Original Article
 

In vitro and in vivo Evidence on Intra-tumor Injection of Allogeneic Serum for Immunotherapy in a Mouse Model of Colon Cancer

Abstract

It is believed that preformed antibodies are responsible for blood transfusion reactions and transplant rejections. In order to remove a tumor, the tissue must be rejected. On the basis of transfusion reaction and transplantation immunology, we hypothesized that allogeneic serum can inhibit tumor growth when injected intra-tumor.
Initially, an in vitro cytotoxicity test was conducted using the C57BL/6 serum (intact or decomplemented) in combination with the BALB/c-originating CT26 cell line.  The CT26 cell line was used to establish a mouse model of colon cancer. When the tumor was palpable, C57BL/6 serum was injected intra-tumor. In addition to tumor size, hypoxia, metastatic capacity, angiogenesis, and metabolic and inflammatory status, we evaluated matrix metalloproteinase-2 (MMP)-2 and 9, vascular endothelial growth factor (VEGF)-A, Cluster of Designation (CD) 31, CD38 and interleukine (IL)-10.
An in vitro experiment showed that heat-inactivated C57BL/6 serum had significantly lower cytotoxic effects on BALB/c-derived CT26 cells than intact C57BL/6 serum or BALB/c serum. In vivo experiments revealed that tumor size, HIF-1α, MMP-2, and MMP-9 levels were significantly lower in the experimental group than in the control group. In contrast to control animals, allogeneic serum treatment led to marked reductions in CD31, VEGF-1, CD38, and IL-10 levels.
A new approach to serum or plasma therapy and allogeneic vaccines for cancer is intra-tumor injection of allogeneic serum. In light of the ease and availability of allogeneic immunotherapies, allogeneic serum and plasma therapy could potentially be used as an alternative monotherapy or in combination with other therapies. 

1. Ritter B, Greten FR: Modulating inflammation for cancer therapy. J Exp Med. 2019;216(6):1234-43.
2. Lu RM, Hwang YC, Liu IJ, Lee CC, Tsai HZ, Li HJ, et al. Development of therapeutic antibodies for the treatment of diseases. J Biomed Sci. 2020;27(1):1.
3. Taylor PA, Ehrhardt MJ, Roforth MM, Swedin JM, Panoskaltsis-Mortari A, Serody JS, et al. Preformed antibody, not primed T cells, is the initial and major barrier to bone marrow engraftment in allosensitized recipients. Blood 2007;109(3):1307-15.
4. Woodle ES, Baldwin WM 3rd: Of mice and men: terminal complement inhibition with anti-C5 monoclonal antibodies. Am J Transplant. 2011;11(11):2277-8.
5. Alelign T, Ahmed MM, Bobosha K, Tadesse Y, Howe R, Petros B. Kidney Transplantation: The Challenge of Human Leukocyte Antigen and Its Therapeutic Strategies. J Immunol Res. 2018;2018:5986740.
6. Cecka JM, Zhang Q, Reed EF. Preformed cytotoxic antibodies in potential allograft recipients: recent data. Hum Immunol. 2005;66(4):343-9.
7. Sykes M, Auchincloss Jr. H, Sachs DH. Chapter 47 Transplantation Immunology: Mechanisms of Graft Rejection: Paul Fundamental Immunology. 7th Edition 2012.
8. Tan JC, Wadia PP, Coram M, Grumet FC, Kambham N, Miller K, et al. H-Y antibody development associates with acute rejection in female patients with male kidney transplants. Transplant. 2008;86(1):75-81.
9. Xu H, Huang Y, Hussain LR, Zhu Z, Bozulic LD, Ding C, et al. Sensitization to minor antigens is a significant barrier in bone marrow transplantation and is prevented by CD154:CD40 blockade. Am J Transplant. 2010;10(7):1569-79.
10. Pour PM, Tempero MM, Takasaki H, Uchida E, Takiyama Y, Burnett DA, et al. Expression of blood group-related antigens ABH, Lewis A, Lewis B, Lewis X, Lewis Y, and CA 19-9 in pancreatic cancer cells in comparison with the patient's blood group type. Cancer Res. 1988;48(19):5422-6.
11. Skovlund VR. ABH and related histo-blood group antigens in normal & malignant human endometrium in relation to genetic and hormonal factors. APMIS Suppl 1997; 69:1-33.
12. Hambach L, Goulmy E. Immunotherapy of cancer through targeting of minor histocompatibility antigens. Curr Opin Immunol. 2005;17(2):202-10.
13. Garrido F, Aptsiauri N. Cancer immune escape: MHC expression in primary tumours versus metastases. Immunol. 2019;158(4):255-66.
