Original Article
 

The Immunomodulatory Effects of Curcumin on Forkhead Box O1 and MicroRNA-873 in Patients with Osteoarthritis

Abstract

Osteoarthritis (OA) is among the most prevalent articular disorders, whose incidence is directly related to aging. Due to the antiinflammatory potential of curcumin as the active component of turmeric, the present study evaluated the effects of curcumin on the expression of genes related to T helper 17 (Th17), including forkhead box p3 (FOXP3), forkhead box o1 (FOXO1), transforming growth factor-β (TGFB1) and microRNA-873, human (HSA-MIR-873), in OA patients.
Female patients with knee OA (n=30) were randomly categorized into 2 groups, including the intervention group who received curcumin (n=15) and the placebo (n=15) in a double-blind clinical trial for 3 months. The expression of FOXO1, FOXP3, TGFB1, and HSA-MIR-873 genes was evaluated by SYBR Green real-time reverse transcription polymerase chain reaction.
In the curcumin group, FOXO1 gene expression was significantly increased, while the increase in FOXP3 gene expression was not significant. Moreover, the expression level of the HSA-MIR-873 gene showed a significant increase in the curcumin group.
The modulatory effects of curcumin on Th17 function might be associated with the expression of FOXO1 and HSA-MIR-873 genes. 

1. Rahimnia A-R, Panahi Y, Alishiri G, Sharafi M, Sahebkar A. Impact of supplementation with curcuminoids on systemic inflammation in patients with knee osteoarthritis: findings from a randomized double-blind placebo-controlled trial. Drug Res. 2014:521-5.
2. Wang P, Ye Y, Yuan W, Tan Y, Zhang S, Meng Q. Curcumin exerts a protective effect on murine knee chondrocytes treated with IL-1β through blocking the NF-κB/HIF-2α signaling pathway. Ann Trans Med. 2021;9(11).
3. Buhrmann C, Brockmueller A, Mueller A-L, Shayan P, Shakibaei M. Curcumin attenuates environment-derived osteoarthritis by Sox9/NF-kB signaling axis. Int J Mol Sci. 2021;22(14):7645.
4. Srivastava S, Saksena AK, Khattri S, Kumar S, Dagur
RS. Curcuma longa extract reduces inflammatory and oxidative stress biomarkers in osteoarthritis of knee: a four-month, double-blind, randomized, placebo-controlled
trial. Inflammopharmacology. 2016;24(6):377-88.
5. Michael JW-P, Schlüter-Brust KU, Eysel P. The epidemiology, etiology, diagnosis, and treatment of osteoarthritis of the knee. Dtsch Arztebl Int. 2010;107(9):152.
6. Sakalauskienė G, Jauniškienė D. Osteoarthritis: etiology, epidemiology, impact on the individual and society and the main principles of management. Medicina. 2010;46(11):790.
7. Lurati A, Laria A, Gatti A, Brando B, Scarpellini M. Different T cells' distribution and activation degree of Th17 CD4+ cells in peripheral blood in patients with osteoarthritis, rheumatoid arthritis, and healthy donors: preliminary results of the MAGENTA CLICAO study. Open Access Rheumatol. 2015;7:63-8.
8. Moradi B, Rosshirt N, Hagmann S, Schnatzer P, Gotterbarm T, Lorenz H-M, et al. Osteoarthritis progression is accompanied by inflammatory CD4+ T-cell polarisation. Osteoarthritis Cartilage. 2012;20:S232-S3.
9. Lainé A, Martin B, Luka M, Mir L, Auffray C, Lucas B, et al. Foxo1 is a T cell–intrinsic inhibitor of the RORγt-Th17 program. J Immunol. 2015;195(4):1791-803.
10. Gomes W, Lacerda A, Brito-Melo G, Fonseca S, Rocha-Vieira E, Leopoldino A, et al. Aerobic training modulates T cell activation in elderly women with knee osteoarthritis. Braz J Med Biol Res. 2016;49.
11. Zhang P, Zhong Z, Yu H, Liu B. Exogenous expression of IL-1Ra and TGFB1 promotes in vivo repair in experimental rabbit osteoarthritis. Scand J Rheumatol. 2015;44(5):404-11.
