A Review of Aspirin-exacerbated Respiratory Diseases and Immunological Efficacy of Aspirin Desensitization
Abstract
Aspirin-exacerbated respiratory disease (AERD) is a chronic inflammatory disease. It is defined by asthma, chronic rhinosinusitis with nasal polyposis, and a hypersensitivity reaction to aspirin or nonsteroidal anti-inflammatory drugs. Aspirin desensitization (AD) has been confirmed as an effective treatment to control AERD inflammation through the modulation of immune responses. We aimed to review AERD with an overview of the epidemiology, pathophysiology, and treatment. We also discussed the effect of AD on immunological markers involved in AERD pathogenesis. A search of electronic databases on AERD was performed. We included five randomized clinical trials (RCTs) on AD. We also searched databases for recent studies that investigated the effect of AD on the immunological mechanisms of AERD. RCTs have demonstrated the therapeutic effectiveness of AD on the patients’ quality of life, asthma symptom score, inhaled and oral steroid use, forced expiratory volume in 1 sec (FEV1), and inflammatory mediators. The clinical benefits of AD can occur though the regulation of innate and adaptive immune responses that are involved in the pathogenesis of AERD. In addition to the valuable effects of AD in RCTs, some side effects such as gastrointestinal bleeding, asthma exacerbation, or rash have been reported that should be considered for reaching an optimal protocol for AD.
2. Li KL, Lee AY. Aspirin Exacerbated Respiratory Disease: Epidemiology, Pathophysiology, and Management. Med Sci (Basel).2019;7(3):45.
3. Rajan JP, Wineinger NE, Stevenson DD, White AA. Prevalence of aspirin-exacerbated respiratory disease among asthmatic patients: A meta-analysis of the literature. J Allergy Clin Immunol. 2015;135(3):676-81.e1.
4. White AA. An update on the epidemiology of aspirin-exacerbated respiratory disease. Am J Rhinol Allergy. 2017;31(5):299-301.
5. Dominas C, Gadkaree S. Aspirin-exacerbated respiratory disease: A review. Laryngoscope Investig Otolaryngol. 2020;5(3):360-7.
6. Peters-Golden M, Gleason MM, Togias A. Cysteinyl leukotrienes: multi-functional mediators in allergic rhinitis. Clin Exp Allergy. 2006; 36(6):689-703.
7. Singh RK, Tandon R, Dastidar SG, Ray A. A review on leukotrienes and their receptors with reference to asthma. J Asthma. 2013;50(9):922-31.
8. Laidlaw TM, Boyce JA. Aspirin-Exacerbated Respiratory Disease--New Prime Suspects. N Engl J Med. 2016;374(5):484-8.
9. Rusznak M, Peebles RS, Jr. Prostaglandin E2 in NSAID-exacerbated respiratory disease: protection against cysteinyl leukotrienes and group 2 innate lymphoid cells. Curr Opin Allergy Clin Immunol. 2019;19(1):38-45.
10. Simmons DL, Botting RM, Hla T. Cyclooxygenase isozymes: the biology of prostaglandin synthesis and inhibition. Pharmacol Rev. 2004;56(3):387-437.
11. S Schmidt LM, Belvisi MG, Bode KA, Bauer J, Schmidt C, Suchy MT, Tsikas D, Scheuerer J, Lasitschka F, Gröne HJ, Dalpke AH. Bronchial epithelial cell-derived prostaglandin E2 dampens the reactivity of dendritic cells. J Immunol. 2011;186(4):2095-105.
12. Jarvinen L, Badri L, Wettlaufer S, Ohtsuka T, Standiford TJ, Toews GB, Pinsky DJ, Peters-Golden M, Lama VN. Lung resident mesenchymal stem cells isolated from human lung allografts inhibit T cell proliferation via a soluble mediator. J Immunol. 2008;181(6):4389-96.
13. Sastre B, del Pozo V. Role of PGE2 in asthma and nonasthmatic eosinophilic bronchitis. Mediators Inflamm. 2012;2012:645383.
14. Sturm EM, Schratl P, Schuligoi R, Konya V, Sturm GJ, Lippe IT, et al. Prostaglandin E2 inhibits eosinophil trafficking through E-prostanoid 2 receptors. J Immunol. 2008;181(8):7273-83.
15. Säfholm J, Manson ML, Bood J, Delin I, Orre AC, Bergman P, et al. Prostaglandin E2 inhibits mast cell-dependent bronchoconstriction in human small airways through the E prostanoid subtype 2 receptor. J Allergy Clin Immunol. 2015;136(10):1232-9.e1.