14. Johnson DB, Nixon MJ, Wang Y, Wang DY, Castellanos E, Estrada MV, et al. Tumor-specific MHC-II expression drives a unique pattern of resistance to immunotherapy via LAG-3/FCRL6 engagement. JCI Insight. 2018;3(24):e120360.
15. Kamma H, Yazawa T, Ogata T, Horiguchi H, Iijima T. Expression of MHC class II antigens in human lung cancer cells. Virchows Arch B Cell Pathol Incl Mol Pathol 1991;90(6):407-12.
16. Ruiz-Cabello F, Klein E, Garrido F. MHC antigens on human tumors. Immunol Lett. 1991;29(3):181-9.
17. Wen FT, Thisted RA, Rowley DA, Schreiber H. A systematic analysis of experimental immunotherapies on tumors differing in size and duration of growth. Oncoimmunol. 2012;1(2):172-8.
18. Walsh JC, Lebedev A, Aten E, Madsen K, Marciano L, Kolb HC. The clinical importance of assessing tumor hypoxia: relationship of tumor hypoxia to prognosis and therapeutic opportunities. Antioxid Redox Signal. 2014;21(10):1516-54.
19. Muz B, de la Puente P, Azab F, Azab AK. The role of hypoxia in cancer progression, angiogenesis, metastasis, and resistance to therapy. Hypoxia. 2015;3:83-92.
20. Gonzalez-Avila G, Sommer B, Mendoza-Posada DA, Ramos C, Garcia-Hernandez AA, Falfan-Valencia R. Matrix metalloproteinases participation in the metastatic process and their diagnostic and therapeutic applications in cancer. Crit Rev Oncol Hematol. 2019;137(4):57-83.
21. Rubio L, Burgos JS, Morera C, Vera-Sempere FJ. Morphometric study of tumor angiogenesis as a new prognostic factor in nasopharyngeal carcinoma patients. Pathol Oncol Res. 2000;6(3):210–6.
22. Sion-Vardy N, Fliss DM, Prinsloo I, Shoham-Vardi I, Benharroch D. Neoangiogenesis in squamous cell carcinoma of the larynx - biological and prognostic associations. Pathol Res Pract. 2001;197(1):1–5.
23. Yla-Herttuala S, Rissanen TT, Vajanto I, Hartikainen J. Vascular endothelial growth factors: biology and current status of clinical applications in cardiovascular medicine. J Am Coll Cardiol. 2007;49(10):1015–26.
24. Kyzas PA, Stefanou D, Batistatou A, Agnantis NJ. Prognostic significance of VEGF immunohistochemical expression and tumor angiogenesis in head and neck squamous cell carcinoma. J Cancer Res Clin Oncol. 2005;131(9):624–30.
25. Malavasi F, Deaglio S, Funaro A, Ferrero E, Horenstein AL, Ortolan E, et al. Evolution and function of the ADP ribosyl cyclase/CD38 gene family in physiology and pathology. Physiol Rev. 2008;88(3):841-86.
26. Chen L, Diao L, Yang Y, Yi X, Rodriguez BL, Li Y, et al. CD38-Mediated Immunosuppression as a Mechanism of Tumor Cell Escape from PD-1/PD-L1 Blockade. Cancer Discover. 2018;8(9):1156-75.
27. Oft M. IL-10: master switch from tumor-promoting inflammation to antitumor immunity. Cancer Immunol Res. 2014;2(3):194-9.
28. Handali S, Moghimipour E, Rezaei M, Ramezani Z, Kouchak M, Amini M, et al. A novel 5-Fluorouracil targeted delivery to colon cancer using folic acid conjugated liposomes. Biomed Pharmacother. 2018;108:1259-73
29. Pakravan N, Abbasi A, Basirat E, Dehghan D, Heydari Havadaragh S. Harmony of T cell profile in brain, nasal, spleen, and cervical lymph nodes tissues in Alzheimer's: A systemic disease with local manifestations. Int Immunopharmacol. 2021;91:107306.
30. Pakravan N, Ghaffarinia A, Jalili C, Riazi-Rad F, Tajedini M, Mostafaie A. Seminal vesicle fluid ameliorates autoimmune response within central nervous system. Cell Mol Immunol. 2015;12(1):116-8.
31. Rossi A, Pakhomova ON, Mollica PA, Casciola M, Mangalanathan U, Pakhomov A, et al. Nanosecond pulsed electric fields induce endoplasmic reticulum stress accompanied by immunogenic cell death in murine models of lymphoma and colorectal cancer. Cancers. 2019;11(12):1-18.
