Natural Killer Cells as Critical Modulators of Heart Disease: Exploring Pathophysiological Mechanisms and Therapeutic Perspectives
Abstract
Natural killer (NK) cells are crucial components of the innate immune system and have emerged as significant players in the pathogenesis of heart diseases. This review discusses recent findings regarding the multifaceted roles of NK cells in various cardiac conditions, including coronary artery disease, myocardial infarction, heart failure, myocarditis, and heart transplantation. It outlines the NK cell subsets, particularly CD56-bright and CD56-dim variations, their functional characteristics, cytokine profiles, and the inflammatory pathways they are involved. The review discusses both the beneficial and detrimental effects of NK cell activity on cardiac pathology by underlining their participation in immune regulation, tissue repair, and graft rejection dynamics. Additionally, we have addressed the impact of NK-cell–oriented environmental signals and discussed potential therapeutic approaches, such as immunomodulatory and anti-inflammatory strategies targeting NK cells. This review was therefore geared towards integrating available studies in understanding NK cell dynamics in heart disease and offering insights for future clinical interventions.
2. Li H, Boulanger P. A survey of heart anomaly detection using ambulatory Electrocardiogram (ECG). Sensors. 2020;20(5):1461.
3. Dal Lin C, Tona F, Osto E. The crosstalk between the cardiovascular and the immune system. Vasc Biol. 2019;1(1):H83.
4. Kofler S, Nickel T, Weis M. Role of cytokines in cardiovascular diseases: a focus on endothelial responses to inflammation. Clin Sci. 2005;108(3):205-13.
5. Zitti B, Bryceson YT. Natural killer cells in inflammation and autoimmunity. Cytokine Growth Factor Rev. 2018;42:37-46.
6. Satoskar AR, Stamm LM, Zhang X, Okano M, David JR, Terhorst C, et al. NK cell-deficient mice develop a Th1-like response but fail to mount an efficient antigen-specific IgG2a antibody response. J Immunol. 1999;163(10):5298-302.
7. Adamo L, Rocha-Resende C, Prabhu SD, Mann DL. Reappraising the role of inflammation in heart failure. Nat Rev Cardiol. 2020;17(5):269-85.
8. Bukowski JF, Woda BA, Habu S, Okumura K, Welsh RM. Natural killer cell depletion enhances virus synthesis and virus-induced hepatitis in vivo. J Immun Balt. 1983;131(3):1531-8.
9. Shereck E, Satwani P, Morris E, Cairo MS. Human natural killer cells in health and disease. Pediatr Blood Cancer. 2007;49(5):615-23.
10. Yokoyama WM, Kim S, French AR. The dynamic life of natural killer cells. Annu Rev Immunol. 2004;22:405-29.
11. Vickers NJ. Animal communication: when i’m calling you, will you answer too? Curr Biol. 2017;27(14):R713-R5.
12. Cooper MA, Fehniger TA, Caligiuri MA. The biology of human natural killer-cell subsets. Trends Immunol. 2001;22(11):633-40.
13. Cooper MA, Fehniger TA, Turner SC, Chen KS, Ghaheri BA, Ghayur T, et al. Human natural killer cells: a unique innate immunoregulatory role for the CD56bright subset. Am J Hematol. 2001;97(10):3146-51.
14. Poli A, Michel T, Thérésine M, Andrès E, Hentges F, Zimmer J. CD56bright natural killer (NK) cells: an important NK cell subset. Immunol. 2009;126(4):458-65.
15. Ansari AW, Ahmad F, Meyer-Olson D, Kamarulzaman A, Jacobs R, Schmidt RE. Natural killer cell heterogeneity: cellular dysfunction and significance in HIV-1 immuno-pathogenesis. Cell Mol Life Sci. 2015;72:3037-49.
16. Gumá M, Budt M, Sáez A, Brckalo T, Hengel H, Angulo A, et al. Expansion of CD94/NKG2C+ NK cells in response to human cytomegalovirus-infected fibroblasts. Blood. 2006;107(9):3624-31.
