Original Article
 

Curcumin and Its Semisynthetic Derivative F-Curcumin Ameliorate the Expression of Cytokines in Autoimmune Encephalomyelitis Mouse Models of Multiple Sclerosis

Abstract

Multiple sclerosis (MS) is an inflammatory disorder impacting the central nervous system, with cytokines significantly influencing its pathogenesis. This study investigates the effect of curcumin and its semisynthetic derivative F-curcumin on cytokine gene expression in autoimmune encephalomyelitis (EAE) mouse models of MS.
We assessed the expression levels of specific cytokines including interleukin (IL)-1β, IL-4, IL-10, IL-17, interferon-γ (IFN-γ), and transforming growth factor-β (TGF-β), alongside key transcription factors for helper T cells (T-bet, GATA-3, RORγt, and FoxP3) in both the spinal cord and spleen.
Treatment with curcumin and F-curcumin significantly ameliorated the severity and onset of EAE. Notably, mice administered with either compound showed a substantial decrease in the expression of genes encoding IL-1 (2 folds), IFN-γ (2 and 4 folds), and IL-17 (2.5 and 3.5 folds), alongside a marked increase in TGF-β (7 folds) and IL-10 (4 and 6 folds) levels. Additionally, the gene expression of T cell-derived transcription factors nearly mirrored the changes observed in pro-inflammatory and anti-inflammatory cytokines across the groups. The F-curcumin-treated group exhibited more pronounced results.
In conclusion, curcumin and F-curcumin significantly modulate cytokine gene expression during EAE induction, potentially alleviating inflammation in MS, with F-curcumin showing a more substantial effect.

