Review Article
 

Molecular Pathways Underlying the Therapeutic Effect of Stem Cells during Asthmatic Changes

Abstract

Allergic asthma is a chronic inflammatory disease characterized by airway remodeling, hyperresponsiveness, and exacerbated inflammation. While most patients respond well to current treatments, a small subset remains resistant necessitating new therapeutic strategies. Due to their immunomodulatory properties, stem cells have been proposed as a promising treatment option for asthma. Stem cells can reduce airway inflammation and restore immune balance, demonstrating positive outcomes, particularly in cases of steroid-resistant asthma. However, the mechanisms underlying lung tissue repair are not clearly defined. On the other hand, there are limitations in using these cells and for clinical use of mesenchymal stem cells, which must be produced in accordance with Good Manufacturing Practice. This review article discusses the mechanisms by which stem cells may aid in asthma treatment and addresses and explores the challenges associated with their use. By addressing these areas, we can better understand the potential and limitations of stem cell therapy in asthma and develop more effective strategies to harness their therapeutic benefits for patients with uncontrolled asthma.

1. Asamoah F, Kakourou A, Dhami S, Lau S, Agache I, Muraro A, et al. Allergen immunotherapy for allergic asthma: a systematic overview of systematic reviews. Clin Transl Allergy. 2017;7(1):1-12.
2. Dharmage SC, Perret JL, Custovic A. Epidemiology of asthma in children and adults.Front Pediatr. 2019;7:246.
3. Rogliani P, Calzetta L, Matera MG, Laitano R, Ritondo BL, Hanania NA, et al. Severe asthma and biological therapy: when, which, and for whom. Pulm Ther. 2020;6:47-66.
4. Halwani R, Al-Muhsen S, Hamid Q. Airway remodeling in asthma. Curr Opin Pharmacol. 2010;10(3):236-45.
5. Akar-Ghibril N, Casale T, Custovic A, Phipatanakul W. Allergic endotypes and phenotypes of asthma. J Allergy Clin Immunol. 2020;8(2):429-40.
6. Ober C, Hoffjan S. Asthma genetics 2006: the long and winding road to gene discovery. Genes Immun. 2006;7(2):95-100.
7. Mohammadian M, Sadeghipour HR, Kashani IR, Jahromi GP, Omidi A, Nejad AK, et al. Evaluation of simvastatin and bone marrow-derived mesenchymal stem cell combination therapy on airway remodeling in a mouse asthma model. Lung. 2016;194:777-85.
8. Weiss DJ. Concise review: current status of stem cells and regenerative medicine in lung biology and diseases. Stem cells. 2014;32(1):16-25.
9. Barnes PJ, Drazen JM. Pathophysiology of asthma. Asthma and COPD: Elsevier; 2002. p. 343-59.
10. Ramos-Ramírez P, Tliba O. Glucocorticoid Insensitivity in Asthma: The Unique Role for Airway Smooth Muscle Cells. Int J Mol Sci. 2022;23(16):8966.
11. Fehrenbach H, Wagner C, Wegmann M. Airway remodeling in asthma: what really matters. Cell Tissue Res. 2017;367:551-69.
12. Loureiro C, Amaral L, Ferreira J, Lima R, Pardal C, Fernandes I, et al. Omalizumab for severe asthma: beyond allergic asthma. Biomed Res Int. 2018;2018.
13. Mirershadi F, Ahmadi M, Rezabakhsh A, Rajabi H, Rahbarghazi R, Keyhanmanesh R. Unraveling the therapeutic effects of mesenchymal stem cells in asthma. Stem Cell Res Ther. 2020;11:1-12.
14. Mirershadi F, Ahmadi M, Rahbarghazi R, Heiran H, Keyhanmanesh R. C-Kit+ cells can modulate asthmatic condition via differentiation into pneumocyte-like cells and alteration of inflammatory responses via ERK/NF-ƙB pathway. Iran J Basic Med Sci. 2022;25(1):96.
15. Pang L, Yu P, Liu X, Fan Y, Shi Y, Zou S. Fine particulate matter induces airway inflammation by disturbing the balance between Th1/Th2 and regulation of GATA3 and Runx3 expression in BALB/c mice. Mol Med Rep. 2021;23(5):1-11.
16. Yao Y, Miao X, Wang L, Jiang Z, Li L, Jiang P, et al. Methane Alleviates Lung Injury through the IL-10 Pathway by Increasing T Regulatory Cells in a Mouse Asthma Model.J Immunol Res. 2022;2022.
17. Roth M, Johnson PR, Borger P, Bihl MP, Rüdiger JJ, King GG, et al. Dysfunctional interaction of C/EBPα and the glucocorticoid receptor in asthmatic bronchial smooth-muscle cells. N Engl J Med. 2004;351(6):560-74.
18. Choby GW, Lee S, editors. Pharmacotherapy for the treatment of asthma: current treatment options and future directions. Int Forum Allergy Rhinol; 2015: Wiley Online Library.
19. Yu X, Yu L, Guo B, Chen R, Qiu C. A narrative review of research advances in mesenchymal stem cell therapy for asthma. Ann Transl Med. 2020;8(21).
20. Colaço Rahola M. A comparative study of Dupilumab versus Omalizumab in severe pediatric asthma: a multicenter, randomized and controlled clinical trial. 2024.
21. Rani S, Ryan AE, Griffin MD, Ritter T. Mesenchymal stem cell-derived extracellular vesicles: toward cell-free therapeutic applications. Mol Ther. 2015;23(5):812-23.
22. Li M, Sun X, Kuang X, Liao Y, Li H, Luo D. Mesenchymal stem cells suppress CD8+ T cell-mediated activation by suppressing natural killer group 2, member D protein receptor expression and secretion of prostaglandin E2, indoleamine 2, 3-dioxygenase and transforming growth factor-β. Clin Exp Immunol. 2014;178(3):516-24.
23. Li Y, Li H, Cao Y, Wu F, Ma W, Wang Y, et al. Placenta‑derived mesenchymal stem cells improve airway hyperresponsiveness and inflammation in asthmatic rats by modulating the Th17/Treg balance. Mol Med Rep. 2017;16(6):8137-45.
24. Zhang L-B, He M. Effect of mesenchymal stromal (stem) cell (MSC) transplantation in asthmatic animal models: a systematic review and meta-analysis. Pulm Pharmacol. 2019;54:39-52.
25. Li Y, Qu T, Tian L, Han T, Jin Y, Wang Y. Human placenta mesenchymal stem cells suppress airway inflammation in asthmatic rats by modulating Notch signaling. Mol Med Rep. 2018;17(4):5336-43.