32. Ziegler A, Heidenreich R, Braumüller H, Wolburg H, Weidemann S, Mocikat R, et al. EpCAM, a human tumor-associated antigen promotes Th2 development and tumor immune evasion. Blood. 2009;113(15):3494-502.
33. Baxter D. Active and passive immunization for cancer. Hum Vaccin Immunother. 2014;10(7):2123-9.
34. Vajaitu C, Draghici CC, Solomon I, Lisievici CV, Popa AV, Lupu M, et al. The Central Role of Inflammation Associated with Checkpoint Inhibitor Treatments. J Immunol Res. 2018;2018:4625472.
35. Bleul T, Zhuang X, Hildebrand A, Lange C, Böhringer D, Schlunck G, et al. Different Innate Immune Responses in BALB/c and C57BL/6 Strains following Corneal Transplantation. J Innate Immun. 2021;13(1):49-59.
36. Gock H, Salvaris E, Murray-Segal L, Mottram P, Han W, Pearse MJ, et al. Hyperacute rejection of vascularized heart transplants in BALB/c Gal knockout mice. Xenotransplant. 2000;7(4):237-46.
37. Jones SC, Murphy GF, Friedman TM, Korngold R. Importance of minor histocompatibility antigen expression by nonhematopoietic tissues in a CD4+ T cell-mediated graft-versus-host disease model. J Clin Invest. 2003;112(12):1880-6.
38. Mysliwietz J, Thierfelder S. Analysis of peripheral immune tolerance uncovers a mouse strain-dependent in situ type of graft tolerance. Eur J Immunol. 1999;29(1):150-5.
39. Strober S. Protective conditioning against GVHD and graft rejection after combined organ and hematopoietic cell transplantation. Blood Cells Mol Dis. 2008;40(1):48-54.
40. Tse GH, Hughes J, Marson LP. Systematic review of mouse kidney transplantation. Transpl Int. 2013;26(12):1149-60.
41. Wang J, Zhang L, Tang J, Jiang S, Wang X. Adoptive transfer of transplantation tolerance mediated by CD4+CD25+ and CD8+CD28- regulatory T cells induced by anti-donor-specific T-cell vaccination. Transplant Proc. 2008;40(5):1612-7.
42. Yonar M, Uehara M, Banouni N, Kasinath V, Li X, Jiang L, et al. Cellular Mechanisms of Rejection of Optic and Sciatic Nerve Transplants: An Observational Study. Transplant Direct. 2020;6(8):e589.
43. Zhao Y, Chen S, Lan P, Wu C, Dou Y, Xiao X, et al. Macrophage subpopulations and their impact on chronic allograft rejection versus graft acceptance in a mouse heart transplant model. Am J Transplant. 2018;18(3):604-16.
44. Larkin JM, Porter CD. Mice are unsuitable for modelling ABO discordance despite strain-specific A cross-reactive natural IgM. Br J Haematol. 2005;130(2):310-7.
45. Busch MP, Lee TH, Donegan E, Pallavicini M, Use of an inbred mouse model system for studies of allogeneic transfusion-induced immunosuppression. Blood. 1993;82(11):3509-11.
46. Pistollato F, Abbadi S, Rampazzo E, Persano L, Della Puppa A, Frasson C, et al. Intratumoral hypoxic gradient drives stem cells distribution and MGMT expression in glioblastoma. Stem Cells. 2010;28(5):851-62.
47. Levy A, Blacher E, Vaknine H, Lund FE, Stein R, Mayo L. CD38 deficiency in the tumor microenvironment attenuates glioma progression and modulates features of tumor-associated microglia/macrophages. Neuro Oncol. 2012;14(8):1037-49.
48. Karakasheva TA, Waldron TJ, Eruslanov E, Kim SB, Lee JS, O'Brien S, et al. CD38-Expressing Myeloid-Derived Suppressor Cells Promote Tumor Growth in a Murine Model of Esophageal Cancer. Cancer Res. 2015;75(19):4074-85.
49. Hubert S, Rissiek B, Klages K, Huehn J, Sparwasser T, Haag F, et al. Extracellular NAD+ shapes the Foxp3+ regulatory T cell compartment through the ART2-P2X7 pathway. J Exp Med. 2010;207(12):2561-8.
50. Kar A, Mehrotra S, Chatterjee S. CD38: T Cell Immuno-Metabolic Modulator. Cells. 2020;9(7):1716.
51. Mahdi A, Darvishi B, Majidzadeh-A K, Salehi M, Farahmand L. Challenges facing antiangiogenesis therapy: The significant role of hypoxia-inducible factor and MET in development of resistance to anti-vascular endothelial growth factor-targeted therapies. J Cell Physiol. 2019;234(5):5655-63.
