MicroRNA-486-3p Targets Chymotrypsin C to Regulate Pancreatic Cancer Progression and Immunosuppressive Factor Expression
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a common digestive system tumor with high mortality rates and a poor prognosis. Reports suggest that microRNA (miR)-486-3p in PDAC can be used as a diagnostic biomarker. This research aimed to elucidate the mechanisms by which miR-486-3p regulates PDAC progression.
miR-486-3p and chymotrypsin C (CTRC) expression in PDAC were measured using quantitative real-time polymerase chain reaction. Changes in the biological properties of PDAC cells were assessed by Transwell assay, scratch-wound assay, cell counting kit (CCK)-8 assay, and plate cloning assay. The protein expression of immunosuppressive factors (vascular endothelial growth factor, interleukin-6, and transforming growth factor-β) in PDAC cells was detected by western blot. Additionally, a subcutaneous graft tumor model was constructed to explore the influence of silencing miR-486-3p on PDAC in vivo.
PDAC showed a pronounced increase in miR-486-3p expression. Upregulation of miR-486-3p stimulated PDAC cell proliferation, migration, invasion, and immunosuppressive factor protein expression, whereas silencing miR-486-3p hindered PDAC malignant development. miR-486-3p targets and negatively regulates CTRC expression. Silencing CTRC partially rescued the restraining impact of silencing miR-486-3p on PDAC malignant progression. In vivo experiments also indicated that silencing miR-486-3p inhibited PDAC malignant progression and immunosuppressive factor expression in vivo.
In summary, miR-486-3p promotes immunosuppressive factor protein expression by targeting and negatively regulating CTRC expression, which in turn promotes PDAC malignant progression.
2. Gordon-Dseagu VL, Devesa SS, Goggins M, Stolzenberg-Solomon R. Pancreatic cancer incidence trends: evidence from the Surveillance, Epidemiology and End Results (SEER) population-based data. Int J Epidemiol. 2018;47(2):427-39.
3. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 2021;71(3):209-49.
4. Vincent A, Herman J, Schulick R, Hruban RH, Goggins M. Pancreatic cancer. Lancet. 2011;378(9791):607-20.
5. Khalaf N, El-Serag HB, Abrams HR, Thrift AP. Burden of Pancreatic Cancer: From Epidemiology to Practice. Clin Gastroenterol Hepatol. 2021;19(5):876-84.
6. McGuigan A, Kelly P, Turkington RC, Jones C, Coleman HG, McCain RS. Pancreatic cancer: A review of clinical diagnosis, epidemiology, treatment and outcomes. World J Gastroenterol. 2018;24(43):4846-61.
7. Chen X, Zeh HJ, Kang R, Kroemer G, Tang D. Cell death in pancreatic cancer: from pathogenesis to therapy. Nat Rev Gastroenterol Hepatol. 2021;18(11):804-23.
8. Mokdad AA, Minter RM, Zhu H, Augustine MM, Porembka MR, Wang SC, et al. Neoadjuvant Therapy Followed by Resection Versus Upfront Resection for Resectable Pancreatic Cancer: A Propensity Score Matched Analysis. J Clin Oncol. 2017;35(5):515-22.
9. Singhi AD, Koay EJ, Chari ST, Maitra A. Early Detection of Pancreatic Cancer: Opportunities and Challenges. Gastroenterology. 2019;156(7):2024-40.
10. Wood LD, Canto MI, Jaffee EM, Simeone DM. Pancreatic Cancer: Pathogenesis, Screening, Diagnosis, and Treatment. Gastroenterology. 2022;163(2):386-402.e1.
11. Lu TX, Rothenberg ME. MicroRNA. J Allergy Clin Immunol. 2018;141(4):1202-1207.
12. Ye J, Xu M, Tian X, Cai S, Zeng S. Research advances in the detection of miRNA. Journal of pharmaceutical analysis. 2019;9(4):217-26.
13. Hill M, Tran N. miRNA interplay: mechanisms and consequences in cancer. Dis Model Mech. 2021;14(4):047662.
14. Chen L, Heikkinen L, Wang C, Yang Y, Sun H, Wong G. Trends in the development of miRNA bioinformatics tools. Brief Bioinform. 2019;20(5):1836-52.
15. Xie D, Zhang S, Jiang X, Huang W, He Y, Li Y, et al. Circ_CSPP1 Regulates the Development of Non-small Cell Lung Cancer via the miR-486-3p/BRD9 Axis. Biochem Genet. 2023;61(1):1-20.