26. Nemeth K, Keane-Myers A, Brown JM, Metcalfe DD, Gorham JD, Bundoc VG, et al. Bone marrow stromal cells use TGF-beta to suppress allergic responses in a mouse model of ragweed-induced asthma. PNAS Nexus. 2010;107(12):5652-7.
27. Li X, Michaeloudes C, Zhang Y, Wiegman CH, Adcock IM, Lian Q, et al. Mesenchymal stem cells alleviate oxidative stress–induced mitochondrial dysfunction in the airways. J Allergy Clin Immunol. 2018;141(5):1634-45. e5.
28. Ahmadi M, Rahbarghazi R, Shahbazfar A-A, Baghban H, Keyhanmanesh R. Bone marrow mesenchymal stem cells modified pathological changes and immunological responses in ovalbumin-induced asthmatic rats possibly by the modulation of miRNA155 and miRNA133. Gen Physiol Biophys. 2018;37(3):263-74.
29. Paliwal S, Chaudhuri R, Agrawal A, Mohanty S. Regenerative abilities of mesenchymal stem cells through mitochondrial transfer. J Biomed Sci. 2018;25:1-12.
30. Fang S-B, Zhang H-Y, Jiang A-Y, Fan X-L, Lin Y-D, Li C-L, et al. Human iPSC-MSCs prevent steroid-resistant neutrophilic airway inflammation via modulating Th17 phenotypes. Stem Cell Res Ther. 2018;9:1-12.
31. Mohammadian M, Boskabady MH, Kashani IR, Jahromi GP, Omidi A, Nejad AK, et al. Effect of bone marrow derived mesenchymal stemIran J Basic Med Sc cells on lung pathology and inflammation in ovalbumin-induced asthma in mouse. Iran J Basic Med Sci. 2016;19(1):55.
32. Ankrum JA, Ong JF, Karp JM. Mesenchymal stem cells: immune evasive, not immune privileged. Nat Biotechnol. 2014;32(3):252-60.
33. Wang Y, Tian M, Wang F, Heng BC, Zhou J, Cai Z, et al. Understanding the immunological mechanisms of mesenchymal stem cells in allogeneic transplantation: from the aspect of major histocompatibility complex class I. Stem Cells Dev. 2019;28(17):1141-50.
34. Jiang W, Xu J. Immune modulation by mesenchymal stem cells. Cell Prolif. 2020;53(1):e12712.
35. Baak LM, Wagenaar N, van der Aa NE, Groenendaal F, Dudink J, Tataranno ML, et al. Feasibility and safety of intranasally administered mesenchymal stromal cells after perinatal arterial ischaemic stroke in the Netherlands (PASSIoN): a first-in-human, open-label intervention study. Lancet Neurol. 2022;21(6):528-36.
36. Monsel A, Hauw-Berlemont C, Mebarki M, Heming N, Mayaux J, Nguekap Tchoumba O, et al. Treatment of COVID-19-associated ARDS with mesenchymal stromal cells: a multicenter randomized double-blind trial. Crit Care. 2022;26(1):48.
37. Zhao K, Lin R, Fan Z, Chen X, Wang Y, Huang F, et al. Mesenchymal stromal cells plus basiliximab, calcineurin inhibitor as treatment of steroid-resistant acute graft-versus-host disease: a multicenter, randomized, phase 3, open-label trial. J Hematol Oncol. 2022;15(1):22.
38. Yuan D, Bao Y, El-Hashash A. Mesenchymal stromal cell-based therapy in lung diseases; from research to clinic. Am J Stem Cells. 2024;13(2):37.
39. Spaziano G, Cappetta D, Urbanek K, Piegari E, Esposito G, Matteis M, et al. New role of adult lung c-kit+ cells in a mouse model of airway hyperresponsiveness. Mediators Inflamm. 2016;2016.
40. Taghizadeh S, Keyhanmanesh R, Rahbarghazi R, Rezaie J, Delkhosh A, Hassanpour M, et al. Systemic administration of c-Kit+ cells diminished pulmonary and vascular inflammation in rat model of chronic asthma. BMC Mol Cell Biol. 2022;23(1):1-10.
41. Rahbarghazi R, Keyhanmanesh R, Rezaie J, Mirershadi F, Heiran H, Bagheri HS, et al. c-kit+ cells offer hopes in ameliorating asthmatic pathologies via regulation of miRNA-133 and miRNA-126.Iran J Basic Med Sci. 2021;24(3):369.
42. Baraniak PR, McDevitt TC. Stem cell paracrine actions and tissue regeneration. Regen Med. 2010;5(1):121-43.
43. Kichenbrand C, Velot E, Menu P, Moby V. Dental pulp stem cell-derived conditioned medium: an attractive alternative for regenerative therapy. Tissue Eng Part B Rev. 2019;25(1):78-88.
44. Pawitan JA. Prospect of stem cell conditioned medium in regenerative medicine. Biomed Res Int. 2014;2014(1):965849.
45. Marolt Presen D, Traweger A, Gimona M, Redl H. Mesenchymal stromal cell-based bone regeneration therapies: from cell transplantation and tissue engineering to therapeutic secretomes and extracellular vesicles. Front Bioeng Biotechnol. 2019;7:352.
46. Phelps J, Sanati-Nezhad A, Ungrin M, Duncan NA, Sen A. Bioprocessing of mesenchymal stem cells and their derivatives: Toward cell‐free therapeutics. Stem Cells Int. 2018;2018(1):9415367.
47. Abreu SC, Antunes MA, Maron-Gutierrez T, Cruz FF, Ornellas DS, Silva AL, et al. Bone marrow mononuclear cell therapy in experimental allergic asthma: intratracheal versus intravenous administration. Respir Physiol Neurobiol. 2013;185(3):615-24.
48. Royce SG, Shen M, Patel KP, Huuskes BM, Ricardo SD, Samuel CS. Mesenchymal stem cells and serelaxin synergistically abrogate established airway fibrosis in an experimental model of chronic allergic airways disease. Stem Cell Res. 2015;15(3):495-505.
49. Urbanek K, De Angelis A, Spaziano G, Piegari E, Matteis M, Cappetta D, et al. Intratracheal administration of mesenchymal stem cells modulates tachykinin system, suppresses airway remodeling and reduces airway hyperresponsiveness in an animal model. PLoS One. 2016;11(7):e0158746.
50. Al‐Muhsen S, Shablovsky G, Olivenstein R, Mazer B, Hamid Q. The expression of stem cell factor and c‐kit receptor in human asthmatic airways. Clin Exp Allergy. 2004;34(6):911-6.
