplifies Its Immunomodulatory Potential by Upregulating Human IL-10 in Monocytes. J Virol. 2016;90(8):3819-27.
223. Zischke J, Mamareli P, Pokoyski C, Gabaev I, Buyny S, Jacobs R, et al. The human cytomegalovirus glycoprotein pUL11 acts via CD45 to induce T cell IL-10 secretion. PLoS Pathog. 2017;13(6):e1006454.
224. Ong EZ, Chan KR, Ooi EE. Viral Manipulation of Host Inhibitory Receptor Signaling for Immune Evasion. PLoS Pathogens. 2016;12.
225. Arase H, Mocarski ES, Campbell AE, Hill AB, Lanier LL. Direct Recognition of Cytomegalovirus by Activating and Inhibitory NK Cell Receptors. Science. 2002;296:1323 - 6.
226. Biassoni R, Ugolotti E, De Maria A. Comparative analysis of NK-cell receptor expression and function across primate species: Perspective on antiviral defenses. Self/nonself. 2010;1 2:103-13.
227. Carrillo-Bustamante P, Keşmir C, de Boer RJ. The evolution of natural killer cell receptors. Immunogenetics. 2015;68:3 - 18.
228. Blokhuis JH, Doxiadis GGM, Bontrop R. A splice site mutation converts an inhibitory killer cell Ig-like receptor into an activating one. Mol Immunol. 2009;46 4:640-8.
229. Taylor LS, Paul S, McVicar DW. Paired inhibitory and activating receptor signals. Rev Immunogenetics. 2000;2 2:204-19.
230. Ulbrecht M, Martinozzi S, Grzeschik M, Hengel H, Ellwart JW, Pla M, Weiss EH. Cutting Edge: The Human Cytomegalovirus UL40 Gene Product Contains a Ligand for HLA-E and Prevents NK Cell-Mediated Lysis1. J Immunol. 2000;164:5019 - 22.
231. Braud VM, Tomasec P, Wilkinson GWG. Viral evasion of natural killer cells during human cytomegalovirus infection. Curr Top Microbiol Immunol. 2002;269:117-29.
232. López-Botet M, Muntasell A, Vilches C. The CD94/NKG2C+ NK-cell subset on the edge of innate and adaptive immunity to human cytomegalovirus infection. Seminars Immunol. 2014;26 2:145-51.
233. Guma M, Budt M, Sáez A, Brckalo T, Hengel H, Angulo A, López-Botet M. Expansion of CD94/NKG2C+ NK cells in response to human cytomegalovirus-infected fibroblasts. Blood. 2006;107 9:3624-31.
234. López-Botet M, Angulo A, Gumá M. Natural killer cell receptors for major histocompatibility complex class I and related molecules in cytomegalovirus infection. Tissue Antigens. 2004;63 3:195-203.
235. Bashirova AA, Thomas R, Carrington MN. HLA/KIR restraint of HIV: surviving the fittest. Annual Rev Immunol. 2011;29:295-317.
236. Jamil KM, Khakoo SI. KIR/HLA Interactions and Pathogen Immunity. J Biomed Biotechnol. 2011;2011.
237. Aicheler RJ, Wang EC, Tomasec P, Wilkinson GW, Stanton RJ. Potential for natural killer cell-mediated antibody-dependent cellular cytotoxicity for control of human cytomegalovirus. Antibodies. 2013;2(4):617-35.
238. Goodier MR, Jonjić S, Riley EM, Juranić Lisnić V. CMV and natural killer cells: shaping the response to vaccination. Europ J Immunol. 2018;48(1):50-65.
239. Wagstaffe HR, Mooney JP, Riley EM, Goodier MR. Vaccinating for natural killer cell effector functions. Clin TransImmunol. 2018;7(1):e1010.
240. Forrest C, Gomes A, Reeves M, Male V. NK cell memory to cytomegalovirus: implications for vaccine development. Vaccines. 2020;8(3):394.
241. Plotkin SA, Gilbert PB. Nomenclature for immune correlates of protection after vaccination. Clin Infect Dis. 2012;54(11):1615-7.
242. Schleiss MR. Does public perception of exposure risks and transmission mechanisms drive antiviral vaccine awareness? What if cytomegalovirus was transmitted by mosquitoes? Curr Opin Virol. 2016;17:126-9.
243. Cui X, Lee R, Adler SP, McVoy MA. Antibody inhibition of human cytomegalovirus spread in epithelial cell cultures. J Virol methods. 2013;192(1-2):44-50.
