Immunomodulatory Effect of Chymotrypsin in CNS Is Sex-independent: Evidence of Anti-inflammatory Role for IL-17 in EAE
Abstract
Multiple sclerosis (MS) and its animal model, experimental autoimmune encephalomyelitis (EAE), are inflammatory autoimmune diseases of the central nervous system. Chymotrypsin is a serine protease with immunomodulatory effect in the peripheral organs. We previously demonstrated the immunomodulatory effect of chymotrypsin in ameliorating the EAE in female Lewis rats. However, there are sex-based differences in the immune system, drug activity, and CNS structure and composition. In addition, female gender is a better prognostic indicator of MS and males are more severely affected by EAE than females. Consequently, gender may have an important impact on therapeutic effect. Therefore, in this study we investigated the anti-inflammatory effect of chymotrypsin in male Lewis rat model of EAE. The disease was induced in male Lewis rats and the animals were evaluated for weight loss and clinical signs for 14 days. Intra-CSF injection of chymotrypsin was done on day 7 and expression of mRNA for IFN-γ, IL-4, IL-17, and FoxP3 in brain, spinal cord and deep cervical lymph node were determined using a two-step real-time PCR. Administration of 0.2mg/ml chymotrypsin ameliorated the disease by decreasing IFN-γ and increasing expression of IL-4 and IL-17 at the inflammatory foci. This is consistent with anti-inflammatory effect of IL-4 and IL-17 at high concentrations. We conclude that Immunomodulatory affect of chymotrypsin in CNS is sex-independent. Our result also provides more evidence on the anti-inflammatory role of IL-17. However more research is needed to elucidate the underlying immunomodulatory role of chymotrypsin and how to increase its beneficial effect by modification of dosage and/or regimen of administration.
1. Hartley MD, Altowaijri G, Bourdette D. Remyelination and multiple sclerosis: therapeutic approaches and challenges. Curr Neurol Neurosci Rep 2014; 14(10):485.
2. Becher B, Durell BG, Noelle RJ. Experimental autoimmune encephalitis and inflammation in the absence of interleukin-12. J Clin Invest 2002; 110(4):493-7.
3. Ferber IA, Brocke S, Taylor-Edwards C, Ridgway W, Dinisco C, Steinman L, et al. Mice with a disrupted IFN- gamma gene are susceptible to the induction of experimental autoimmune encephalomyelitis (EAE). J Immunol 1996; 156(1):5-7.
4. Aranami T, Yamamura T. Th17 cells and autoimmune encephalomyelitis (EAE/MS). Allergol Int 2008;57(2):115-20.
5. Chen Y, Langrish CL, McKenzie B, Joyce-Shaikh B, Stumhofer JS, McClanahan T, et al. Anti-IL-23 therapy inhibits multiple inflammatory patheways and ameliorates autoimmune encephalomyelitis. J Clin Invest 2006;116(5):1317-26.
6. Hartung HP, Kieseier BC, Hemmer B. Purely systemically active anti-inflammatory treatments are adequate to control multiple sclerosis. J Neurol 2005; 252 Suppl 5:v30-7.
7. Hofstetter H, Gold R, Hartung HP. Th17 Cells in MS and Experimental Autoimmune Encephalomyelitis. Int MS J 2009; 16(1):12-8.
8. Touil T, Fitzgerald D, Zhang GX, Rostami AM, Gran B.Pathophysiology of interleukin-23 in experimental autoimmune encephalomyelitis. Drug News Perspect 2006; 19(2):77-83.
9. Ke Y, Liu K, Huang GQ, Cui Y, Kaplan HJ, Shao H, et al. Anti-inflammatory role of IL-17 in experimental autoimmune uveitis. J Immunol 2009; 182(5):3183-90.
10. Stromnes IM, Cerretti LM, Liggitt D, Harris RA, Goverman JM. Differential regulation of central nervous system autoimmunity by T(H)1 and T(H)17 cells. Nat Med 2008; 14(3):337-42.
11. Bitan M, Weiss L, Reibstein I, Zeira M, Fellig Y, Slavin S, et al. Heparanase upregulates Th2 cytokines, ameliorating experimental autoimmune encephalitis. Mol Immunol 2010; 47(10):1890-8.