51. Keyhanmanesh R, Rahbarghazi R, Aslani MR, Hassanpour M, Ahmadi M. Systemic delivery of mesenchymal stem cells condition media in repeated doses acts as magic bullets in restoring IFN-γ/IL-4 balance in asthmatic rats. Life Sci. 2018;212:30-6.
52. Choi JY, Hur J, Jeon S, Jung CK, Rhee CK. Effects of human adipose tissue-and bone marrow-derived mesenchymal stem cells on airway inflammation and remodeling in a murine model of chronic asthma. Sci Rep. 2022;12(1):12032.
53. Dong L, Wang Y, Zheng T, Pu Y, Ma Y, Qi X, et al. Hypoxic hUCMSC-derived extracellular vesicles attenuate allergic airway inflammation and airway remodeling in chronic asthma mice. Stem Cell Res Ther. 2021;12:1-14.
54. Song J, Zhu X, Wei Q. MSCs reduce airway remodeling in the lungs of asthmatic rats through the Wnt/β-catenin signaling pathway. Eur Rev Med Pharmacol Sci. 2020;24(21):11199-211.
55. Hur J, Kang JY, Kim YK, Lee SY, Jeon S, Kim Y, et al. Evaluation of human MSCs treatment frequency on airway inflammation in a mouse model of acute asthma.J Korean Med Sci. 2020;35(23).
56. Shahir M, Mahmoud Hashemi S, Asadirad A, Varahram M, Kazempour‐Dizaji M, Folkerts G, et al. Effect of mesenchymal stem cell‐derived exosomes on the induction of mouse tolerogenic dendritic cells. J Cell Physiol. 2020;235(10):7043-55.
57. Lin S-C, Liou Y-M, Ling T-Y, Chuang Y-H, Chiang B-L. Placenta-derived mesenchymal stem cells reduce the interleukin-5 level experimentally in children with asthma. Int J Med Sci. 2019;16(11):1430.
58. Du Y-m, Zhuansun Y-x, Chen R, Lin L, Lin Y, Li J-g. Mesenchymal stem cell exosomes promote immunosuppression of regulatory T cells in asthma. Exp Cell Res. 2018;363(1):114-20.
59. Genç D, Zibandeh N, Nain E, Gökalp M, Özen A, Göker M, et al. Dental follicle mesenchymal stem cells down‐regulate Th2‐mediated immune response in asthmatic patients mononuclear cells. Clin. Exp. Allergy. 2018;48(6):663-78.
60. Berezovska O, Jack C, Deng A, Gastineau N, Rebeck GW, Hyman BT. Notch1 and amyloid precursor protein are competitive substrates for presenilin1-dependent γ-secretase cleavage. J Biol Chem. 2001;276(32):30018-23.
61. Ahmad T, Mukherjee S, Pattnaik BR, Kumar M, Singh S, Rehman R, et al. Miro 1 knockdown in stem cells inhibits mitochondrial donation mediated rescue of bronchial epithelial injury.Biophys J
. 2013;104(2):659a.
62. Braza F, Dirou S, Forest V, Sauzeau V, Hassoun D, Chesné J, et al. Mesenchymal stem cells induce suppressive macrophages through phagocytosis in a mouse model of asthma. Stem Cells. 2016;34(7):1836-45.
63. Rahbarghazi R, Keyhanmanesh R, Aslani MR, Hassanpour M, Ahmadi M. Bone marrow mesenchymal stem cells and condition media diminish inflammatory adhesion molecules of pulmonary endothelial cells in an ovalbumin-induced asthmatic rat model. Microvasc Res. 2019;121:63-70.
64. Leeman KT, Fillmore CM, Kim CF. Lung stem and progenitor cells in tissue homeostasis and disease. Curr Top Dev Biol. 2014;107:207-33.
65. Leibel S, Post M. Endogenous and exogenous stem/progenitor cells in the lung and their role in the pathogenesis and treatment of pediatric lung disease.Front Pediatr. 2016;4:36.
66. Suzuki T, Suzuki S, Fujino N, Ota C, Yamada M, Suzuki T, et al. c-Kit immunoexpression delineates a putative endothelial progenitor cell population in developing human lungs. Am J Physiol Lung Cell Mol Physiol. 2014;306(9):L855-L65.
67. Kajstura J, Rota M, Hall SR, Hosoda T, D'Amario D, Sanada F, et al. Evidence for human lung stem cells. N Engl J Med. 2011;364(19):1795-806.
68. Liu Q, Huang X, Zhang H, Tian X, He L, Yang R, et al. c-Kit+ cells adopt vascular endothelial but not epithelial cell fates during lung maintenance and repair. Nat Med. 2015;21(8):866-8.
69. Ahmadi M, Rahbarghazi R, Aslani MR, Shahbazfar A-A, Kazemi M, Keyhanmanesh R. Bone marrow mesenchymal stem cells and their conditioned media could potentially ameliorate ovalbumin-induced asthmatic changes. Biomed Pharmacother. 2017;85:28-40.
70. Harrell CR, Sadikot R, Pascual J, Fellabaum C, Jankovic MG, Jovicic N, et al. Mesenchymal stem cell-based therapy of inflammatory lung diseases: current understanding and future perspectives. Stem Cells Int. 2019;2019.
71. Srour N, Thébaud B. Stem cells in animal asthma models: a systematic review. Cytotherapy. 2014;16(12):1629-42.
72. Kim S-D, Cho K-S. Immunomodulatory Effects of Mesenchymal Stem Cell-Derived Extracellular Vesicles in Allergic Airway Disease. Life. 2022;12(12):1994.
73. Kruk DM, Wisman M, Bruin HGd, Lodewijk ME, Hof DJ, Borghuis T, et al. Abnormalities in reparative function of lung-derived mesenchymal stromal cells in emphysema. Am J Physiol Lung Cell Mol Physiol. 2021;320(5):L832-L44.
74. Ortiz LA, Gambelli F, McBride C, Gaupp D, Baddoo M, Kaminski N, et al. Mesenchymal stem cell engraftment in lung is enhanced in response to bleomycin exposure and ameliorates its fibrotic effects. Proc Natl Acad SCI. 2003;100(14):8407-11.
75. Pumberger M, Qazi TH, Ehrentraut MC, Textor M, Kueper J, Stoltenburg-Didinger G, et al. Synthetic niche to modulate regenerative potential of MSCs and enhance skeletal
muscle regeneration. Biomaterials. 2016;99:95-108.