17. Goodier MR, Mela C, Steel A, Gazzard B, Bower M, Gotch F. NKG2C+ NK cells are enriched in AIDS patients with advanced-stage Kaposi's sarcoma. J Virol. 2007;81(1):430-3.
18. López-Botet M, Muntasell A, Vilches C, editors. The CD94/NKG2C+ NK-cell subset on the edge of innate and adaptive immunity to human cytomegalovirus infection. Semin Immunol. 2014;26(2):145-151.
19. Hak Ł, Myśliwska J, Więckiewicz J, Szyndler K, Trzonkowski P, Siebert J, et al. NK cell compartment in patients with coronary heart disease. Immun Ageing. 2007;4:1-8.
20. Bonaccorsi I, Spinelli D, Cantoni C, Barillà C, Pipitò N, De Pasquale C, et al. Symptomatic carotid atherosclerotic plaques are associated with increased infiltration of natural killer (NK) cells and higher serum levels of NK activating receptor ligands. Front Immunol. 2019;10:1503.
21. Jonasson L, Backteman K, Ernerudh J. Loss of natural killer cell activity in patients with coronary artery disease. Atherosclerosis. 2005;183(2):316-21.
22. Li W, Lidebjer C, Yuan X-M, Szymanowski A, Backteman K, Ernerudh J, et al. NK cell apoptosis in coronary artery disease: relation to oxidative stress. Atherosclerosis. 2008;199(1):65-72.
23. Hou N, Zhao D, Liu Y, Gao L, Liang X, Liu X, et al. Increased expression of T cell immunoglobulin-and mucin domain-containing molecule-3 on natural killer cells in atherogenesis. Atheroscler. 2012;222(1):67-73.
24. Backteman K, Ernerudh J, Jonasson L. Natural killer (NK) cell deficit in coronary artery disease: no aberrations in phenotype but sustained reduction of NK cells is associated with low-grade inflammation. Clin Exp Immunol. 2014;175(1):104-12.
25. Yan W, Zhou L, Wen S, Duan Q, Huang F, Tang Y, et al. Differential loss of natural killer cell activity in patients with acute myocardial infarction and stable angina pectoris. Int J Clin Exp Pathol. 2015;8(11):14667.
26. Kanda T, Ohshima S, Yuasa K, Watanabe T, Suzuki T, Murata K. Idiopathic myocarditis associated with T-cell subset changes and depressed natural killer activity. Jpn Heart J. 1990;31(5):741-4.
27. Müller I, Janson L, Sauter M, Pappritz K, Linthout SV, Tschöpe C, et al. Myeloid-derived suppressor cells restrain natural killer cell activity in acute coxsackievirus B3-induced myocarditis. Viruses. 2021;13(5):889.
28. Persic V, Ruzic A, Miletic B, Samsa DT, Rakic M, Raljevic D, et al. Granulysin expression in lymphocytes that populate the peripheral blood and the myocardium after an acute coronary event. Scand J Immunol. 2012;75(2):231-42.
29. Romo N, Fitó M, Gumá M, Sala J, García C, Ramos R, et al. Association of atherosclerosis with expression of the LILRB1 receptor by human NK and T-cells supports the infectious burden hypothesis. Arterioscler Thromb Vasc Biol. 2011;31(10):2314-21.
30. Yao H-C, Liu S-Q, Yu K, Zhou M, Wang L-X. Interleukin-2 enhances the cytotoxic activity of circulating natural killer cells in patients with chronic heart failure. Heart Vessels. 2009;24(4).
31. Nemlander A, Saksela E, Häyry P. Are “natural killer” cells involved in allograft rejection? Eur J Immunol. 1983;13(4):348-50.
32. Rajalingam R. The impact of HLA class I-specific killer cell immunoglobulin-like receptors on antibody-dependent natural killer cell-mediated cytotoxicity and organ allograft rejection. Front immunol. 2016;7:585.
33. Millington TM, Madsen JC. Innate immunity and cardiac allograft rejection.
Kidney Int. 2010;78:S18-S21.
34. Hsieh CL, Obara H, Ogura Y, Martinez OM, Krams SM. NK cells and transplantation. Transplant Immunol. 2002;9(2-4):111-4.