16. Uematsu S, Matsumoto M, Takeda K, Akira S. Lipopolysaccharide-dependent prostaglandin E(2) production is regulated by the glutathione-dependent prostaglandin E(2) synthase gene induced by the Toll-like receptor 4/MyD88/NF-IL6 pathway. J Immunol. 2002;168(11):5811-6.
17. Roca-Ferrer J, Garcia-Garcia FJ, Pereda J, Perez-Gonzalez M, Pujols L, Alobid I, et al. Reduced expression of COXs and production of prostaglandin E(2) in patients with nasal polyps with or without aspirin-intolerant asthma. J Allergy Clin Immunol. 2011;128(1):66-72.e1.
18. Pérez-Novo CA, Watelet JB, Claeys C, Van Cauwenberge P, Bachert C. Prostaglandin, leukotriene, and lipoxin balance in chronic rhinosinusitis with and without nasal polyposis. J Allergy Clin Immunol. 2005;115(6):1189-96.
19. Cahill KN, Raby BA, Zhou X, Guo F, Thibault D, Baccarelli A, et al. Impaired E Prostanoid2 Expression and Resistance to Prostaglandin E2 in Nasal Polyp Fibroblasts from Subjects with Aspirin-Exacerbated Respiratory Disease. Am J Respir Cell Mol Biol. 2016;54(1):34-40.
20. Machado-Carvalho L, Torres R, Perez-Gonzalez M, Alobid I, Mullol J, Pujols L, et al. Altered expression and signalling of EP2 receptor in nasal polyps of AERD patients: role in inflammation and remodelling. Rhinology. 2016;54(3):254-65.
21. Ying S, Meng Q, Scadding G, Parikh A, Corrigan CJ, Lee TH. Aspirin-sensitive rhinosinusitis is associated with reduced E-prostanoid 2 receptor expression on nasal mucosal inflammatory cells. Journal of Allergy and Clinical Immunology. 2006;117(2):312-8.
22. Lee JU, Chang HS, Lee HJ, Bae DJ, Son JH, Park JS, et al. Association of interleukin-25 levels with development of aspirin induced respiratory diseases. Respir Med. 2017;123:71-78.
23. Toki S, Goleniewska K, Zhang J, Zhou W. TSLP and IL-33 reciprocally promote each other's lung protein expression and ILC2 receptor expression to enhance innate type-2 airway inflammation. Allergy. 2020;75(7):1606-17.
24. Pan D, Buchheit KM, Samuchiwal SK, Liu T, Cirka H, Raff H, et al. COX-1 mediates IL-33-induced extracellular signal-regulated kinase activation in mast cells: Implications for aspirin sensitivity. J Allergy Clin Immunol. 2019;143(8):1047-1057.e8.
25. Drake LY, Kita H. IL-33: biological properties, functions, and roles in airway disease. Immunol Rev. 2017;278(3):173-84.
26. Dahlin A, Weiss ST. Genetic and Epigenetic Components of Aspirin-Exacerbated Respiratory Disease. Immunol Allergy Clin North Am. 2016;36(7):765-89.
27. Dekker JW, Nizankowska E, Schmitz-Schumann M, Pile K, Bochenek G, Dyczek A, et al. Aspirin-induced asthma and HLA-DRB1 and HLA-DPB1 genotypes. Clin Exp Allergy. 1997;27(4):574-7.
28. Esmaeilzadeh H, Nabavi M, Amirzargar AA, Aryan Z, Arshi S, Bemanian MH, et al. HLA-DRB and HLA-DQ genetic variability in patients with aspirin-exacerbated respiratory disease. Am J Rhinol Allergy. 2015;29(3):e63-9.
29. Esmaeilzadeh H, Nabavi M, Aryan Z, Amirzargar AA. Pharmacogenetic tests to predict the efficacy of aspirin desensitization in patients with aspirin-exacerbated respiratory diseases; HLA-DQB302. Expert Rev Respir Med. 2015;9(5):511-8.
30. Jerschow E, Edin ML, Chi Y, Hurst B, Abuzeid WM, Akbar NA, et al. Sinus Surgery Is Associated with a Decrease in Aspirin-Induced Reaction Severity in Patients with Aspirin Exacerbated Respiratory Disease. J Allergy Clin Immunol Pract. 2019;7(2):1580-8.
31. Mendelsohn D, Jeremic G, Wright ED, Rotenberg BW. Revision rates after endoscopic sinus surgery: a recurrence analysis. Ann Otol Rhinol Laryngol. 2011;120 (5):162-6.