76. Zhu Y-g, Feng X-m, Abbott J, Fang X-h, Hao Q, Monsel A, et al. Human mesenchymal stem cell microvesicles for treatment of Escherichia coli endotoxin-induced acute lung injury in mice. Stem cells. 2014;32(1):116-25.
77. Lin H-Y, Xu L, Xie S-S, Yu F, Hu H-Y, Song X-L, et al. Mesenchymal stem cells suppress lung inflammation and airway remodeling in chronic asthma rat model via PI3K/Akt signaling pathway. Int J Clin Exp Pathol. 2015;8(8):8958.
78. Prockop DJ. The exciting prospects of new therapies with mesenchymal stromal cells. Cytotherapy. 2017;19(1):1-8.
79. Ullah I, SubbaBiosci Rep rao RB, Rho GJ. Human mesenchymal stem cells - current trends and future prospective. Biosci Rep. 2015;35(2):e00191.
80. Wu J, Ji C, Cao F, Lui H, Xia B, Wang L. Bone marrow mesenchymal stem cells inhibit dendritic cells differentiation and maturation by microRNA-23b. Biosci Rep. 2017;37(2).
81. Bernardo ME, Fibbe WE. Mesenchymal stromal cells: sensors and switchers of inflammation. Cell stem cell. 2013;13(4):392-402.
82. García-Muñoz E, Vives J. Towards the standardization of methods of tissue processing for the isolation of mesenchymal stromal cells for clinical use. Cytotechnology. 2021;73(3):513-22.
83. Melief SM, Zwaginga JJ, Fibbe WE, Roelofs H. Adipose tissue-derived multipotent stromal cells have a higher immunomodulatory capacity than their bone marrow-derived counterparts.Stem Cells Transl Med. 2013;2(6):455-63.
84. Hoffman AM, Paxson JA, Mazan MR, Davis AM, Tyagi S, Murthy S, et al. Lung-derived mesenchymal stromal cell post-transplantation survival, persistence, paracrine expression, and repair of elastase-injured lung. Stem Cells Dev. 2011;20(10):1779-92.
85. Luan X, Li G, Wang G, Wang F, Lin Y. Human placenta-derived mesenchymal stem cells suppress T cell proliferation and support the culture expansion of cord blood CD34+ cells: a comparison with human bone marrow-derived mesenchymal stem cells. Tissue Cell. 2013;45(1):32-8.
86. Genç D, Zibandeh N, Nain E, Arığ Ü, Göker K, Aydıner E, et al. IFN-γ stimulation of dental follicle mesenchymal stem cells modulates immune response of CD4+ T lymphocytes in Der p1+ asthmatic patients in vitro. Allergol Immunopathol. 2019;47(5):467-76.
87. Gao W-X, Sun Y-Q, Shi J, Li C-L, Fang S-B, Wang D, et al. Effects of mesenchymal stem cells from human induced pluripotent stem cells on differentiation, maturation, and function of dendritic cells. Stem Cell Res Ther. 2017;8(1):1-16.
88. Sun Y-Q, Zhang Y, Li X, Deng M-X, Gao W-X, Yao Y, et al. Insensitivity of human iPS cells-derived mesenchymal stem cells to interferon-γ-induced HLA expression potentiates repair efficiency of hind limb ischemia in immune humanized NOD Scid gamma mice. Stem cells. 2015;33(12):3452-67.
89. Nystedt J, Anderson H, Tikkanen J, Pietilä M, Hirvonen T, Takalo R, et al. Cell surface structures influence lung clearance rate of systemically infused mesenchymal stromal cells. Stem cells. 2013;31(2):317-26.
90. Abreu SC, Antunes MA, Xisto DG, Cruz FF, Branco VC, Bandeira E, et al. Bone marrow, adipose, and lung tissue-derived murine mesenchymal stromal cells release different mediators and differentially affect airway and lung parenchyma in experimental asthma. Stem Cells Transl Med. 2017;6(6):1557-67.
91. Gazdic M, Volarevic V, Arsenijevic N, Stojkovic M. Mesenchymal stem cells: a friend or foe in immune-mediated diseases. Stem Cell Rev Rep. 2015;11:280-7.
92. Nemeth K, Keane-Myers A, Brown JM, Metcalfe DD, Gorham JD, Bundoc VG, et al. Bone marrow stromal cells use TGF-β to suppress allergic responses in a mouse model of ragweed-induced asthma. Proc Natl Acad SCI. 2010;107(12):5652-7.
93. Kavanagh H, Mahon BP. Allogeneic mesenchymal stem cells prevent allergic airway inflammation by inducing murine regulatory T cells. Allergy. 2011;66(4):523-31.
94. Habibian R, Delirezh N, Farshid AA. The effects of bone marrow-derived mesenchymal stem cells on ovalbumin-induced allergic asthma and cytokine responses in mice. Iran J Basic Med Sci. 2018;21(5):483.
95. Ogulur I, Gurhan G, Aksoy A, Duruksu G, Inci C, Filinte D, et al. Suppressive effect of compact bone-derived mesenchymal stem cells on chronic airway remodeling in murine model of asthma. Int Immunopharmacol. 2014;20(1):101-9.
96. Takeda K, Webb TL, Ning F, Shiraishi Y, Regan DP, Chow L, et al. Mesenchymal stem cells recruit CCR2+ monocytes to suppress allergic airway inflammation. J Immunol. 2018;200(4):1261-9.
97. Duong KM, Arikkatt J, Ullah MA, Lynch JP, Zhang V, Atkinson K, et al. Immunomodulation of Airway Epithelium Cell Activation by Mesenchymal Stromal Cells Ameliorates House Dust Mite–Induced Airway Inflammation in Mice. Am J Respir Cell Mol Biol. 2015;53(5):615-24.
98. Firinci F, Karaman M, Baran Y, Bagriyanik A, Ayyildiz ZA, Kiray M, et al. Mesenchymal stem cells ameliorate the histopathological changes in a murine model of chronic asthma. Int Immunopharmacol. 2011;11(8):1120-6.
99. Royce SG, Rele S, Broughton BR, Kelly K, Samuel CS. Intranasal administration of mesenchymoangioblast‐derived mesenchymal stem cells abrogates airway fibrosis and airway hyperresponsiveness associated with chronic allergic airways disease. FASEB J. 2017;31(9):4168-78.
100. Işık S, Karaman M, Adan A, Kıray M, Bağrıyanık HA, Sözmen ŞÇ, et al. Intraperitoneal mesenchymal stem cell administration ameliorates allergic rhinitis in the murine model. Eur Arch Otorhinolaryngol Suppl. 2017;274(1):197-207.