12. Liu L, Liu Y, Yuan M, Xu L, Sun H. Elevated expression of microRNA-873 facilitates Th17 differentiation by targeting forkhead box O1 (Foxo1) in the pathogenesis of systemic lupus erythematosus. Biochem Biophysical Res Commun. 2017;492(3):453-60.
13. Zhang Y, Zeng Y. Curcumin reduces inflammation in knee osteoarthritis rats through blocking TLR4/MyD88/NF‐κB signal pathway. Drug Develo Res. 2019;80(3):353-9.
14. Panahi Y, Alishiri GH, Parvin S, Sahebkar A. Mitigation of systemic oxidative stress by curcuminoids in osteoarthritis: results of a randomized controlled trial. J Dietary Suppl. 2016;13(2):209-20.
15. Varalakshmi C, Ali AM, Pardhasaradhi B, Srivastava RM, Singh S, Khar A. Immunomodulatory effects of curcumin: in-vivo. Int Immunopharmacol. 2008;8(5):688-700.
16. Atabaki M, Shariati-Sarabi Z, Tavakkol-Afshari J, Mohammadi M. Significant immunomodulatory properties of curcumin in patients with osteoarthritis; a successful clinical trial in Iran. Int Immunopharmacol. 2020;85:106607.
17. Rahimnia A-R, Panahi Y, Alishiri G, Sharafi M, Sahebkar A. Impact of supplementation with curcuminoids on systemic inflammation in patients with knee osteoarthritis: findings from a randomized double-blind placebo-controlled trial. Drug Res. 2015;65(10):521-5.
18. Kuptniratsaikul V, Dajpratham P, Taechaarpornkul W, Buntragulpoontawee M, Lukkanapichonchut P, Chootip C, et al. Efficacy and safety of Curcuma domestica extracts compared with ibuprofen in patients with knee osteoarthritis: a multicenter study. Clin Interv Aging. 2014;9:451.
19. Grieshaber-Bouyer R, Kämmerer T, Rosshirt N, Nees TA, Koniezke P, Tripel E, et al. Divergent mononuclear cell participation and cytokine release profiles define hip and knee osteoarthritis. J Clin Med. 2019;8(10):1631.
20. Rao X, Huang X, Zhou Z, Lin X. An improvement of the 2ˆ (–delta delta CT) method for quantitative real-time polymerase chain reaction data analysis. Biostat Bioinforma Biomath . 2013;3(3):71.
21. Hawker GA. Osteoarthritis is a serious disease. Clin Exp Rheumatol. 2019;37(Suppl 120):3-6.
22. Li Y-s, Luo W, Zhu S-a, Lei G-h. T cells in osteoarthritis: alterations and beyond. Front Immunol. 2017;8:356.
23. Pemmari A, Leppänen T, Hämäläinen M, Moilanen T, Moilanen E. Chondrocytes from osteoarthritis patients adopt distinct phenotypes in response to central TH1/TH2/TH17 cytokines. Int J Mol Sci. 2021;22(17):9463.
24. Lurati A, Laria A, Gatti A, Brando B, Scarpellini M. Different T cells’ distribution and activation degree of Th17 CD4+ cells in peripheral blood in patients with osteoarthritis, rheumatoid arthritis, and healthy donors: preliminary results of the MAGENTA CLICAO study. Res Rev. 2015:63-8.
25. Vernal R, Velasquez E, Gamonal J, Garcia-Sanz JA, Silva A, Sanz M. Expression of proinflammatory cytokines in osteoarthritis of the temporomandibular joint. Arch Oral Biol. 2008;53(10):910-5.
26. Meehan EV, Wang K. Interleukin-17 family cytokines in metabolic disorders and cancer. Genes. 2022;13(9):1643.
27. Ren H-Z, Xia S-Z, Qin X-Q, Hu A-Y, Wang J-L. FOXO1 alleviates liver ischemia-reperfusion injury by regulating the Th17/Treg ratio through the AKT/Stat3/FOXO1 pathway. J Clin Transl Hepatol. 2022;10(6):1138.
28. Gezmis H, Doran T, Mayda Domac F, Yucel D, Karaci R, Kirac D. CD4+ and CD25+ T‐cell response to short‐time interferon‐beta therapy on IL10, IL23A and FOXP3 genes in multiple sclerosis patients. International Journal of Clinical Practice. 2021;75(7):e14238.