52. Zhang W, Wang F, Xu P, Miao C, Zeng X, Cui X, et al. Perfluorooctanoic acid stimulates breast cancer cells invasion and up-regulates matrix metalloproteinase-2/-9 expression mediated by activating NF-κB. Toxicol Lett. 2014;229(1):118-25.
53. Safranek J, Pesta M, Holubec L, Kulda V, Dreslerova J, Vrzalova J, et al. Expression of MMP-7, MMP-9, TIMP-1 and TIMP-2 mRNA in lung tissue of patients with non-small cell lung cancer (NSCLC) and benign pulmonary disease. Anticancer Res. 2009;29(7):2513–7.
54. Iochmann S, Bléchet C, Chabot V, Saulnier A, Amini A, Gaud G, et al. Transient RNA silencing of tissue factor pathway inhibitor-2 modulates lung cancer cell invasion. Clin Exp Metastasis. 2009;26(5):457–67.
55. Bak SP, Alonso A, Turk MJ, Berwin B. Murine ovarian cancer vascular leukocytes require arginase-1 activity for T cell suppression. Mol Immunol. 2008;46(2):258-68.
56. Ben-Baruch A. Inflammation-associated immune suppression in cancer: the roles played by cytokines, chemokines and additional mediators. Semin Cancer Biol. 2006;16(1):38-52.
57. Kurte M, López M, Aguirre A, Escobar A, Aguillón JC, Charo J, et al. A synthetic peptide homologous to functional domain of human IL-10 down-regulates expression of MHC class I and Transporter associated with Antigen Processing 1/2 in human melanoma cells. J Immunol. 2004;173(3):1731-7.
58. Carroll MJ, Kapur A, Felder M, Patankar MS, Kreeger PK. M2 macrophages induce ovarian cancer cell proliferation via a heparin binding epidermal growth factor/matrix metalloproteinase 9 intercellular feedback loop. Oncotarget. 2016;7(52):86608-20.
59. Quintero-Fabián S, Arreola R, Becerril-Villanueva E, Torres-Romero JC, Arana-Argáez V, Lara-Riegos J, et al. Role of Matrix Metalloproteinases in Angiogenesis and Cancer. Front Oncol. 2019;9:1370.
60. Sharifi L, Nowroozi MR, Amini E, Arami MK, Ayati M, Mohsenzadegan M. A review on the role of M2 macrophages in bladder cancer; pathophysiology and targeting. Int Immunopharmacol. 2019;76:105880.
61. Cardoso AP, Pinto ML, Pinto AT, Pinto MT, Monteiro C, Oliveira MI, et al. Matrix metalloproteases as maestros for the dual role of LPS- and IL-10-stimulated macrophages in cancer cell behaviour. BMC Cancer. 2015;15(3):456-9.
62. Chen L, Shi Y, Zhu X, Guo W, Zhang M, Che Y, et al. IL 10 secreted by cancer associated macrophages regulates proliferation and invasion in gastric cancer cells via c Met/STAT3 signaling. Oncol Rep. 2019;42(2):595-604
63. Campillo N, Falcones B, Otero J, Colina R, Gozal D, Navajas D, et al. Differential Oxygenation in Tumor Microenvironment Modulates Macrophage and Cancer Cell Crosstalk: Novel Experimental Setting and Proof of Concept. Front Oncol. 2019;9(4):43.
64. Rafieenia F, Nikkhah E, Nourmohammadi F, Hosseini S, Abdollahi A, Sharifi N, et al. Allogeneic tumor cell line-based vaccines: A good alternative to autologous and cancer stem cell vaccines in colorectal cancer. Ir J Basic Med Sci. 2021;24(9):1231-9.
65. Hollingsworth RE, Jansen K. Turning the corner on therapeutic cancer vaccines. NPJ Vaccines. 2019;8;4:7.
Files
IssueVol 21 No 5 (2022) QRcode
SectionOriginal Article(s)
DOI https://doi.org/10.18502/ijaai.v21i5.11042
Keywords
Allogeneic serum Angiogenesis Cluster of designation 38 Hypoxia-inducible factor 1 Alpha subunit Interleukin-10 Matrix metalloproteinases

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
1.
Basirat E, Dehghan D, Abbasi A, Pakravan N. In vitro and in vivo Evidence on Intra-tumor Injection of Allogeneic Serum for Immunotherapy in a Mouse Model of Colon Cancer. Iran J Allergy Asthma Immunol. 2022;21(5):549-560.