101. Sakine I, Nevin U, Meral K, Özkan K, Müge K, İlknur K, et al. Effects of Intraperitoneal Injection of Allogeneic Bone Marrow-derived Mesenchymal Stem Cells on Bronchiolitis Obliterans in Mice Model.Iran J Allergy Asthma Immunol. June 2017; 16(3):205-21.
102. Trzil JE, Masseau I, Webb TL, Chang CH, Dodam JR, Cohn LA, et al. Long‐term evaluation of mesenchymal stem cell therapy in a feline model of chronic allergic asthma. Clin Exp Allergy. 2014;44(12):1546-57.
103. Trzil JE, Masseau I, Webb TL, Chang C-H, Dodam JR, Liu H, et al. Intravenous adipose-derived mesenchymal stem cell therapy for the treatment of feline asthma: a pilot study. J Feline Med Surg. 2016;18(12):981-90.
104. Liu Y, Yuan X, Muñoz N, Logan TM, Ma T. Commitment to aerobic glycolysis sustains immunosuppression of human mesenchymal stem cells. Stem Cells Transl Med. 2019;8(1):93-106.
105. Bonfield TL, Koloze M, Lennon DP, Zuchowski B, Yang SE, Caplan AI. Human mesenchymal stem cells suppress chronic airway inflammation in the murine ovalbumin asthma model. Am J Physiol Lung Cell Mol Physiol. 2010;299(6):L760-L70.
106. Mathias LJ, Khong SM, Spyroglou L, Payne NL, Siatskas C, Thorburn AN, et al. Alveolar macrophages are critical for the inhibition of allergic asthma by mesenchymal stromal cells. J Immunol. 2013;191(12):5914-24.
107. Song X, Xie S, Lu K, Wang C. Mesenchymal stem cells alleviate experimental asthma by inducing polarization of alveolar macrophages. Inflammation. 2015;38:485-92.
108. Goldstein BD, Lauer ME, Caplan AI, Bonfield TL. Chronic asthma and Mesenchymal stem cells: Hyaluronan and airway remodeling. J Inflamm. 2017;14(1):1-9.
109. Cruz FF, Borg ZD, Goodwin M, Sokocevic D, Wagner DE, Coffey A, et al. Systemic administration of human bone marrow-derived mesenchymal stromal cell extracellular vesicles ameliorates aspergillus hyphal extract-induced allergic airway inflammation in immunocompetent mice. Stem Cells Transl Med. 2015;4(11):1302-16.
110. Sharan J, Barmada A, Band N, Liebman E, Prodromos C. First report in a human of successful treatment of asthma with mesenchymal stem cells: a case report with review of literature. Curr Stem Cell Res Ther. 2023;18(7):1026-9.
111. Liang X, Ding Y, Zhang Y, Tse H-F, Lian Q. Paracrine mechanisms of mesenchymal stem cell-based therapy: current status and perspectives. Cell Transplant. 2014;23(9):1045-59.
112. Horie M, Choi H, Lee RH, Reger RL, Ylostalo J, Muneta T, et al. Intra-articular injection of human mesenchymal stem cells (MSCs) promote rat meniscal regeneration by being activated to express Indian hedgehog that enhances expression of type II collagen. Osteoarthritis Cartilage. 2012;20(10):1197-207.
113. Buc M, Dzurilla M, Vrlik M, Bucova M. Immunopathogenesis of bronchial asthma. Arch Immunol Ther Exp. 2009;57(5):331-44.
114. Song X, Xie S, Lu K, Wang C. Mesenchymal stem cells alleviate experimental asthma by inducing polarization of alveolar macrophages. Inflammation. 2015;38(2):485-92.
115. Brown JM, Nemeth K, Kushnir‐Sukhov NM, Metcalfe DD, Mezey E. Bone marrow stromal cells inhibit mast cell function via a COX2‐dependent mechanism. Clin Exp Allergy. 2011;41(4):526-34.
116. Cho K-S, Park M-K, Kang S-A, Park H-Y, Hong S-L, Park H-K, et al. Adipose‐derived stem cells ameliorate allergic airway inflammation by inducing regulatory T cells in a mouse model of asthma. Mediators Inflamm. 2014;2014(1):436476.
117. Cho K-S, Lee J-H, Park M-K, Park H-K, Yu H-S, Roh H-J. Prostaglandin E2 and transforming growth factor-β play a critical role in suppression of allergic airway inflammation by adipose-derived stem cells. PLoS One. 2015;10(7):e0131813.
118. Rasmusson I. Immune modulation by mesenchymal stem cells. Exp Cell Res. 2006;312(12):2169-79.
119. Zhong H, Fan X-L, Fang S-B, Lin Y-D, Wen W, Fu Q-L. Human pluripotent stem cell-derived mesenchymal stem cells prevent chronic allergic airway inflammation via TGF-β1-Smad2/Smad3 signaling pathway in mice. Mol Immunol. 2019;109:51-7.
120. Roach KM, Feghali-Bostwick C, Wulff H, Amrani Y, Bradding P. Human lung myofibroblast TGFβ1-dependent Smad2/3 signalling is Ca 2+-dependent and regulated by K Ca 3.1 K+ channels. Fibrogenesis Tissue Repair. 2015;8:1-12.
121. Cruz FF, Borg ZD, Goodwin M, Sokocevic D, Wagner DE, Coffey A, et al. Systemic administration of human bone marrow‐derived mesenchymal stromal cell extracellular vesicles ameliorates aspergillus hyphal extract‐induced allergic airway inflammation in immunocompetent mice. Stem Cells Transl Med. 2015;4(11):1302-16.
122. Guo H, Su Y, Deng F. Effects of mesenchymal stromal cell-derived extracellular vesicles in lung diseases: current status and future perspectives. Stem Cell Rev Rep. 2021;17:440-58.
123. Vizoso F, Eiro N, Cid S, Schneider J, Perez-Fernandez R. Mesenchymal sInt J Mol Sci tem cell secretome: toward cell-free therapeutic strategies in regenerative medicine.Int J Mol Sci 2017;18(9):1852.
124. Ahmadi M, Rahbarghazi R, Soltani S, Aslani MR, Keyhanmanesh R. Contributory anti-inflammatory effects of mesenchymal stem cells, not conditioned media, on ovalbumin-induced asthmatic changes in male rats. Inflammation. 2016;39(6):1960-71.
125. Bandeira E, Jang SC, Lässer C, Johansson K, Rådinger M, Park K-S. Effects of mesenchymal stem cell-derived nanovesicles in experimental allergic airway inflammation. Respir Res. 2023;24(1):3.