32. Mastalerz L, Milewski M, Duplaga M, Nizankowska E, Szczeklik A. Intranasal fluticasone propionate for chronic eosinophilic rhinitis in patients with aspirin-induced asthma. Allergy. 1997;52(9):895-900.
33. Goppelt-Struebe M, Wolter D, Resch K. Glucocorticoids inhibit prostaglandin synthesis not only at the level of phospholipase A2 but also at the level of cyclooxygenase/PGE isomerase. Br J Pharmacol. 1989;98 (4):1287-95.
34. Vianna EO, Martin RJ. Bronchodilators and corticosteroids in the treatment of asthma. Drugs Today (Barc). 1998;34(3):203-23.
35. Dahlén SE, Malmström K, Nizankowska E, Dahlén B, Kuna P, Kowalski M, et al. Improvement of aspirin-intolerant asthma by montelukast, a leukotriene antagonist: a randomized, double-blind, placebo-controlled trial. Am J Respir Crit Care Med. 2002;165 (1):9-14.
36. Lang DM, Aronica MA, Maierson ES, Wang XF, Vasas DC, Hazen SL. Omalizumab can inhibit respiratory reaction during aspirin desensitization. Ann Allergy Asthma Immunol. 2018;121(1):98-104.
37. Hayashi H, Mitsui C, Nakatani E, Fukutomi Y, Kajiwara K, Watai K,et al. omalizumab reduces cysteinyl leukotriene and 9α,11β-prostaglandin F2 overproduction in aspirin-exacerbated respiratory disease. J Allergy Clin Immunol. 2016;137(5):1585-1587.e4.
38. Pelaia C, Paoletti G, Puggioni F, Racca F, Pelaia G, Canonica GW, et al. Interleukin-5 in the Pathophysiology of Severe Asthma. Front Physiol. 2019;10(8):1514-9.
39. Tuttle KL, Buchheit KM, Laidlaw TM, Cahill KN. A retrospective analysis of mepolizumab in subjects with aspirin-exacerbated respiratory disease. J Allergy Clin Immunol Pract. 2018; 6(3):1045-7.
40. Workman AD, Bleier BS. Biologic therapies versus surgical management for aspirin-exacerbated respiratory disease: A review of preliminary data, efficacy, and cost. World J Otorhinolaryngol Head Neck Surg. 2020;6(4):230-4.
41. Wenzel S, Castro M, Corren J, Maspero J, Wang L, Zhang B, et al. Dupilumab efficacy and safety in adults with uncontrolled persistent asthma despite use of medium-to-high-dose inhaled corticosteroids plus a long-acting β2 agonist: a randomised double-blind placebo-controlled pivotal phase 2b dose-ranging trial. Lancet. 2016;388(10039):31-44.
42. Lee JH, Jung CG, Park HS. An update on the management of aspirin-exacerbated respiratory disease. Expert Rev Respir Med. 2018;12(2):137-43.
43. Hill J, Burnett T, Katial R. Mechanisms of Benefit with Aspirin Therapy in Aspirin-Exacerbated Respiratory Disease. Immunol Allergy Clin North Am. 2016;36(4):735-47.
44. Stevenson DD, Simon RA, Mathison DA. Aspirin-sensitive asthma: tolerance to aspirin after positive oral aspirin challenges. Journal of Allergy and Clinical Immunology. 1980;66(1):82-8.
45. Stevenson DD, Pleskow WW, Simon RA, Mathison DA, Lumry WR, Schatz M, et al. Aspirin-sensitive rhinosinusitis asthma: a double-blind crossover study of treatment with aspirin. Journal of allergy and clinical immunology. 1984;73(4):500-7.
46. Fruth K, Pogorzelski B, Schmidtmann I, Springer J, Fennan N, Fraessdorf N, et al. Low-dose aspirin desensitization in individuals with aspirin-exacerbated respiratory disease. Allergy. 2013;68(5):659-65.
47. Esmaeilzadeh H, Nabavi M, Aryan Z, Arshi S, Bemanian MH, Fallahpour M, et al. Aspirin desensitization for patients with aspirin-exacerbated respiratory disease: A randomized double-blind placebo-controlled trial. Clin Immunol. 2015;160(2):349-57.
48. Berges-Gimeno MP, Simon RA, Stevenson DD. Early effects of aspirin desensitization treatment in asthmatic patients with aspirin-exacerbated respiratory disease. Ann Allergy Asthma Immunol. 2003;90(3):338-41.
49. Lee JY, Simon RA, Stevenson DD. Selection of aspirin dosages for aspirin desensitization treatment in patients with aspirin-exacerbated respiratory disease. J Allergy Clin Immunol. 2007;119(1):157-64.