1. Burrows DJ, McGown A, Jain SA, De Felice M, Ramesh TM, Sharrack B, et al. Animal models of multiple sclerosis: From rodents to zebrafish. Mult Scler. 2019;25(3):306-24.
2. Goldenberg MM. Multiple sclerosis review. P & T : a peer-reviewed journal for formulary management. 2012;37(3):175-84.
3. Bettelli E, Nicholson LB. The role of cytokines in experimental autoimmune encephalomyelitis. Arch Immunol Ther Exp (Warsz). 2000;48(5):389-98.
4. Constantinescu CS, Farooqi N, O'Brien K, Gran B. Experimental autoimmune encephalomyelitis (EAE) as a model for multiple sclerosis (MS). British J pharmacol. 2011;164(4):1079-106.
5. Wu GF, Alvarez E. The immunopathophysiology of multiple sclerosis. Neurol Clin. 2011;29(2):257-78.
6. Huang W-X, Huang P, Link H, Hillert J. Cytokine analysis in multiple sclerosis by competitive RT-PCR: a decreased expression of IL-10 and an increased expression of TNF-α in chronic progression. Mult Scler J. 1999;5(5):342-8.
7. van Boxel-Dezaire AH, Hoff SC, van Oosten BW, Verweij CL, Dräger AM, Adèr HJ, et al. Decreased interleukin-10 and increased interleukin-12p40 mRNA are associated with disease activity and characterize different disease stages in multiple sclerosis. Annals Neurolo. 1999;45(6):695-703.
8. Soleimani M, Jameie SB, Barati M, Mehdizadeh M, Kerdari M. Effects of coenzyme Q10 on the ratio of TH1/TH2 in experimental autoimmune encephalomyelitis model of multiple sclerosis in C57BL/6. Iran Biomed J. 2014;18(4):203-11.
9. Rostami A, Ciric B. Role of Th17 cells in the pathogenesis of CNS inflammatory demyelination. J Neurol Sci. 2013;333(1-2):76-87.
10. Sen MK, Almuslehi MSM, Shortland PJ, Coorssen JR, Mahns DA. Revisiting the Pathoetiology of Multiple Sclerosis: Has the Tail Been Wagging the Mouse? Front Immunol. 2020;11:572186.
11. McGeachy MJ, Stephens LA, Anderton SM. Natural recovery and protection from autoimmune encephalomyelitis: contribution of CD4+ CD25+ regulatory cells within the central nervous system. J Immunol. 2005;175(5):3025-32.
12. Hou H, Sun Y, Miao J, Gao M, Guo L, Song X. Ponesimod modulates the Th1/Th17/Treg cell balance and ameliorates disease in experimental autoimmune encephalomyelitis. J Neuroimmunol. 2021;356:577583.
13. Iarlori C, Gambi D, Lugaresi A, Patruno A, Felaco M, Salvatore M, et al. Reduction of free radicals in multiple sclerosis: effect of glatiramer acetate (Copaxone). Mult Scler. 2008;14(6):739-48.
14. Lee DH, Gold R, Linker RA. Mechanisms of oxidative damage in multiple sclerosis and neurodegenerative diseases: therapeutic modulation via fumaric acid esters. Int J Mol Sci. 2012;13(9):11783-803.
15. Aggarwal BB, Harikumar KB. Potential therapeutic effects of curcumin, the anti-inflammatory agent, against neurodegenerative, cardiovascular, pulmonary, metabolic, autoimmune and neoplastic diseases. Int J Biochem Cell Biol. 2009;41(1):40-59.
16. Kuptniratsaikul S, Promsang T, Kongrukgreatiyos K. The chula knot: a new sliding locking knot with a special property. Arthrosc Tech. 2014;3(4):e465-7.
17. Allegri P, Mastromarino A, Neri P. Management of chronic anterior uveitis relapses: efficacy of oral phospholipidic curcumin treatment. Long-term follow-up. Clin Ophthalmol (Auckland, NZ). 2010;4:1201-6.
18. Gupta SC, Patchva S, Aggarwal BB. Therapeutic roles of curcumin: lessons learned from clinical trials. The AAPS J. 2013;15(1):195-218.
19. Anand P, Kunnumakkara AB, Newman RA, Aggarwal BB. Bioavailability of curcumin: problems and promises. Mol Pharmaceutics. 2007;4(6):807-18.
20. Nelson KM, Dahlin JL, Bisson J, Graham J, Pauli GF, Walters MA. The essential medicinal chemistry of curcumin: miniperspective. J Med Chemistry. 2017;60(5):1620-37.
21. Zeraati M, Enayati M, Kafami L, Shahidi SH, Salari AA. Gut microbiota depletion from early adolescence alters adult immunological and neurobehavioral responses in a mouse model of multiple sclerosis. Neuropharmacol. 2019;157:107685.
22. Natarajan C, Bright JJ. Curcumin inhibits experimental allergic encephalomyelitis by blocking IL-12 signaling through Janus kinase-STAT pathway in T lymphocytes. J Immunol. 2002;168(12):6506-13.
23. Esmaeelzadeh M, Salehi P, Bararjanian M, Gharaghani S. Synthesis of new triazole tethered derivatives of curcumin and their antibacterial and antifungal properties. Journal of the Iranian Chemical Society. 2019;16(3):465-77.
24. Krishnaraju A, Sundararaju D, Sengupta K, Venkateswarlu S, Trimurtulu G. Safety and toxicological evaluation of demethylatedcurcuminoids; a novel standardized curcumin product. Toxicol Mechanisms Methods. 2009;19(6-7):447-60.
25. Dadhaniya P, Patel C, Muchhara J, Bhadja N, Mathuria N, Vachhani K, et al. Safety assessment of a solid lipid curcumin particle preparation: acute and subchronic toxicity studies. Food Chem Toxicol. 2011;49(8):1834-42.
26. Jantawong C, Priprem A, Intuyod K, Pairojkul C, Pinlaor P, Waraasawapati S, et al. Curcumin-loaded nanocomplexes: Acute and chronic toxicity studies in mice and hamsters. Toxicol Reports. 2021;8:1346-57.