35. Petersson E, Östraat Ö, Ekberg H, Hansson J, Simanaitis M, Brodin T, et al. Allogeneic heart transplantation activates alloreactive NK cells. Cell Immunol. 1997;175(1):25-32.
36. Kim J, Chang CK, Hayden T, Liu F-C, Benjamin J, Hamerman JA, et al. The activating immunoreceptor NKG2D and its ligands are involved in allograft transplant rejection. J Immun. 2007;179(10):6416-20.
37. Feng L, Ke N, Ye Z, Guo Y, Li S, Li Q, et al., editors. Expression of NKG2D and its ligand in mouse heart allografts may have a role in acute rejection. Transplant Proc. 2009;41(10): 4332-4339.
38. Wei L, Lu J, Feng L, Long D, Shan J, Li S, et al. HIF-1α accumulation upregulates MICA and MICB expression on human cardiomyocytes and enhances NK cell cytotoxicity during hypoxia-reoxygenation. Life Sci. 2010;87(3-4):111-9.
39. Chen H, Xia J, Zhang L, Jin X, Yang M, Li J, et al. NKG2D blockade attenuated cardiac allograft vasculopathy in a mouse model of cardiac transplantation. Clin Exp Immunol. 2013;173(3):544-52.
40. Maier S, Tertilt C, Chambron N, Gerauer K, Hüser N, Heidecke C-D, et al. Inhibition of natural killer cells results in acceptance of cardiac allografts in CD28−/− mice. Nat Med. 2001;7(5):557-62.
41. McNerney M, Lee K-M, Zhou P, Molinero L, Mashayekhi M, Guzior D, et al. Role of natural killer cell subsets in cardiac allograft rejection. Am J Transplant. 2006;6(3):505-13.
42. Hirohashi T, Chase C, Della Pelle P, Sebastian D, Alessandrini A, Madsen J, et al. A novel pathway of chronic allograft rejection mediated by NK cells and alloantibody. Am J Transplant. 2012;12(2):313-21.
43. Lin CM, Gill RG, Mehrad B. The natural killer cell activating receptor, NKG2D, is critical to antibody-dependent chronic rejection in heart transplantation. Am J Transplant. 2021;21(11):3550-60.
44. Paul P, Picard C, Sampol E, Lyonnet L, Di Cristofaro J, Paul-Delvaux L, et al. Genetic and functional profiling of CD16-dependent natural killer activation identifies patients at higher risk of cardiac allograft vasculopathy. Circulation. 2018;137(10):1049-59.
45. Koenig A, Chen C-C, Marçais A, Barba T, Mathias V, Sicard A, et al. Missing self triggers NK cell-mediated chronic vascular rejection of solid organ transplants. Nat Commun. 2019;10(1):5350.
46. van der Touw W, Burrell B, Lal G, Bromberg JS. NK cells are required for costimulatory blockade induced tolerance to vascularized allografts. Transplantation. 2012;94(6):575-84.
47. Yu G, Xu X, Vu MD, Kilpatrick ED, Li XC. NK cells promote transplant tolerance by killing donor antigen-presenting cells. J Exp Med. 2006;203(8):1851-8.
48. Beilke JN, Kuhl NR, Kaer LV, Gill RG. NK cells promote islet allograft tolerance via a perforin-dependent mechanism. Nat Med. 2005;11(10):1059-65.
49. Beetz O, Kolb J, Buck B, Trautewig B, Timrott K, Vondran FW, et al. Recipient natural killer cells alter the course of rejection of allogeneic heart grafts in rats. PLoS One. 2019;14(8):e0220546.
50. Fabritius C, Ritschl PV, Resch T, Roth M, Ebner S, Günther J, et al. Deletion of the activating NK cell receptor NKG2D accelerates rejection of cardiac allografts. Am J Transplant. 2017;17(12):3199-209.
51. van Leest Y, Moroso V, Wang C, Tay SS, Cunningham E, Ilie V, et al. No evidence for involvement of donor NK cells in liver transplant tolerance. Transplant Immunol. 2011;24(2):138.