50. Katial RK, Strand M, Prasertsuntarasai T, Leung R, Zheng W, Alam R. The effect of aspirin desensitization on novel biomarkers in aspirin-exacerbated respiratory diseases. J Allergy Clin Immunol. 2010;126(4):738-44.
51. Świerczyńska-Krępa M, Sanak M, Bochenek G, Stręk P, Ćmiel A, Gielicz A, et al. Aspirin desensitization in patients with aspirin-induced and aspirin-tolerant asthma: a double-blind study. J Allergy Clin Immunol. 2014;134(4):883-90.
52. Nabavi M, Arshi S, Bahrami A, Aryan Z, Bemanian MH, Esmaeilzadeh H, Jalali F, Pousti SB, Rezaei N. Increased level of interleukin-13, but not interleukin-4 and interferon-γ in chronic rhinosinusitis with nasal polyps. Allergologia et immunopathologia. 2014;42 (5):465-71.
53. Mortazavi N, Esmaeilzadeh H, Abbasinazari M, Babaie D, Alyasin S, Nabavizadeh H, et al. Clinical and Immunological Efficacy of Aspirin Desensitization in Nasal Polyp Patients with Aspirin-Exacerbated Respiratory Disease. Iran J Pharm Res. 2017;16(4):1639-47.
54. Kuruvilla ME, Vanijcharoenkarn K, Levy JM. The Role of Mast Cells in Aspirin-Exacerbated Respiratory Disease (AERD) Pathogenesis: Implications for Future Therapeutics. 2020;13:463-70.
55. Cahill KN, Bensko JC, Boyce JA, Laidlaw TM. Prostaglandin D2: a dominant mediator of aspirin-exacerbated respiratory disease. Journal of Allergy and Clinical Immunology. 2015; 135 (1):245-252.
56. Higashi N, Taniguchi M, Mita H, Yamaguchi H, Ono E, Akiyama K. Aspirin-intolerant asthma (AIA) assessment using the urinary biomarkers, leukotriene E4 (LTE4) and prostaglandin D2 (PGD2) metabolites. Allergol Int. 2012;61(3):393-403.
57. Siebenhaar F, Redegeld FA, Bischoff SC, Gibbs BF, Maurer M. Mast Cells as Drivers of Disease and Therapeutic Targets. Trends Immunol. 2018;39 (2):151-162.
58. Singh RK, Gupta S, Dastidar S, Ray A. Cysteinyl leukotrienes and their receptors: molecular and functional characteristics. Pharmacology. 2010;85(6):336-49.
59. Maekawa A, Kanaoka Y, Xing W, Austen KF. Functional recognition of a distinct receptor preferential for leukotriene E4 in mice lacking the cysteinyl leukotriene 1 and 2 receptors. Proc Natl Acad Sci U S A. 2008;105(43):16695-700.
60. Bobolea I, Del Pozo V, Sanz V, Cabañas R, Fiandor A, Alfonso-Carrillo C, Salcedo MÁ, Heredia Revuelto R, Quirce S. Aspirin desensitization in aspirin-exacerbated respiratory disease: New insights into the molecuar mechanisms. Respir Med. 2018;143(12):39-41.
61. Cahill KN, Cui J, Kothari P, Murphy K, Raby BA, Singer J, Israel E, Boyce JA, Laidlaw TM. Unique Effect of Aspirin Therapy on Biomarkers in Aspirin-exacerbated Respiratory Disease. A Prospective Trial. Am J Respir Crit Care Med. 2019;200(6):704-711.
62. Nasser SM, Patel M, Bell GS, Lee TH. The effect of aspirin desensitization on urinary leukotriene E4 concentrations in aspirin-sensitive asthma. Am J Respir Crit Care Med. 1995;151(5):1326-30.
63. Sousa AR, Parikh A, Scadding G, Corrigan CJ, Lee TH. Leukotriene-receptor expression on nasal mucosal inflammatory cells in aspirin-sensitive rhinosinusitis. N Engl J Med. 2002;347(19):1493-9.
64. Arm JP, O'Hickey SP, Spur BW, Lee TH. Airway responsiveness to histamine and leukotriene E4 in subjects with aspirin-induced asthma. Am Rev Respir Dis. 1989;140 (1):148-53.
65. Katial RK, Martucci M, Burnett T, Faino A, Finkas L, Liu S, et al. Nonsteroidal anti-inflammatory-induced inhibition of signal transducer and activator of transcription 6 (STAT-6) phosphorylation in aspirin-exacerbated respiratory disease. J Allergy Clin Immunol. 2016;138 (2):579-85.
