Effects of c-Kit Receptor, AKT, and NF-κB Inhibitors on Immune Evasion in Multiple Myeloma Cells
Abstract
Up-regulation of immune checkpoint ligands and secretion of soluble factors in the tumor microenvironment led to the survival of cancerous plasma cells in the bone marrow milieu. Therefore, we investigate the relationship between the inhibition of c-Kit receptor, AKT, and NF-κB signaling pathways and the regulation of immune escape mechanisms in multiple myeloma.
The U266B1 cell line was treated with Masitinib as a c-Kit receptor inhibitor, Perifosine as AKT inhibitor, and Bortezomib as NF-κB inhibitor either in single or combined form. Apoptosis and cell viability were evaluated using flow cytometry and MTT assays, respectively. The relative expression of programmed death-ligand 1 (PD-L1), poliovirus receptor (PVR), and interleukin 6 (IL-6) were determined by real-time PCR. Also, the secretion of IL-6 was measured by ELISA.
Our findings demonstrated decreased proliferation of U266B1 cells after co-treatment with Masitinib, Perifosine, and Bortezomib. An increase in apoptosis was observed in the co-treatment of Masitinib and Perifosine. Furthermore, results elucidated that the expression of PD-L1 and IL-6 decreased after treatment with Masitinib, Perifosine, and Bortezomib in both single and co-treatments. Regarding PVR, combined treatment of U266B1 cells with Masitinib, Perifosine, and Bortezomib decreased the expression level of PVR.
We showed that c-Kit receptor, AKT, and NF-κB pathway inhibitors not only serve as cytotoxic drugs but also inhibit the immune escape mechanisms of malignant plasma cells by disrupting signaling pathways.
2. Röllig C, Knop S, Bornhäuser M. Multiple myeloma. Lancet (London, England). 2015;385(9983):2197-208.
3. Rajkumar SV. Treatment of multiple myeloma. Nat Rev Clin Oncol. 2011;8(8):479-91.
4. Kazandjian D. Multiple myeloma epidemiology and survival: A unique malignancy. Sem Oncol. 2016;43(6):676-81.
5. Palumbo A, Anderson K. Multiple myeloma. New England J Med. 2011;364(11):1046-60.
6. Anderson KC, Carrasco RD. Pathogenesis of myeloma. Annual Rev Pathol. 2011;6:249-74.
7. Hideshima T, Anderson KC. Signaling Pathway Mediating Myeloma Cell Growth and Survival. Cancers. 2021;13(2).
8. Ashman LK, Griffith R. Therapeutic targeting of c-KIT in cancer. Expert Opin Investig Drugs. 2013;22(1):103-15.
9. Abbaspour Babaei M, Kamalidehghan B, Saleem M, Huri HZ, Ahmadipour F. Receptor tyrosine kinase (c-Kit) inhibitors: a potential therapeutic target in cancer cells. Drug Des Devel Ther. 2016;10:2443-59.
10. Keane NA, Glavey SV, Krawczyk J, O'Dwyer M. AKT as a therapeutic target in multiple myeloma. Expert Opin Ther Targets. 2014;18(8):897-915.
11. Matthews GM, de Matos Simoes R, Dhimolea E, Sheffer M, Gandolfi S, Dashevsky O, et al. NF-κB dysregulation in multiple myeloma. Sem Cancer Biol. 2016;39:68-76.
12. Vrábel D, Pour L, Ševčíková S. The impact of NF-κB signaling on pathogenesis and current treatment strategies in multiple myeloma. Blood Rev. 2019;34:56-66.
13. Abramson HN. The Multiple Myeloma Drug Pipeline-2018: A Review of Small Molecules and Their Therapeutic Targets. Clin Lymphoma Myeloma Leuk. 2018;18(9):611-27.
14. Kobayashi Y, Lim SO, Yamaguchi H. Oncogenic signaling pathways associated with immune evasion and resistance to immune checkpoint inhibitors in cancer. Sem Cancer Biol. 2020;65:51-64.
15. Mittal D, Gubin MM, Schreiber RD, Smyth MJ. New insights into cancer immunoediting and its three component phases--elimination, equilibrium and escape. Curr Opin Immunol. 2014;27:16-25.
16. Tamura H. Expression, Functions, and Treatment Target of PD-L1 (B7-H1) in Multiple Myeloma. J Immunol Sci. 2018.
17. Fionda C, Abruzzese MP, Zingoni A, Soriani A, Ricci B, Molfetta R, et al. Nitric oxide donors increase PVR/CD155 DNAM-1 ligand expression in multiple myeloma cells: role of DNA damage response activation. BMC Cancer. 2015;15(1):17.
18. Tsukamoto H, Fujieda K, Senju S, Ikeda T, Oshiumi H, Nishimura Y. Immune-suppressive effects of interleukin-6 on T-cell-mediated anti-tumor immunity. Cancer Sci. 2018;109(3):523-30.
19. Lauta VM. A review of the cytokine network in multiple myeloma. Cancer. 2003;97(10):2440-52.
20. Parrish C, Scott GB, Cook G. Immune dysfunction in multiple myeloma. Int J Hematol Oncol. 2013;2(1):49-59.
21. Tremblay-LeMay R, Rastgoo N, Chang H. Modulating PD-L1 expression in multiple myeloma: an alternative strategy to target the PD-1/PD-L1 pathway. J Hemato Oncol. 2018;11(1):46.