52. Heidecke C, Araujo J, Kupiec-Weglinski J, Abbud-Filho M, Araneda D, Stadler J, et al. Lack of evidence for an active role for natural killer cells in acute rejection of organ allografts. Transplant. 1985;40(4):441-4.
53. Ong S, Rose NR, Čiháková D. Natural killer cells in inflammatory heart disease. Clin Immunol. 2017;175:26-33.
54. van der Hoef CC, Boorsma EM, Emmens JE, van Essen BJ, Metra M, Ng LL, et al. Biomarker signature and pathophysiological pathways in patients with chronic heart failure and metabolic syndrome. Eur J Heart Failure. 2023;25(2):163-73.
55. Magee LA, Pels A, Helewa M, Rey E, von Dadelszen P. Diagnosis, evaluation, and management of the hypertensive disorders of pregnancy. Pregnancy Hypertens. 2014;4(2):105-45.
56. Ahmed R, Dunford J, Mehran R, Robson S, Kunadian V. Pre-eclampsia and future cardiovascular risk among women: a review. J Am Coll Cardiol. 2014;63(18):1815-22.
57. Wei X, Yang X. The central role of natural killer cells in preeclampsia. Front Immunol. 2023;14:1009867.
58. Shi F-D, Ljunggren H-G, La Cava A, Van Kaer L. Organ-specific features of natural killer cells. Nat Rev Immunol. 2011;11(10):658-71.
59. Sharma R, Das A. Organ-specific phenotypic and functional features of NK cells in humans. Immunol Res. 2014;58:125-31.
60. Fauriat C, Long EO, Ljunggren H-G, Bryceson YT. Regulation of human NK-cell cytokine and chemokine production by target cell recognition. Blood. 2010;115(11):2167-76.
61. Castillo EC, Vázquez-Garza E, Yee-Trejo D, García-Rivas G, Torre-Amione G. What is the role of the inflammation in the pathogenesis of heart failure? Curr Cardiol Rep. 2020;22:1-15.
62. Rauchhaus M, Doehner W, Francis DP, Davos C, Kemp M, Liebenthal C, et al. Plasma cytokine parameters and mortality in patients with chronic heart failure. Circulation. 2000;102(25):3060-7.
63. Li H, Chen C, Wang DW. Inflammatory cytokines, immune cells, and organ interactions in heart failure. Front physiol. 2021;12:695047.
64. Zhang W, Chancey AL, Tzeng H-P, Zhou Z, Lavine KJ, Gao F, et al. The development of myocardial fibrosis in transgenic mice with targeted overexpression of tumor necrosis factor requires mast cell–fibroblast interactions. Circulation. 2011;124(19):2106-16.
65. Tang Z, McGowan BS, Huber SA, McTiernan CF, Addya S, Surrey S, et al. Gene expression profiling during the transition to failure in TNF-α over-expressing mice demonstrates the development of autoimmune myocarditis. J Mol Cell Cardiol. 2004;36(4):515-30.
66. Kacimi R, Long CS, Karliner JS. Chronic hypoxia modulates the interleukin-1β–stimulated inducible nitric oxide synthase pathway in cardiac myocytes. Circulation. 1997;96(6):1937-43.
67. Francis GS, Bartos JA, Adatya S. Inotropes. J Am Coll Cardiol. 2014;63(20):2069-78.
68. Sager HB, Heidt T, Hulsmans M, Dutta P, Courties G, Sebas M, et al. Targeting interleukin-1β reduces leukocyte production after acute myocardial infarction. Circulation. 2015;132(20):1880-90.
69. Deswal A, Petersen NJ, Feldman AM, Young JB, White BG, Mann DL. Cytokines and cytokine receptors in advanced heart failure: an analysis of the cytokine database from the Vesnarinone trial (VEST). Circulation. 2001;103(16):2055-9.
70. Gabriele P, Zhi Fang S, Tonny DT T, Carsten K, Hideo A B, Michael E, et al. Activation of the cardiac interleukin‐6 system in advanced heart failure. Eur J Heart Fail. 2001;3(4):415-21.