66. Cianferoni A, Schroeder JT, Kim J, Schmidt JW, Lichtenstein LM, Georas SN, et al. Selective inhibition of interleukin-4 gene expression in human T cells by aspirin. Blood. 2001;97(6):1742-9.
67. Hirai H, Tanaka K, Yoshie O, Ogawa K, Kenmotsu K, Takamori Y, et al. Prostaglandin D2 selectively induces chemotaxis in T helper type 2 cells, eosinophils, and basophils via seven-transmembrane receptor CRTH2. J Exp Med. 2001;193(2):255-61.
68. Choi Y, Lee Y. Which Factors Associated With Activated Eosinophils Contribute to the Pathogenesis of Aspirin-Exacerbated Respiratory Disease? 2019;11(3):320-329.
69. Sladek K, Dworski R, Soja J, Sheller JR, Nizankowska E, Oates JA, et al. Eicosanoids in bronchoalveolar lavage fluid of aspirin-intolerant patients with asthma after aspirin challenge. American journal of respiratory and critical care medicine. 1994;149(4 Pt 1):940-6.
70. White AA, Doherty TA. Role of group 2 innate lymphocytes in aspirin-exacerbated respiratory disease pathogenesis. Am J Rhinol Allergy. 2018;32(1):7-11.
71. Eastman JJ, Cavagnero KJ, Deconde AS, Kim AS, Karta MR, Broide DH, et al. Group 2 innate lymphoid cells are recruited to the nasal mucosa in patients with aspirin-exacerbated respiratory disease. J Allergy Clin Immunol. 2017;140(1):101-108.e3.
72. Liu T, Kanaoka Y, Barrett NA, Feng C, Garofalo D, Lai J, et al. Aspirin-Exacerbated Respiratory Disease Involves a Cysteinyl Leukotriene-Driven IL-33-Mediated Mast Cell Activation Pathway. J Immunol. 2015;195(8):3537-45.
73. Chang JE, Doherty TA, Baum R, Broide D. Prostaglandin D2 regulates human type 2 innate lymphoid cell chemotaxis. J Allergy Clin Immunol. 2014; 133(12):899-901.e3.
74. Salimi M, Stöger L, Liu W, Go S, Pavord I, Klenerman P, et al. Cysteinyl leukotriene E(4) activates human group 2 innate lymphoid cells and enhances the effect of prostaglandin D(2) and epithelial cytokines. J Allergy Clin Immunol. 2017;140(3):1090-1100.e11.
75. Lund SJ, Portillo A, Cavagnero K, Baum RE, Naji LH, Badrani JH, et al. Leukotriene C4 Potentiates IL-33-Induced Group 2 Innate Lymphoid Cell Activation and Lung Inflammation. J Immunol. 2017;199 (3):1096-1104.
76. Aktas A, Kurt E, Gulbas Z. Cytokine expression before and after aspirin desensitization therapy in aspirin exacerbated respiratory disease. Inflammation. 2013;36(6):1553-9.
77. Gelincik A, Demir S, Şen F, Bozbey UH, Olgaç M, Ünal D, et al. Interleukin-10 is increased in successful drug desensitization regardless of the hypersensitivity reaction type. Asia Pac Allergy. 2019;9(1):e9.
78. Vultaggio A, Nencini F, Bormioli S, Dies L, Vivarelli E, Maggi E, et al. Desensitization modulates humoral and cellular immune response to infliximab in a patient with an immediate hypersensitivity reaction. J Allergy Clin Immunol Pract. 2020;8(5):1764-7.e1.
79. Aksu K, Kurt E, Alatas Ö, Gülbas Z. Effect of aspirin desensitization on T-cell cytokines and plasma lipoxins in aspirin-exacerbated respiratory disease. Allergy Asthma Proc. 2014;35(2):148-55.
80. Hsieh FH, Lam BK, Penrose JF, Austen KF, Boyce JA. T helper cell type 2 cytokines coordinately regulate immunoglobulin E-dependent cysteinyl leukotriene production by human cord blood-derived mast cells: profound induction of leukotriene C(4) synthase expression by interleukin 4. J Exp Med. 2001;193(1):123-33.
Files | ||
Issue | Vol 21 No 5 (2022) | |
Section | Review Article(s) | |
DOI | https://doi.org/10.18502/ijaai.v21i5.11039 | |
Keywords | ||
Aspirin-exacerbated respiratory disease Aspirin desensitization Immune responses Inflammations Leukotrienes |
Rights and permissions | |
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. |