27. Fu Y-S, Chen T-H, Weng L, Huang L, Lai D, Weng C-F. Pharmacological properties and underlying mechanisms of curcumin and prospects in medicinal potential. Biomed Pharm. 2021;141:111888.
28. Khaligh P, Salehi P, Bararjanian M, Aliahmadi A, Khavasi HR, Nejad-Ebrahimi S. Synthesis and in vitro antibacterial evaluation of novel 4-substituted 1-menthyl-1, 2, 3-triazoles. Chem Pharma Bull. 2016;64(11):1589-96.
29. Duan Y-C, Ma Y-C, Zhang E, Shi X-J, Wang M-M, Ye X-W, et al. Design and synthesis of novel 1, 2, 3-triazole-dithiocarbamate hybrids as potential anticancer agents. Europ J Med Chem. 2013;62:11-9.
30. Fu Y, Zheng S, Lin J, Ryerse J, Chen A. Curcumin protects the rat liver from CCl4-caused injury and fibrogenesis by attenuating oxidative stress and suppressing inflammation. Mol Pharmacol. 2008;73(2):399-409.
31. Motterlini R, Foresti R, Bassi R, Green CJ. Curcumin, an antioxidant and anti-inflammatory agent, induces heme oxygenase-1 and protects endothelial cells against oxidative stress. Free Radical Biol Med. 2000;28(8):1303-12.
32. Groom MJ, Lincoln NB, Francis VM, Stephan TF. Assessing mood in patients with multiple sclerosis. Clin Rehabilitation. 2003;17(8):847-57.
33. Haas J, Hug A, Viehöver A, Fritzsching B, Falk CS, Filser A, et al. Reduced suppressive effect of CD4+ CD25high regulatory T cells on the T cell immune response against myelin oligodendrocyte glycoprotein in patients with multiple sclerosis. Europ J immunol. 2005;35(11):3343-52.
34. Gaupp S, Cannella B, Raine CS. Amelioration of experimental autoimmune encephalomyelitis in IL-4Ralpha-/- mice implicates compensatory up-regulation of Th2-type cytokines. Am J Pathol. 2008;173(1):119-29.
35. Zhou Y, Zhang Y, Han J, Yang M, Zhu J, Jin T. Transitional B cells involved in autoimmunity and their impact on neuroimmunological diseases. J Translat Med. 2020;18(1):1-12.
36. Lewis SM, Williams A, Eisenbarth SC. Structure and function of the immune system in the spleen. Sci Immunol. 2019;4(33).
37. MARTÍN‐ARAGÓN S, Benedí JM, Villar AM. Modifications on antioxidant capacity and lipid peroxidation in mice under fraxetin treatment. J Pharmecy Pharmacol. 1997;49(1):49-52.
38. Li W, Suwanwela NC, Patumraj S. Curcumin by down-regulating NF-kB and elevating Nrf2, reduces brain edema and neurological dysfunction after cerebral I/R. Microvascular Res. 2016;106:117-27.
39. Bright JJ. Curcumin and autoimmune disease. Adv Exp Med Biol. 2007:425-51.
40. Momtazi-Borojeni AA, Haftcheshmeh SM, Esmaeili S-A, Johnston TP, Abdollahi E, Sahebkar A. Curcumin: A natural modulator of immune cells in systemic lupus erythematosus. Autoimmunity Rev. 2018;17(2):125-35.
41. Xie L, Li X-K, Funeshima-Fuji N, Kimura H, Matsumoto Y, Isaka Y, et al. Amelioration of experimental autoimmune encephalomyelitis by curcumin treatment through inhibition of IL-17 production. Int Immunopharmacol. 2009;9(5):575-81.
42. Waisman A, Hauptmann J, Regen T. The role of IL-17 in CNS diseases. Acta neuropathologica. 2015;129(5):625-37.
43. Harris TJ, Grosso JF, Yen H-R, Xin H, Kortylewski M, Albesiano E, et al. Cutting edge: An in vivo requirement for STAT3 signaling in TH17 development and TH17-dependent autoimmunity. J Immunol. 2007;179(7):4313-7.
44. Ifergan I, Kebir H, Bernard M, Wosik K, Dodelet-Devillers A, Cayrol R, et al. The blood–brain barrier induces differentiation of migrating monocytes into Th17-polarizing dendritic cells. Brain. 2008;131(3):785-99.
45. Xie L, Li X-K, Takahara S. Curcumin has bright prospects for the treatment of multiple sclerosis. Int Immunopharmacol. 2011;11(3):323-30.
46. Gocke AR, Cravens PD, Ben L-H, Hussain RZ, Northrop SC, Racke MK, et al. T-bet regulates the fate of Th1 and Th17 lymphocytes in autoimmunity. J Immunol. 2007;178(3):1341-8.
47. Kanakasabai S, Casalini E, Walline CC, Mo C, Chearwae W, Bright JJ. Differential regulation of CD4+ T helper cell responses by curcumin in experimental autoimmune encephalomyelitis. J Nutr Biochem. 2012;23(11):1498-507.
48. Scazzone C, Agnello L, Lo Sasso B, Salemi G, Gambino CM, Ragonese P, et al. Foxp3 and gata3 polymorphisms, vitamin d3 and multiple sclerosis. Brain Sci. 2021;11(4):415.
49. Fernando V, Omura S, Sato F, Kawai E, Martinez NE, Elliott SF, et al. Regulation of an autoimmune model for multiple sclerosis in Th2-biased GATA3 transgenic mice. Int J Mol Sci. 2014;15(2):1700-18.
50. Tabares-Guevara JH, Jaramillo JC, Ospina-Quintero L, Piedrahíta-Ochoa CA, García-Valencia N, Bautista-Erazo DE, et al. IL-10-Dependent Amelioration of Chronic Inflammatory Disease by Microdose Subcutaneous Delivery of a Prototypic Immunoregulatory Small Molecule. Front Immunol. 2021;12.
Files
IssueVol 22 No 6 (2023) QRcode
SectionOriginal Article(s)
DOI https://doi.org/10.18502/ijaai.v22i6.14646
Keywords
Autoimmune encephalomyelitis Curcumin; Inflammation Multiple sclerosis

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
1.
Khosropour S, Shahvarooghi E, Rezaeizadeh H, Esmaeelzadeh M. Curcumin and Its Semisynthetic Derivative F-Curcumin Ameliorate the Expression of Cytokines in Autoimmune Encephalomyelitis Mouse Models of Multiple Sclerosis. Iran J Allergy Asthma Immunol. 2023;22(6):575-587.