126. Abreu SC, Xisto DG, Oliveira TB, Blanco NG, Castro LL, Kitoko JZ, et al. Serum from asthmatic mice potentiates the therapeutic effects of mesenchymal stromal cells in experimental allergic asthma. Stem Cells Transl Med. 2019;8(3):301-12.
127. Dong B, Wang C, Zhang J, Zhang J, Gu Y, Guo X, et al. Exosomes from human umbilical cord mesenchymal stem cells attenuate the inflammation of severe steroid-resistant asthma by reshaping macrophage polarization. Stem Cell Res Ther. 2021;12:1-17.
128. Zhang Y, Yu Z, Jiang D, Liang X, Liao S, Zhang Z, et al. iPSC-MSCs with high intrinsic MIRO1 and sensitivity to TNF-α yield efficacious mitochondrial transfer to rescue anthracycline-induced cardiomyopathy. Stem cell reports. 2016;7(4):749-63.
129. Islam MN, Das SR, Emin MT, Wei M, Sun L, Westphalen K, et al. Mitochondrial transfer from bone-marrow–derived stromal cells to pulmonary alveoli protects against acute lung injury. Nat Med. 2012;18(5):759-65.
130. Li X, Zhang Y, Yeung SC, Liang Y, Liang X, Ding Y, et al. Mitochondrial transfer of induced pluripotent stem cell–derived mesenchymal stem cells to airway epithelial cells attenuates cigarette smoke–induced damage. Am J Respir Cell Mol Biol. 2014;51(3):455-65.
131. Yao Y, Fan X-L, Jiang D, Zhang Y, Li X, Xu Z-B, et al. Connexin 43-mediated mitochondrial transfer of iPSC-MSCs alleviates asthma inflammation. Stem cell reports. 2018;11(5):1120-35.
132. Nadeem A, Siddiqui N, Alharbi NO, Alharbi MM. Airway and systemic oxidant-antioxidant dysregulation in asthma: a possible scenario of oxidants spill over from lung into blood. Pulm Pharmacol Ther. 2014;29(1):31-40.
133. Sahiner UM, Birben E, Erzurum S, Sackesen C, Kalayci O. Oxidative stress in asthma. World Allergy Organ J. 2011;4(10):151-8.
134. Malaquias M, Oyama L, Jericó P, Costa I, Padilha G, Nagashima S, et al. Effects of mesenchymal stromal cells play a role the oxidant/antioxidant balance in a murine model of asthma. Allergol Immunopathol. 2018;46(2):136-43.
135. Dalouchi F, Falak R, Bakhshesh M, Sharifiaghdam Z, Azizi Y, Aboutaleb N. Human amniotic membrane mesenchymal stem cell‐conditioned medium reduces inflammatory factors and fibrosis in ovalbumin‐induced asthma in mice. Exp Physiol. 2021;106(2):544-54.
136. Mattes J, Collison A, Plank M, Phipps S, Foster PS. Antagonism of microRNA-126 suppresses the effector function of TH2 cells and the development of allergic airways disease. National Acad Sciences. 2009;106(44):18704-9.
137. Tang G-N, Li C-L, Yao Y, Xu Z-B, Deng M-X, Wang S-Y, et al. MicroRNAs involved in asthma after mesenchymal stem cells treatment. Stem Cells Dev. 2016;25(12):883-96.
138. Kuo Y-C, Li Y-SJ, Zhou J, Shih Y-RV, Miller M, Broide D, et al. Human mesenchymal stem cells suppress the stretch–induced inflammatory miR-155 and cytokines in bronchial epithelial cells. PLoS One. 2013;8(8):e71342.
139. Li C-L, Xu Z-B, Fan X-L, Chen H-X, Yu Q-N, Fang S-B, et al. microRNA-21 mediates the protective effects of mesenchymal stem cells derived from iPSCs to human bronchial epithelial cell injury under hypoxia. Cell Transplant. 2018;27(3):571-83.
140. Fang S-B, Zhang H-Y, Wang C, He B-X, Liu X-Q, Meng X-C, et al. Small extracellular vesicles derived from human mesenchymal stromal cells prevent group 2 innate lymphoid cell-dominant allergic airway inflammation through delivery of miR-146a-5p. J Extracell Vesicles 2020;9(1):1723260.
141. Chan TK, Tan W, Peh HY, Wong W. Aeroallergens induce reactive oxygen species production and DNA damage and dampen antioxidant responses in bronchial epithelial cells. J Immunol. 2017;199(1):39-47.
142. Plotkowski M-C, Povoa HC, Zahm J-M, Lizard G, Pereira GM, Tournier J-M, et al. Early mitochondrial dysfunction, superoxide anion production, and DNA degradation are associated with non-apoptotic death of human airway epithelial cells induced by Pseudomonas aeruginosa exotoxin A. Am J Respir Cell Mol Biol. 2002;26(5):617-26.
143. Okazaki T, Magaki T, Takeda M, Kajiwara Y, Hanaya R, Sugiyama K, et al. Intravenous administration of bone marrow stromal cells increases survivin and Bcl-2 protein expression and improves sensorimotor function following ischemia in rats. Neurosci Lett. 2008;430(2):109-14.
144. Tang YL, Zhao Q, Qin X, Shen L, Cheng L, Ge J, et al. Paracrine action enhances the effects of autologous mesenchymal stem cell transplantation on vascular regeneration in rat model of myocardial infarction. Ann Thorac Surg. 2005;80(1):229-37.
145. Li J, Zhou J, Zhang D, Song Y, She J, Bai C. Bone marrow‐derived mesenchymal stem cells enhance autophagy via PI 3K/AKT signalling to reduce the severity of ischaemia/reperfusion‐induced lung injury. J Cell Mol Med. 2015;19(10):2341-51.
146. Zhou Z, You Z. Mesenchymal stem cells alleviate LPS-induced acute lung injury in mice by MiR-142a-5p-controlled pulmonary endothelial cell autophagy. Cell Physiol Biochem. 2016;38(1):258-66.
147. Abbaszadeh H, Ghorbani F, Abbaspour-Aghdam S, Kamrani A, Valizadeh H, Nadiri M, et al. Chronic obstructive pulmonary disease and asthma: mesenchymal stem cells and their extracellular vesicles as potential therapeutic tools. Stem Cell Res Ther. 2022;13(1):1-15.
148. Wylie T, Sandhu DS, Murr N. Status epilepticus. 2017.
149. Eagar TN, Tang Q, Wolfe M, He Y, Pear WS, Bluestone JA. Notch 1 signaling regulates peripheral T cell activation. Immunity. 2004;20(4):407-15.