29. Ohkura N, Sakaguchi S. Foxo1 and Foxo3 help FOXP3. Immunity. 2010;33(6):835-7.
30. Lee W, Lee GR. Transcriptional regulation and development of regulatory T cells. Exp mol Med. 2018;50(3):e456-e.
31. Wan YY, Flavell RA. Regulatory T-cell functions are subverted and converted owing to attenuated FOXP3 expression. Nature. 2007;445(7129):766-70.
32. Gavin MA, Rasmussen JP, Fontenot JD, Vasta V, Manganiello VC, Beavo JA, et al. FOXP3-dependent programme of regulatory T-cell differentiation. Nature. 2007;445(7129):771-5.
33. Gomes W, Lacerda A, Brito-Melo G, Fonseca S, Rocha-Vieira E, Leopoldino A, et al. Aerobic training modulates T cell activation in elderly women with knee osteoarthritis. Brazilian J Med Biol Res. 2016;49:e5181.
34. Guo S, Ding Y, Li L, Zhang T, Zhang Z, Zhang E. Correlation of CD. Genet Mol Res. 2015;14(3):7290-6.
35. Chai Y-s, Chen Y-q, Lin S-h, Xie K, Wang C-j, Yang Y-z, et al. Curcumin regulates the differentiation of naïve CD4+ T cells and activates IL-10 immune modulation against acute lung injury in mice. Biomed Pharmacotherapy. 2020;125:109946.
36. Fiyouzi T, Pelaez-Prestel HF, Reyes-Manzanas R, Lafuente EM, Reche PA. Enhancing regulatory T cells to treat inflammatory and autoimmune diseases. Int J Mol Sci. 2023;24(9):7797.
37. Song Y, Wang N, Chen L, Fang L. Tr1 cells as a key regulator for maintaining immune homeostasis in transplantation. Front Immunol. 2021;12:671579.
38. Grazia Roncarolo M, Gregori S, Battaglia M, Bacchetta R, Fleischhauer K, Levings MK. Interleukin‐10‐secreting type 1 regulatory T cells in rodents and humans. Immunological reviews. 2006;212(1):28-50.
39. Chien C-H, Chiang B-L. Regulatory T cells induced by B cells: a novel subpopulation of regulatory T cells. J Biomed Sci. 2017;24:1-8.
40. Matsuda M, Terada T, Kitatani K, Kawata R, Nabe T. Roles of type 1 regulatory T (Tr1) cells in allergen-specific immunotherapy. Front Allergy. 2022;3:981126.
41. Nadya NA, Tezuka H, Ohteki T, Matsuda S, Azuma M, Nagai S. PI 3K‐Akt pathway enhances the differentiation of interleukin‐27‐induced type 1 regulatory T cells. Immunology. 2017;152(3):507-16.
42. Ouyang W, Liao W, Luo CT, Yin N, Huse M, Kim MV, et al. Novel Foxo1-dependent transcriptional programs control Treg cell function. Nature. 2012;491(7425):554-9.
43. Graves DT, Milovanova TN. Mucosal immunity and the FOXO1 transcription factors. Front Immunol. 2019;10:2530.
44. Mollazadeh H, Cicero AF, Blesso CN, Pirro M, Majeed M, Sahebkar A. Immune modulation by curcumin: The role of interleukin-10. Critical reviews in food science and nutrition. 2019;59(1):89-101.
45. Cong Y, Wang L, Konrad A, Schoeb T, Elson CO. Curcumin induces the tolerogenic dendritic cell that promotes differentiation of intestine‐protective regulatory T cells. Europ J Immunol. 2009;39(11):3134-46.
46. Zhen G, Wen C, Jia X, Li Y, Crane JL, Mears SC, et al. Inhibition of TGFB signaling in mesenchymal stem cells of subchondral bone attenuates osteoarthritis. Nat Med. 2013;19(6):704-12.
47. Su LC, Huang AF, Jia H, Liu Y, Xu WD. Role of micro RNA‐155 in rheumatoid arthritis. International J Rheumatic Dis. 2017;20(11):1631-7.
48. Bhaskaran M, Mohan M. MicroRNAs: history, biogenesis, and their evolving role in animal development and disease. Veterinary Pathol. 2014;51(4):759-74.
49. Zhong G, Long H, Ma S, Shunhan Y, Li J, Yao J. miRNA-335-5p relieves chondrocyte inflammation by activating autophagy in osteoarthritis. Life Sci. 2019;226:164-72.