244. Jacob CL, Lamorte L, Sepulveda E, Lorenz IC, Gauthier A, Franti M. Neutralizing antibodies are unable to inhibit direct viral cell-to-cell spread of human cytomegalovirus. Virology. 2013;444(1-2):140-7.
245. Chiuppesi F, Wussow F, Johnson E, Bian C, Zhuo M, Rajakumar A, et al. Vaccine-derived neutralizing antibodies to the human cytomegalovirus gH/gL pentamer potently block primary cytotrophoblast infection. J Virol. 2015;89(23):11884-98.
246. Vanarsdall AL, Johnson DC. Human cytomegalovirus entry into cells. Current opinion in virology. 2012;2(1).
247. Slezak SL, Bettinotti M, Selleri S, Adams S, Marincola FM, Stroncek DF. CMV pp65 and IE-1 T cell epitopes recognized by healthy subjects. J Trans Med. 2007;5:1-16.
248. Nelson CS, Baraniak I, Lilleri D, Reeves MB, Griffiths PD, Permar SR. Immune Correlates of Protection Against Human Cytomegalovirus Acquisition, Replication, and Disease. J Infect Dis. 2020;221(Suppl 1):S45-s59.
249. Schleiss MR. Cytomegalovirus vaccine development. Current topics in microbiology and immunology. 2008;325:361-82.
250. Inoue N, Abe M, Kobayashi R, Yamada S. Vaccine Development for Cytomegalovirus. Advances in experimental medicine and biology. 2018;1045:271-96.
251. Gerna G, Lilleri D. Human cytomegalovirus (HCMV) infection/re-infection: development of a protective HCMV vaccine. The new microbiologica. 2019;42 1:1-20.
252. Rouse BT, Schmid DS. Fraternal Twins: The Enigmatic Role of the Immune System in Alphaherpesvirus Pathogenesis and Latency and Its Impacts on Vaccine Efficacy. Viruses. 2022;14(5).
253. Xia L, Su R, An Z, Fu TM, Luo W. Human cytomegalovirus vaccine development: Immune responses to look into vaccine strategy. Hum Vaccin Immunother. 2018;14(2):292-303.
254. Goodier MR, Jonjić S, Riley EM, Juranić Lisnić V. CMV and natural killer cells: shaping the response to vaccination. Eur J Immunol. 2018;48(1):50-65.
255. Mohan T, Zhu W, Wang Y, Wang BZ. Applications of chemokines as adjuvants for vaccine immunotherapy. Immunobiology. 2018;223(6-7):477-85.
256. Wagstaffe HR, Mooney JP, Riley EM, Goodier MR. Vaccinating for natural killer cell effector functions. Clin Transl Immunology. 2018;7(1):e1010.
257. Hu X, Karthigeyan KP, Herbek S, Valencia SM, Jenks JA, Webster H, et al. Human Cytomegalovirus mRNA-1647 Vaccine Candidate Elicits Potent and Broad Neutralization and Higher Antibody-Dependent Cellular Cytotoxicity Responses Than the gB/MF59 Vaccine. J Infect Dis. 2024;230(2):455-66.
258. ModernaTX I. A Study to Evaluate the Efficacy, Safety, and Immunogenicity of mRNA-1647 Cytomegalovirus (CMV) Vaccine in Healthy Participants 16 to 40 Years of Age clinicaltrials.gov2021-10-26 [updated 2024-04-24.
259. Lopez-Vergès S, Milush JM, Schwartz BS, Pando MJ, Jarjoura J, York VA, et al. Expansion of a unique CD57⁺NKG2Chi natural killer cell subset during acute human cytomegalovirus infection. Proc Natl Acad Sci U S A. 2011;108(36):14725-32.
260. Foley B, Cooley S, Verneris MR, Pitt M, Curtsinger J, Luo X, et al. Cytomegalovirus reactivation after allogeneic transplantation promotes a lasting increase in educated NKG2C+ natural killer cells with potent function. Blood. 2012;119(11):2665-74.
Files
IssueArticles in Press QRcode
SectionReview Article(s)
Keywords
Human cytomegalovirus Immune evasion Latency Memory inflation mRNA vaccines Vaccine development

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
1.
Mami S, Shekarchian S, Mousavi M, Nicknam M. Cracking the Human Cytomegalovirus Code: Trinary Challenges of Latency, Immune Evasion, and Correlates of Protection. Iran J Allergy Asthma Immunol. 2025;:1-25.