150. Khan M, Koch WJ. c-kit+ Cardiac stem cells: spontaneous creation or a perplexing reality. Circ Res. 2016;118(5):783-5.
151. Matuszczak S, Czapla J, Jarosz-Biej M, Wiśniewska E, Cichoń T, Smolarczyk R, et al. Characteristic of c-Kit+ progenitor cells in explanted human hearts. Clin Res Cardiol. 2014;103:711-8.
152. De Falco E, Avitabile D, Totta P, Straino S, Spallotta F, Cencioni C, et al. Altered SDF‐1‐mediated differentiation of bone marrow‐derived endothelial progenitor cells in diabetes mellitus. J Cell Mol Med. 2009;13(9b):3405-14.
153. Papayannopoulou T, Brice M, Broudy VC, Zsebo KM. Isolation of c-kit receptor-expressing cells from bone marrow, peripheral blood, and fetal liver: functional properties and composite antigenic profile. Blood. 1991;78(6):1403-1412.
154. Lennartsson J, Jelacic T, Linnekin D, Shivakrupa R. Normal and oncogenic forms of the receptor tyrosine kinase kit. Stem cells. 2005;23(1):16-43.
155. Ray P, Krishnamoorthy N, Ray A. Emerging functions of c-kit and its ligand stem cell factor in dendritic cells. Cell Cycle. 2008;7(18):2826-32.
156. Keith MC, Tang XL, Tokita Y, Li QH, Ghafghazi S, Moore Iv J, et al. Safety of intracoronary infusion of 20 million C-kit positive human cardiac stem cells in pigs. PLoS One. 2015;10(4):e0124227.
157. Czarna A, Sanada F, Matsuda A, Kim J, Signore S, Pereira JD, et al. Single-cell analysis of the fate of c-kit-positive bone marrow cells. NPJ Regen Med. 2017;2(1):27.
158. Fazel S, Cimini M, Chen L, Li S, Angoulvant D, Fedak P, et al. Cardioprotective c-kit+ cells are from the bone marrow and regulate the myocardial balance of angiogenic cytokines. J Clin Invest. 2006;116(7):1865-77.
159. Loffredo FS, Steinhauser ML, Gannon J, Lee RT. Bone marrow-derived cell therapy stimulates endogenous cardiomyocyte progenitors and promotes cardiac repair. Cell stem cell. 2011;8(4):389-98.
160. Bolli R, Chugh AR, D'Amario D, Loughran JH, Stoddard MF, Ikram S, et al. Cardiac stem cells in patients with ischaemic cardiomyopathy (SCIPIO): initial results of a randomised phase 1 trial. Lancet. 2011;378(9806):1847-57.
161. Dergilev K, Tsokolaeva Z, Makarevich P, Beloglazova I, Zubkova E, Boldyreva M, et al. C-kit cardiac progenitor cell based cell sheet improves vascularization and attenuates cardiac remodeling following myocardial infarction in rats. Biomed Res Int. 2018;2018.
162. Vajravelu BN, Hong KU, Al-Maqtari T, Cao P, Keith MC, Wysoczynski M, et al. C-Kit promotes growth and migration of human cardiac progenitor cells via the PI3K-AKT and MEK-ERK pathways. PloS one. 2015;10(10):e0140798.
163. Lindsey JY, Ganguly K, Brass DM, Li Z, Potts EN, Degan S, et al. c-Kit is essential for alveolar maintenance and protection from emphysema-like disease in mice. Am J Respir Crit Care Med. 2011;183(12):1644-52.
164. Da Silva C, de Blay F, Israel‐Biet D, Laval AM, Glasser N, Pauli G, et al. Effect of glucocorticoids on stem cell factor expression in human asthmatic bronchi. Clin Exp Allergy. 2006;36(3):317-24.
165. Van Berlo JH, Kanisicak O, Maillet M, Vagnozzi RJ, Karch J, Lin S-CJ, et al. C-kit+ cells minimally contribute cardiomyocytes to the heart. Nature. 2014;509(7500):337-41.
166. Germano D, Blyszczuk P, Valaperti A, Kania G, Dirnhofer S, Landmesser U, et al. Prominin-1/CD133+ lung epithelial progenitors protect from bleomycin-induced pulmonary fibrosis. Am J Respir Crit Care Med. 2009;179(10):939-49.
167. Takahashi T, Friedmacher F, Zimmer J, Puri P. Increased c-kit and stem cell factor expression in the pulmonary vasculature of nitrofen-induced congenital diaphragmatic hernia. J Pediatr Surg. 2016;51(5):706-9.
168. Ramachandran S, Suguihara C, Drummond S, Chatzistergos K, Klim J, Torres E, et al. Bone marrow-derived c-kit+ cells attenuate neonatal hyperoxia-induced lung injury. Cell Transplant. 2015;24(1):85-95.
169. Davie NJ, Crossno Jr JT, Frid MG, Hofmeister SE, Reeves JT, Hyde DM, et al. Hypoxia-induced pulmonary artery adventitial remodeling and neovascularization: contribution of progenitor cells. Am J Physiol Lung Cell Mol Physiol. 2004;286(4):L668-L78.
170. Montani D, Perros F, Gambaryan N, Girerd B, Dorfmuller P, Price LC, et al. C-kit–positive cells accumulate in remodeled vessels of idiopathic pulmonary arterial hypertension. Am J Respir Crit Care Med. 2011;184(1):116-23.
171. Wu W, Wang T, Dong J-J, Liao Z-L, Wen F-Q. Silencing of c-kit with small interference RNA attenuates inflammation in a murine model of allergic asthma.Int J Mol Med. 2012;30(1):63-8.
172. Wu W, Chen H, Li Y-M, Wang S-Y, Diao X, Liu K-G. Intranasal sirna targeting c-kit reduces airway inflammation in experimental allergic asthma.Int J Clin Exp Pathol. 2014;7(9):5505.
173. Heinemann A, Sturm GJ, Ofner M, Sturm EM, Weller C, Peskar BA, et al. Stem cell factor stimulates the chemotaxis, integrin upregulation, and survival of human basophils. J Allergy Clin Immunol. 2005;116(4):820-6.
174. Oliveira SH, Taub DD, Nagel J, Smith R, Hogaboam CM, Berlin A, et al. Stem cell factor induces eosinophil activation and degranulation: mediator release and gene array analysis. Blood. 2002;100(13):4291-7.