71. Coles B, Fielding CA, Rose-John S, Scheller J, Jones SA, O'Donnell VB. Classic interleukin-6 receptor signaling and interleukin-6 trans-signaling differentially control angiotensin II-dependent hypertension, cardiac signal transducer and activator of transcription-3 activation, and vascular hypertrophy in vivo. Am J Pathol. 2007;171(1):315-25.
72. Tosello-Trampont A, Surette FA, Ewald SE, Hahn YS. Immunoregulatory role of NK cells in tissue inflammation and regeneration. Front Immunol. 2017;8:301.
73. Hua X, Song J. Immune cell diversity contributes to the pathogenesis of myocarditis. Heart Failure Rev. 2019;24:1019-30.
74. Kumrić M, Tičinović Kurir T, Borovac JA, Božić J. The role of natural killer (NK) cells in acute coronary syndrome: A comprehensive review. Biomol. 2020;10(11):1514.
75. Li J, Song Y, Jin J-Y, Li G-H, Guo Y-Z, Yi H-Y, et al. CD226 deletion improves post-infarction healing via modulating macrophage polarization in mice. Theranostics. 2020;10(5):2422.
76. Dong K, Ge J-H, Gu S-L, Li S, Zhu W-G, Fan F-Y, et al. Ox-LDL can enhance the interaction of mice natural killer cells and dendritic cells via the CD48-2B4 pathway. Heart Vessels. 2011;26:637-45.
77. Goldszmid RS, Caspar P, Rivollier A, White S, Dzutsev A, Hieny S, et al. NK cell-derived interferon-γ orchestrates cellular dynamics and the differentiation of monocytes into dendritic cells at the site of infection. Immunity. 2012;36(6):1047-59.
78. Szodoray P, Timar O, Veres K, Der H, Szomjak E, Lakos G, et al. TH1/TH2 imbalance, measured by circulating and intracytoplasmic inflammatory cytokines–immunological alterations in acute coronary syndrome and stable coronary artery disease. Scand J Immunol. 2006;64(3):336-44.
79. Laskarin G, Persic V, Ruzic A, Miletic B, Rakic M, Samsa DT, et al. Perforin‐Mediated Cytotoxicity in non‐ST Elevation Myocardial Infarction. Scand J Immunol. 2011;74(2):195-204.
80. Nour-Eldine W, Joffre J, Zibara K, Esposito B, Giraud A, Zeboudj L, et al. Genetic depletion or hyperresponsiveness of natural killer cells do not affect atherosclerosis development.
Circ Res. 2018;122(1):47-57.
81. Zernecke A, Winkels H, Cochain C, Williams JW, Wolf D, Soehnlein O, et al. Meta-analysis of leukocyte diversity in atherosclerotic mouse aortas.
Circ Res. 2020;127(3):402-26.
82. Vredevoe DL, Widawski M, Fonarow GC, Hamilton M, Martínez-Maza O, Gage JR. Interleukin-6 (IL-6) expression and natural killer (NK) cell dysfunction and anergy in heart failure. Am J Cardiol. 2004;93(8):1007-11.
83. El Chami H, Hassoun PM. Immune and inflammatory mechanisms in pulmonary arterial hypertension. Prog Cardiovasc Dis. 2012;55(2):218-28.
84. Strassheim D, Dempsey EC, Gerasimovskaya E, Stenmark K, Karoor V. Role of inflammatory cell subtypes in heart failure. J. Immunol. Res. 2019;2019.
85. Ong S, Ligons DL, Barin JG, Wu L, Talor MV, Diny N, et al. Natural killer cells limit cardiac inflammation and fibrosis by halting eosinophil infiltration.
Am J Pathol. 2015;185(3):847-61.
86. Lindner D, Li J, Savvatis K, Klingel K, Blankenberg S, Tschöpe C, et al. Cardiac fibroblasts aggravate viral myocarditis: cell specific coxsackievirus B3 replication. Mediators Inflamm. 2014;(1):519528.
87. Raulet DH, editor Missing self recognition and self tolerance of natural killer (NK) cells. Semin Immunol. 2006;18( 3):145-50.