16. Chou ST, Peng HY, Mo KC, Hsu YM, Wu GH, Hsiao JR, et al. MicroRNA-486-3p functions as a tumor suppressor in oral cancer by targeting DDR1. J Exp Clin Cancer Res. 2019;38(1):281.
17. Ye H, Yu X, Xia J, Tang X, Tang L, Chen F. MiR-486-3p targeting ECM1 represses cell proliferation and metastasis in cervical cancer. Biomed Pharmacother. 2016;80:109-14.
18. Li X, Yuan Y, Wang Y, Xie K, Lu S, Chen F, et al. MicroRNA-486-3p promotes the proliferation and metastasis of cutaneous squamous cell carcinoma by suppressing flotillin-2. J Dermatol Sci. 2022;105(1):18-26.
19. Yu J, Li A, Hong SM, Hruban RH, Goggins M. MicroRNA alterations of pancreatic intraepithelial neoplasias. Clin Cancer Res. 2012;18(4):981-92.
20. Bence M, Sahin-Tóth M. Asparagine-linked glycosylation of human chymotrypsin C is required for folding and secretion but not for enzyme activity. FEBS J. 2011;278(22):4338-50.
21. Goettig P, Brandstetter H, Magdolen V. Surface loops of trypsin-like serine proteases as determinants of function. Biochimie. 2019;166:52-76.
22. Matsunaga T, Tsuchimura S, Azuma N, Endo S, Ichihara K, Ikari A. Caffeic acid phenethyl ester potentiates gastric cancer cell sensitivity to doxorubicin and cisplatin by decreasing proteasome function. Anticancer Drugs. 2019;30(3):251-9.
23. Hussen BM, Hidayat HJ, Salihi A, Sabir DK, Taheri M, Ghafouri-Fard S. MicroRNA: A signature for cancer progression. Biomed Pharmacother. 2021;138:111528.
24. Ali Syeda Z, Langden SSS, Munkhzul C, Lee M, Song SJ. Regulatory Mechanism of MicroRNA Expression in Cancer. Int J Mol Sci. 2020;21(5):1723.
25. Chen L, Xiong L, Hong S, Li J, Huo Z, Li Y, et al. Circulating Myeloid-derived Suppressor Cells Facilitate Invasion of Thyroid Cancer Cells by Repressing miR-486-3p. J Clin Endocrinol Metab. 2020;105(8):2704-18.
26. Wang H, Sha W, Liu Z, Chi CW. Effect of chymotrypsin C and related proteins on pancreatic cancer cell migration. Acta Biochim Biophys Sin (Shanghai). 2011;43(5):362-71.
27. Bayik D, Lathia JD. Cancer stem cell-immune cell crosstalk in tumour progression. Nat Rev Cancer. 2021;21(8):526-36.
28. Hirano T. IL-6 in inflammation, autoimmunity and cancer. Int Immunol. 2021;33(3):127-48.
29. Tie Y, Tang F, Wei YQ, Wei XW. Immunosuppressive cells in cancer: mechanisms and potential therapeutic targets. J Hematol Oncol. 2022;15(1):61.
30. Yang J, Yan J, Liu B. Targeting VEGF/VEGFR to Modulate Antitumor Immunity. 2018;9:978.
31. Patel SA, Nilsson MB, Le X, Cascone T, Jain RK, Heymach JV. Molecular Mechanisms and Future Implications of VEGF/VEGFR in Cancer Therapy. Clin Cancer Res. 2023;29(1):30-9.
32. Weber R, Groth C, Lasser S, Arkhypov I, Petrova V, Altevogt P, et al. IL-6 as a major regulator of MDSC activity and possible target for cancer immunotherapy. Cell Immunol. 2021;359:104254.
33. Uciechowski P, Dempke WCM. Interleukin-6: A Masterplayer in the Cytokine Network. Oncology. 2020;98(3):131-7.
34. Angioni R, Sánchez-Rodríguez R, Viola A, Molon B. TGF-β in Cancer: Metabolic Driver of the Tolerogenic Crosstalk in the Tumor Microenvironment. Cancers (Basel). 2021;13(3):401.
35. Kim IY, Kim MM, Kim SJ. Transforming growth factor-beta: Biology and clinical relevance. J Biochem Mol Biol. 2005;38(1):1-8.
Files | ||
Issue | Vol 23 No 6 (2024) | |
Section | Original Article(s) | |
DOI | https://doi.org/10.18502/ijaai.v23i6.17381 | |
Keywords | ||
Cell proliferation Chymotrypsin C Immunosuppressive factor MicroRNA-486-3p Pancreatic cancer |
Rights and permissions | |
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. |