50. Skrzypa M, Szala D, Gablo N, Czech J, Pajak J, Kopanska M, et al. miRNA-146a-5p is upregulated in serum and cartilage samples of patients with osteoarthritis. Polish Journal of Surgery. 2019;91(3):1-5.
51. Stanciugelu SI, Homorogan C, Selaru C, Patrascu JM, Patrascu Jr JM, Stoica R, et al. Osteoarthritis and microRNAs: Do They Provide Novel Insights into the Pathophysiology of This Degenerative Disorder? Life. 2022;12(11):1914.
52. Chapman K, Valdes AM. Genetic factors in OA pathogenesis. Bone. 2012;51(2):258-64.
53. Atabaki M, Shariati-Sarabi Z, Tavakkol-Afshari J, Taghipour A, Jafari MR, Nikpoor AR, et al. Curcumin as an effective suppressor of miRNA expression in patients with knee osteoarthritis. Avicenna J Phytomed. 2022;12(4):346.
54. Mohebbi M, Atabaki M, Tavakkol-Afshari J, Shariati-Sarabi Z, Poursamimi J, Mohajeri SA, et al. Significant effect of crocin on the gene expression of microRNA-21 and microRNA-155 in patients with osteoarthritis. Iranian J Allergy Asthma Immunol. 2022.
55. Borgonio Cuadra VM, González-Huerta NC, Romero-Cordoba S, Hidalgo-Miranda A, Miranda-Duarte A. Altered expression of circulating microRNA in plasma of patients with primary osteoarthritis and in silico analysis of their pathways. PloS one. 2014;9(6):e97690.
56. Soheilifar MH, Vaseghi H, Seif F, Ariana M, Ghorbanifar S, Habibi N, et al. Concomitant overexpression of mir‐182‐5p and mir‐182‐3p raises the possibility of IL‐17–producing Treg formation in breast cancer by targeting CD3d, ITK, FOXO1, and NFATs: A meta‐analysis and experimental study. Cancer Sci. 2021;112(2):589-603.
57. Evangelatos G, Fragoulis GE, Koulouri V, Lambrou GI. MicroRNAs in rheumatoid arthritis: From pathogenesis to clinical impact. Autoimmun Rev. 2019;18(11):102391.
58. Liu X, He F, Pang R, Zhao D, Qiu W, Shan K, et al. Interleukin-17 (IL-17)-induced microRNA 873 (miR-873) contributes to the pathogenesis of experimental autoimmune encephalomyelitis by targeting A20 ubiquitin-editing enzyme. J Biol Chemistry. 2014;289(42):28971-86.
59. Long X, Yao X, Jiang Q, Yang Y, He X, Tian W, et al. Astrocyte-derived exosomes enriched with miR-873a-5p inhibit neuroinflammation via microglia phenotype modulation after traumatic brain injury. J Neuroinflamm. 2020;17:1-15.
60. Wu J, Yu X, Xue K, Wu J, Wang R, Xie X, et al. The Inhibition of miR-873 Provides Therapeutic Benefit in a Lipopolysaccharide-Induced Neuroinflammatory Model of Parkinson's Disease. Oxid Med Cell Longevity. 2020;2020.
61. Mokhlis HA, Kahraman N, Baydogan S, Abdel-Aziz A-AH, Ashour A, Ivan C, et al. MiR-873 is the master regulator of autophagy genes through a novel negative feedback mechanism mediated by Elongation factor 2 kinase (eEF-2K) and suppresses tumor growth and progression of triple negative breast cancer. Cancer Res. 2019;79(13_Supplement):4262.
Files
IssueVol 23 No 5 (2024) QRcode
SectionOriginal Article(s)
DOI https://doi.org/10.18502/ijaai.v23i5.16748
Keywords
Curcumin Forkhead box protein o1 Forkhead box protein p3 MicroRNA-873, human Osteoarthritis Transforming growth factor beta

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
1.
Noori E, Atabaki M, Dehnavi S, Tavakol Afshari J, Mohammadi M. The Immunomodulatory Effects of Curcumin on Forkhead Box O1 and MicroRNA-873 in Patients with Osteoarthritis. Iran J Allergy Asthma Immunol. 2024;23(5):526-535.