12. Blaber SI, Ciric B, Christophi GP, Bernett MJ, Blaber M, Rodriguez M, et al. Targeting kallikrein 6 proteolysis attenuates CNS inflammatory. FASEB J 2004; 18(7):920-2.
13. Müller AM, Jun E, Conlon H, Sadiq SA. Inhibition of SLPI ameliorates disease activity in experimental autoimmune encephalomyelitis. BMC Neurosci 2012;13:30.
14. Nelissen S, Vangansewinkel T, Geurts N, Geboes L, Lemmens E, Vidal PM, et al. Mast cells protect from post-traumatic spinal cord damage in mice by degrading inflammation-associated cytokines via mouse mast cell protease 4. Neurobiol Dis 2014; 62:260-72.
15. Safavi F, Rostami A. Role of serine proteases in inflammation: Bowman-Birk protease inhibitor (BBI) as a potential therapy for autoimmune diseases. Exp Mol Pathol 2012; 93(3):428-33.
16. Frenkel K, Chrzan K, Ryan CA, Wiesner R, Troll W.Chymotrypsin-specific protease inhibitors decrease H2O2 formation by activated human polymorphonuclear leukocytes. Carcinogenesis 1987; 8(9):1207-12.
17. Jutila MA, Kishimoto TK, Finken M. Low-dose chymotrypsin treatment inhibits neutrophil migration into sites of inflammation in vivo: effects on Mac-1 and MEL-14 adhesion protein expression and function. Cell Immunol 1991; 132(1):201-14.
18. Sarkar N, Foskick LS. Mode of action of chymotrypsin on pleural inflammation. J Pharmacol Exp Ther 1964;146:258-64.
19. Pham CT. Neutrophil serine proteases fine-tune the inflammatory response. Int J Biochem Cell Biol 2008;40(6-7):1317-33.
20. Viswanatha Swamy AH, Patil PA. Effect of some clinically used proteolytic enzymes on inflammation in rats. Indian J Pharm Sci 2008; 70(1):114-7.
21. Kitano H, Saito T, Kanayama N. Substrate monolayers as electrochemical sensing elements for α-Chymotrypsin. J Colloid Interface Sci 2002; 250(1):134-41.
22. Kostetskii PV. The volume and structure of the Chymotrypsin active site. Biofizika 2005; 50(6):993-7.
23. Martin GJ, Brendal R, Beiler JM. Absorption of enzymes from the intestinal tract. Am J Pharmacol 1957;129(6):194-7.
24. Ghaffarinia A, Jalili C, Riazi-Rad F, Mostafaie A, Parvaneh S, Pakravan N. Anti-inflammatory effect of chymotrypsin to autoimmune response against CNS is dose-dependent. Cell Immunol 2014; 292(1-2):102-8.
25. Soldin OP, Chung SH, Mattison DR. Sex differences in drug disposition. J Biomed Biotechnol 2011;2011:187103.
26. Donovan MD. Sex and racial differences in pharmacological response: effect of route of administration and drug delivery system on pharmacokinetics. J Womens Health (Larchmt) 2005;14(1):30-7.
27. Ruigrok AN, Salimi-Khorshidi G, Lai MC, Baron-Cohen S, Lombardo MV, Tait RJ, et al. Meta-analysis of sex differences in human brain structure. Neurosci Biobehav Rev 2014; 39:34-50.
28. Allen JS, Damasio H, Grabowski TJ, Bruss J, Zhang W.Sexual dimorphism and asymmetries in the gray-white composition of the human cerebrum. Neuroimage 2003;18(4):880-94.
29. Bayless DW, Daniel JM. Sex differences in myelin- associated protein levels within and density of projections between the orbital frontal cortex and dorsal striatum of adult rats: implications for inhibitory control. Neuroscience 2015; 300:286-96.
30. Yang S, Li C, Zhang W, Wang W, Tang Y. Sex differences in the white matter and myelinated nerve fibers of Long-Evans rats. Brain Res 2008; 1216:16-23.