175. Lukacs NW, Kunkel SL, Strieter RM, Evanoff HL, Kunkel RG, Key ML, et al. The role of stem cell factor (c-kit ligand) and inflammatory cytokines in pulmonary mast cell activation. Blood. 1996;78(6): 2262-2268.
176. Makowska JS, Cieslak M, Kowalski ML. Stem cell factor and its soluble receptor (c-kit) in serum of asthmatic patients-correlation with disease severity. BMC Pulm Med. 2009;9(1):1-7.
177. Campbell E, Hogaboam C, Lincoln P, Lukacs NW. Stem cell factor-induced airway hyperreactivity in allergic and normal mice. Am J Pathol. 1999;154(4):1259-65.
178. Cahill KN, Katz HR, Cui J, Lai J, Kazani S, Crosby-Thompson A, et al. KIT inhibition by imatinib in patients with severe refractory asthma. N Engl J Med. 2017;376(20):1911-20.
179. Mir-ershadi F, Ahmadi M, Rahbarghazi R, Heiran H, Delkhosh A, Khaksar M, et al. Polarization of T-helper 2 to 1 phenotype has arisen in rat asthmatic pulmonary tissue after intra-tracheal administration of bone marrow-derived c-Kit cells. J Res Clin Med. 2023;11(1):29-.
180. Wu X, Jiang J, Gu Z, Zhang J, Chen Y, Liu X. Mesenchymal stromal cell therapies: immunomodulatory properties and clinical progress. Stem Cell Res Ther. 2020;11(1):345.
181. Torre ML, Lucarelli E, Guidi S, Ferrari M, Alessandri G, De Girolamo L, et al. Ex vivo expanded mesenchymal stromal cell minimal quality requirements for clinical application. Stem Cells Dev. 2015;24(6):677-85.
182. Mohamed SA, Howard L, McInerney V, Hayat A, Krawczyk J, Naughton S, et al. Autologous bone marrow mesenchymal stromal cell therapy for “no-option” critical limb ischemia is limited by karyotype abnormalities. Cytotherapy. 2020;22(6):313-21.
183. Griffin MD, Ryan AE, Alagesan S, Lohan P, Treacy O, Ritter T. Anti‐donor immune responses elicited by allogeneic mesenchymal stem cells: what have we learned so far?Immunol Cell Biol. 2013;91(1):40-51.
184. Bianconi E, Casadei R, Frabetti F, Ventura C, Facchin F, Canaider S. Sex-specific transcriptome differences in human adipose mesenchymal stem cells. Genes. 2020;11(8):909.
185. Jin Y, Yang L, Zhang Y, Gao W, Yao Z, Song Y, et al. Effects of age on biological and functional characterization of adipose‑derived stem cells from patients with end‑stage liver disease. Mol Med Rep. 2017;16(3):3510-8.
186. Roberto BF, Pablo MO. Sources and clinical applications of mesenchymal stem cells. Sultan Qaboos Univ Med J. 2018;18(3):e264–e277.
187. Zhang A, Wong JKU, Redzikultsava K, Baldry M, Alavi SK, Wang Z, et al. A cost-effective and enhanced mesenchymal stem cell expansion platform with internal plasma-activated biofunctional interfaces. Mater Today Bio. 2023;22:100727.
188. Costa LA, Eiro N, Fraile M, Gonzalez LO, Saá J, Garcia-Portabella P, et al. Functional heterogeneity of mesenchymal stem cells from natural niches to culture conditions: implications for further clinical uses.Cell Mol Life Sci. 2021;78:447-67.
189. Stephenson M, Grayson W. Recent advances in bioreactors for cell-based therapies. F1000Res. 2018;7.
190. Rafiq Q, Thomas R. The evolving role of automation in process development & manufacture of cell & gene-based therapies. Cell Gene Ther Insights. 2016.
191. Fan X-L, Zhang Y, Li X, Fu Q-L. Mechanisms underlying the protective effects of mesenchymal stem cell-based therapy. ell Mol Life Sci. 2020;77:2771-94.
192. Huang S, Li Y, Zeng J, Chang N, Cheng Y, Zhen X, et al. Mesenchymal Stem/Stromal Cells in Asthma Therapy: Mechanisms and Strategies for Enhancement. Cell Transplant. 2023;32:09636897231180128.
193. Fong EL, Chan CK, Goodman SB. Stem cell homing in musculoskeletal injury. Biomaterials. 2011;32(2):395-409.
194. Prockop DJ, Kota DJ, Bazhanov N, Reger RL. Evolving paradigms for repair of tissues by adult stem/progenitor cells (MSCs). J Cell Mol Med. 2010;14(9):2190-9.
195. Curley GF, Ansari B, Hayes M, Devaney J, Masterson C, Ryan A, et al. Effects of intratracheal mesenchymal stromal cell therapy during recovery and resolution after ventilator-induced lung injury. Anesthesiology. 2013;118(4):924-32.
196. Mei SH, Haitsma JJ, Dos Santos CC, Deng Y, Lai PF, Slutsky AS, et al. Mesenchymal stem cells reduce inflammation while enhancing bacterial clearance and improving survival in sepsis. Am J Respir Crit Care Med. 2010;182(8):1047-57.
197. François M, Romieu-Mourez R, Stock-Martineau S, Boivin M-N, Bramson JL, Galipeau J. Mesenchymal stromal cells cross-present soluble exogenous antigens as part of their antigen-presenting cell properties. Blood. 2009;114(13):2632-8.
198. Averyanov A, Koroleva I, Konoplyannikov M, Revkova V, Lesnyak V, Kalsin V, et al. First-in-human high-cumulative-dose stem cell therapy in idiopathic pulmonary fibrosis with rapid lung function decline. Stem Cells Transl Med. 2020;9(1):6-16.
199. Tynecka M, Janucik A, Niemira M, Zbikowski A, Stocker N, Tarasik A, et al. The short-term and long-term effects of intranasal mesenchymal stem cell administration to noninflamed mice lung. Front Immunol. 2022;13:967487.
200. Uccelli A, Moretta L, Pistoia V. Mesenchymal stem cells in health and disease. Nat Rev Immunol. 2008;8(9):726-36.
Files
IssueVol 23 No 6 (2024) QRcode
SectionReview Article(s)
DOI https://doi.org/10.18502/ijaai.v23i6.17372
Keywords
Airway inflammation Asthma c-Kit cells Mesenchymal stem cells Therapeutics

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
1.
Saljoughi Berenji B, Mirershadi F. Molecular Pathways Underlying the Therapeutic Effect of Stem Cells during Asthmatic Changes. Iran J Allergy Asthma Immunol. 2024;23(6):600-624.