88. Pollack A, Kontorovich AR, Fuster V, Dec GW. Viral myocarditis—diagnosis, treatment options, and current controversies. Nat Rev Cardiol. 2015;12(11):670-80.
89. Jost S, Altfeld M. Control of human viral infections by natural killer cells. Annu. Rev. Immunol. 2013;31:163-94.
90. Nussbaum JC, Van Dyken SJ, Von Moltke J, Cheng LE, Mohapatra A, Molofsky AB, et al. Type 2 innate lymphoid cells control eosinophil homeostasis. Nature. 2013;502(7470):245-8.
91. Knorr M, Münzel T, Wenzel P. Interplay of NK cells and monocytes in vascular inflammation and myocardial infarction. Front physiol. 2014;5:295.
92. Opstad TB, Arnesen H, Pettersen AÅ, Seljeflot I. Combined elevated levels of the proinflammatory cytokines IL-18 and IL-12 are associated with clinical events in patients with coronary artery disease: an observational study. Int J Obes Relat Metab Disord. 2016;14(5):242-8.
93. Ayach BB, Yoshimitsu M, Dawood F, Sun M, Arab S, Chen M, et al. Stem cell factor receptor induces progenitor and natural killer cell-mediated cardiac survival and repair after myocardial infarction. Proc Natl Acad Sci U S A. 2006;103(7):2304-9.
94. Mathur A, Sim DS, Choudry F, Veerapen J, Colicchia M, Turlejski T, et al. Five‐year follow‐up of intracoronary autologous cell therapy in acute myocardial infarction: the REGENERATE‐AMI trial. ESC Heart Fail. 2022;9(2):1152-9.
95. Jabir NR, Firoz CK, Ahmed F, Kamal MA, Hindawi S, Damanhouri GA, et al. Reduction in CD16/CD56 and CD16/CD3/CD56 natural killer cells in coronary artery disease. Immunol Res. 2017;46(5):526-35.
96. Zhao E, Xie H, Zhang Y. Predicting diagnostic gene biomarkers associated with immune infiltration in patients with acute myocardial infarction. Front Cardiovasc Med. 2020;7:586871.
97. Ortega-Rodríguez AC, Marín-Jáuregui LS, Martinez-Shio E, Castro BH, Gonzalez-Amaro R, Escobedo-Uribe CD, et al. Altered NK cell receptor repertoire and function of natural killer cells in patients with acute myocardial infarction: A three-month follow-up study. Immunobiology. 2020;225(3):151909.
98. Prondzinsky R, Unverzagt S, Lemm H, Wegener N, Heinroth K, Buerke U, et al. Acute myocardial infarction and cardiogenic shock: prognostic impact of cytokines: INF-γ, TNF-α, MIP-1β, G-CSF, and MCP-1β. Med Klin Intensivmed Notfmed. 2012;107(6):476-84.
99. Yu J, Zhang R-f, Mao Y-l, Zhang H. Efficacy and safety of mesenchymal stem cell therapy in patients with acute myocardial infarction: A systematic review and meta-analysis of randomized controlled trials. Curr Stem Cell Res Ther. 2022;17(8):793-807.
100. Dounousi E, Duni A, Naka KK, Vartholomatos G, Zoccali C. The innate immune system and cardiovascular disease in ESKD: monocytes and natural killer cells. Curr. Vasc. Pharmacol. 2021;19(1):63-76.
101. Simões FC, Riley PR. Immune cells in cardiac repair and regeneration. Development. 2022;149(8):199906.
102. Flores-Gomez D, Bekkering S, Netea MG, Riksen NP. Trained immunity in atherosclerotic cardiovascular disease. Arterioscler Thromb Vasc Biol. 2021;41(1):62-9.
103. Ruopp NF, Cockrill BA. Diagnosis and treatment of pulmonary arterial hypertension: a review. Jama. 2022;327(14):1379-91.
Files | ||
Issue | Articles in Press | |
Section | Review Article(s) | |
Keywords | ||
Coronary artery disease Heart diseases Heart transplantations Myocardial infarctions Natural killer cells |
Rights and permissions | |
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. |