31. Ghaffarinia A, Jalili C, Parvaneh S, Mir-Aghaee S, Pakravan N. Damage of urinary/respiratory system and survival rate is affected by gender in EAE model of Lewis rat. Acta Scientiae Veterinariae 2015; 43:1269-1277.
32. Papenfuss TL, Rogers CJ, Gienapp I, Yurrita M, McClain M, Damico N, et al. Sex differences in experimental autoimmune encephalomyelitis in multiple murine strains. J Neuroimmunol 2004; 150(1-2):59-69.
33. Tremlett H, Zhao Y, Rieckmann P, Hutchinson M. New perspectives in the natural history of multiple sclerosis. Neurology 2010; 74(24):2004-15.
34. Dunn SE, Lee H, Pavri FR, Zhang MA. Sex-Based Differences in Multiple Sclerosis (Part I): Biology of Disease Incidence. Curr Top Behav Neurosci 2015;26:29-56.
35. Dunn SE, Gunde E, Lee H. Sex-Based Differences in Multiple Sclerosis (MS): Part II: Rising Incidence of Multiple Sclerosis in Women and the Vulnerability of Men to Progression of this Disease. Curr Top Behav Neurosci 2015; 26:57-86.
36. Buc M. Role of regulatory T cells in pathogenesis and biological therapy of multiple sclerosis. Mediators Inflamm 2013; 2013:963748.
37. Goldmann J, Kwidzinski E, Brandt C, Mahlo J, Richter D, Bechmann I. T cells traffic from brain to cervical lymph nodes via the cribroid plate and the nasal mucosa. J Leukoc Biol 2006; 80(4):797-801.
38. Sospedra M, Martin R. Immunology of multiple sclerosis.Ann Rev Immunol 2005; 23:683–747.
39. Ciccone A, Beretta S, Brusaferri F, Galea I, Protti A, Spreafico C. Corticosteroids for the long-term treatment in multiple sclerosis. Cochrane Database Syst Rev 2008;23(1):CD006264.
40. Frequin STFM, Barkhof F, Lamers KJB, Hommes OR.The effects of high-dose methylprednisolone on gadolinium-enhanced magnetic resonance imaging and cerebrospinal luidmeasurements inmultiple sclerosis. J Neuroimmunol 1992; 40(2-3):265–72.
41. Sloka JS, Stefanelli M. The mechanism of action of methylprednisolone in the treatment of multiple sclerosis. Mult Scler 2005; 11(4):425-32.
42. Then Bergh F, Kümpfel T, Schumann E, Held U, Schwan M, Blazevic M, et al. Monthly intravenous methylprednisolone in relapsing-remitting multiple sclerosis - reduction of enhancing lesions, T2 lesion volume and plasma prolactin concentrations. BMC Neurol 2006; 23:6-19.
43. Barnes PJ. Anti-inlammatory actions of glucocorticoids:molecular mechanisms. Clin Sci 1998; 94(6):557–72.
44. Alonso A, Jick SS, Hernán MA. Allergy, histamine 1 receptor blockers, and the risk of multiple sclerosis. Neurology 2006; 66(4):572-5.
45. Emerson MR, Orentas DM, Lynch SG, LeVine SM.Activation of histamine H2 receptors ameliorates experimental allergic encephalomyelitis. Neuroreport 2002; 13(11):1407-10.
46. Lapilla M, Gallo B, Martinello M, Procaccini C, Costanza M, Musio S, et al. Histamine regulates autoreactive T cell activation and adhesiveness in inflamed brain microcirculation. J Leukoc Biol 2011; 89(2):259-67.
47. Logothetis L, Mylonas IA, Baloyannis S, Pashalidou M, Orologas A, Zafeiropoulos A, et al. A pilot, open label, clinical trial using hydroxyzine in multiple sclerosis. Int J Immunopathol Pharmacol 2005; 18(4):771-8.
48. Passani MB, Ballerini C. Histamine and neuroinflammation: insights from murine experimental autoimmune encephalomyelitis. Front Syst Neurosci 2012; 6:32.
49. Vollmer T, Stewart T, Baxter N. Mitoxantrone and cytotoxic drugs' mechanisms of action. Neurol 2010; (74Suppl 1):S41-6.