22. Tamura H, Ishibashi M, Yamashita T, Tanosaki S, Okuyama N, Kondo A, et al. Marrow stromal cells induce B7-H1 expression on myeloma cells, generating aggressive characteristics in multiple myeloma. Leukemia. 2013;27(2):464-72.
23. Iwasa M, Harada T, Oda A, Bat-Erdene A, Teramachi J, Tenshin H, et al. PD-L1 upregulation in myeloma cells by panobinostat in combination with interferon-γ. Oncotarget. 2019;10(20):1903-17.
24. An G, Acharya C, Feng X, Wen K, Zhong M, Zhang L, et al. Osteoclasts promote immune suppressive microenvironment in multiple myeloma: therapeutic implication. Blood. 2016;128(12):1590-603.
25. Yi M, Niu M, Xu L, Luo S, Wu K. Regulation of PD-L1 expression in the tumor microenvironment. J Hematol Oncol. 2021;14(1):10.
26. Taghiloo S, Norozi S, Asgarian-Omran H. The effects of Pi3k/Akt/Mtor signaling pathway inhibitors on the expression of immune checkpoint ligands in acute myeloid leukemia cell line. Iran J Allergy Asthma Immunol. 2022;21(2):178-88.
27. Soltanshahi M, Taghiloo S, Asgarian-Omran H. Expression Modulation of Immune Checkpoint Molecules by Ibrutinib and Everolimus Through STAT3 in MCF-7 Breast Cancer Cells. Iran J Pharmaceutical Res. 2022;21(1).
28. Kučan Brlić P, Lenac Roviš T, Cinamon G, Tsukerman P, Mandelboim O, Jonjić S. Targeting PVR (CD155) and its receptors in anti-tumor therapy. Cell Mol Immunol. 2019;16(1):40-52.
29. Liu L, You X, Han S, Sun Y, Zhang J, Zhang Y. CD155/TIGIT, a novel immune checkpoint in human cancers (Review). Oncol Rep. 2021;45(3):835-45.
30. Soriani A, Zingoni A, Cerboni C, Iannitto ML, Ricciardi MR, Di Gialleonardo V, et al. ATM-ATR-dependent up-regulation of DNAM-1 and NKG2D ligands on multiple myeloma cells by therapeutic agents results in enhanced NK-cell susceptibility and is associated with a senescent phenotype. Blood. 2009;113(15):3503-11.
31. Hirota T, Irie K, Okamoto R, Ikeda W, Takai Y. Transcriptional activation of the mouse Necl-5/Tage4/PVR/CD155 gene by fibroblast growth factor or oncogenic Ras through the Raf-MEK-ERK-AP-1 pathway. Oncogene. 2005;24(13):2229-35.
32. Kamran N, Takai Y, Miyoshi J, Biswas SK, Wong JS, Gasser S. Toll-like receptor ligands induce expression of the costimulatory molecule CD155 on antigen-presenting cells. PloS one. 2013;8(1):e54406.
33. Pende D, Castriconi R, Romagnani P, Spaggiari GM, Marcenaro S, Dondero A, et al. Expression of the DNAM-1 ligands, Nectin-2 (CD112) and poliovirus receptor (CD155), on dendritic cells: relevance for natural killer-dendritic cell interaction. Blood. 2006;107(5):2030-6.
34. Inozume T, Yaguchi T, Furuta J, Harada K, Kawakami Y, Shimada S. Melanoma Cells Control Antimelanoma CTL Responses via Interaction between TIGIT and CD155 in the Effector Phase. J Invest Dermatol. 2016;136(1):255-63.
35. Rosean TR, Tompkins VS, Tricot G, Holman CJ, Olivier AK, Zhan F, et al. Preclinical validation of interleukin 6 as a therapeutic target in multiple myeloma. Immunol Res. 2014;59(1-3):188-202.
36. Frassanito MA, Cusmai A, Iodice G, Dammacco F. Autocrine interleukin-6 production and highly malignant multiple myeloma: relation with resistance to drug-induced apoptosis. Blood. 2001;97(2):483-9.
37. Cao Y, Luetkens T, Kobold S, Hildebrandt Y, Gordic M, Lajmi N, et al. The cytokine/chemokine pattern in the bone marrow environment of multiple myeloma patients. Exp Hematol. 2010;38(10):860-7.
38. Lee C, Oh JI, Park J, Choi JH, Bae EK, Lee HJ, et al. TNF α mediated IL-6 secretion is regulated by JAK/STAT pathway but not by MEK phosphorylation and AKT phosphorylation in U266 multiple myeloma cells. Bio Med Res Int. 2013;2013:580135.
39. Xiao W, Hodge DR, Wang L, Yang X, Zhang X, Farrar WL. NF-kappaB activates IL-6 expression through cooperation with c-Jun and IL6-AP1 site, but is independent of its IL6-NFkappaB regulatory site in autocrine human multiple myeloma cells. Cancer Biol Ther. 2004;3(10):1007-17.
40. Hsu J-h, Shi Y, Hu L, Fisher M, Franke TF, Lichtenstein A. Role of the AKT kinase in expansion of multiple myeloma clones: effects on cytokine-dependent proliferative and survival responses. Oncogene. 2002;21(9):1391-400.
41. Gerlo S, Haegeman G, Vanden Berghe W. Transcriptional regulation of autocrine IL-6 expression in multiple myeloma cells. Cell Signall. 2008;20(8):1489-96.
Files | ||
Issue | Articles in Press | |
Section | Original Article(s) | |
Keywords | ||
Immune evasion Immune checkpoint Multiple myeloma Signaling pathways Small molecule inhibitor |
Rights and permissions | |
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. |