50. Kay M, Hojati Z, Dehghanian F. The molecular study of IFNβ pleiotropic roles in MS treatment. Iran J Neurol 2013; 12(4):149-56.
51. Minagar A. Current and future therapies for multiple sclerosis. Scientifica (Cairo) 2013; 2013:249101.
52. Ruggieri M, Avolio C, Livrea P, Trojano M. Glatiramer acetate in multiple sclerosis: a review. CNS Drug Rev 2007; 13(2):178-91.
53. Preiningerova J. Oral laquinimod therapy in relapsing multiple sclerosis. Expert Opin Investig Drug 2009; 18(7):985-9.
54. Spence RD, Voskuhl RR. Neuroprotective effects of estrogens and androgens in CNS inflammation and neurodegeneration. Front Neuroendocrinol 2012;33(1):105-15.
55. Pham CT. Neutrophil serine proteases: specific regulators of inflammation. Nat Rev Immunol 2006; 6(7):541-50.
56. Hemsley KM, Beard H, King BM, Hopwood JJ. Effect of high dose, repeated intra-CSF injection of sulphamidase on neuropathology in MPS IIIA mice. Genes Brain Behav 2008; 7(7):740–53.
57. Mix E, Meyer-Rienecker H, Hartung HP, Zettl UK.Animal models of multiple sclerosis-potentials and limitations. Prog Neurobiol 2010; 92(3):386-404.
58. Constantinescu CS, Farooqi N, O'Brien K, Gran B.Experimental autoimmune encephalomyelitis (EAE) as a model for multiple sclerosis (MS). Br J Pharmacol 2011;164(4):1079-106.
59. Krakowski M. Owens T. Interferon-gamma confers resistance to experimental allergic encephalomyelitis. Eur J Immunol 1996; 26(7):1641-6.
60. Cooney LA, Fox DA. Regulation of Th17 maturation by interleukin 4. Crit Rev Immunol 2013; 33(5):379-87.
61. Cooney LA, Towery K, Endres J, Fox DA. Sensitivity and resistance to regulation by IL-4 during Th17 maturation. J Immunol 2011; 187(9):4440-50.
62. Sarkar S, Cooney LA, White P, Dunlop DB, Endres J,Jorns JM, et al. Regulation of pathogenic IL-17 responses in collagen-induced arthritis: roles of endogenous interferon-gamma and IL-4. Arthritis Res Ther 2009;11(5):R158.
63. Annunziato F, Cosmi L, Santarlasci V, Maggi L, Liotta F, Mazzinghi B, et al. Phenotypic and functional features of human Th17 cells. J Exp Med 2007; 204(8):1849-61.
64. Boniface K, Blumenschein WM, Brovont-Porth K,
McGeachy MJ, Basham B, Desai B, et al. Human Th17 cells comprise heterogeneous subsets including IFN- gamma-producing cells with distinct properties from the Th1 lineage. J Immunol 2010; 185(1):679-87.
65. Raymond M, Van VQ, Wakahara K, Rubio M, Sarfati M.Lung dendritic cells induce T(H)17 cells that produce T(H)2 cytokines, express GATA-3, and promote airway inflammation. J Allergy Clin Immunol 2011; 128(1):192-201.
66. Lajtha A, Banik NL. Role of Proteases in the Pathophysiology of Neurodegenerative Diseases. Amsterdam:Kluwer Academic Publishers, 2002; 5-24.
67. Katsara M, Yuriev E, Ramsland PA, Tselios T, Deraos G, Lourbopoulos A, et al. Altered peptide ligands of myelin basic protein (MBP87_99) conjugated to reduced mannan modulate immune responses in mice. Immunology 2009; 128(4):521-33.
68. Lees MB and Brostoff SW. Proteins of myelin, in: Myelin. P. Morell, ed., New York: Plenum, 1984: 197-224.
Files | ||
Issue | Vol 15, No 2 (2016) | |
Section | Original Article(s) | |
Keywords | ||
Anti-inflammatory Chymotrypsin CNS Experimental autoimmune encephalomyelitis Immunomodulation Interleukin-17 Male |
Rights and permissions | |
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. |