The Effects of Combined Therapeutic Protocol on Allergic Rhinitis Symptoms and Molecular Determinants
Abstract
Current medications to treat allergic rhinitis (AR) include antihistamines, corticosteroids, and anti-leukotrienes. In the present study, we investigated the effects of combination therapy; using these drugs, and evaluates the AR-related markers and parameters in an animal model.
After inducing BALB/c mice AR models, the animals were treated with either pranlukast, loratadine, fluticasone, loratadine + fluticasone, loratadine + pranlukast, fluticasone + pranlukast, or loratadine + fluticasone + pranlukast. Clinical symptoms, Immunoglobulin (Ig)G1, ovalbumin (OVA)-specific and total IgE, leukotriene (LT)B4, LTC4, histamine, thymic stromal lymphopoietin (TSLP) serum levels, and interleukin 4 level in the nasal lavage fluid were determined. The expressions of HRH1, CysLT1R, NLR3, Caspase-1, and MUC5a were studied.
Allergic symptoms (nasal rubbing and sneezing), serum Igs (IgG1, total and OVA-specific IgE), eicosanoids (LTB4 and LTC4), histamine, TSLP, and IL-4 as well as gene expressions of MUC5a, Caspase-1, NLR3, HRH1, and CysLT1R were reduced in the animals receiving each of the therapeutic regimens; however, more pronounced effects were seen in the group treated with the triple combined protocol (loratadine + fluticasone + pranlukast).
The combination of the loratadine, fluticasone, and pranlukast can effectively control the symptoms of AR probably via modulating several related mechanisms at early and late phases of allergic responses.
2. Okubo K, Kurono Y, Ichimura K, Enomoto T, Okamoto Y, Kawauchi H, Suzaki Fujieda S, Masuyama K. Japanese guidelines for allergic rhinitis 2020. Allergol Int. 2020;69(3):331-45.
3. Shen C, Chen F, Wang H, Zhang X, Li G, Wen Z. Individualized treatment for allergic rhinitis based on key nasal clinical manifestations combined with histamine and leukotriene D4 levels. Braz J Otorhino laryngol. 2020;86(1):63-73.
4. Tatar EC, Surenoglu UA, Ozdek A, Saylam G, Korkmaz H. The effect of combined medical treatment on quality of life in persistent allergic rhinitis. Indian J Otolaryngol Head Neck Surg. 2013;65(Suppl 2):333-7.
5. Shamji MH, Durham SR. Mechanisms of allergen immunotherapy for inhaled allergens and predictive biomarkers. J Allergy Clin Immunol. 2017;140(6):1485-8.
6. Kim HY, Nam SY, Hwang SY, Kim HM, Jeong HJ. Atractylone, an active constituent of KMP6, attenuates allergic inflammation on allergic rhinitis in vitro and in vivo models. Mol Immunol. 2016;78(4):121-32.
7. Kim HY, Jeong HJ, Kim HM. Antiallergic and anti-inflammatory effects of the Bcl-2 inhibitor ABT-737 on experimental allergic rhinitis models. Eur J Pharmacol. 2018;833(12):34-43.
8. Bielory L. Ocular symptom reduction in patients with seasonal allergic rhinitis treated with the intranasal corticosteroid mometasone furoate. Ann Allergy Asthma Immunol. 2008;100(3):272-9.
9. Goh BS, Ismail MI, Husain S. Quality of life assessment inpatients with moderate to severe allergic rhinitis treated with montelukast and/or intranasal steroids: a randomised, double-blind, placebo-controlled study. J Laryngol Otol. 2014;128(3):242-8.
10. Pinar E, Eryigit O, Oncel S, Calli C, Yilmaz O, Yuksel H. Efficacy of nasal corticosteroids alone or combined with antihistamines or montelukast in treatment of allergic rhinitis. Auris Nasus Larynx. 2008;5(1):61-6.
11. Peters-Golden M, Henderson Jr WR. The role of leukotrienes in allergic rhinitis. Ann Allergy Asthma Immunol. 2005;94(6):609-18.
12. Esteitie R, deTineo M, Naclerio RM, Baroody FM. Effect of the addition of montelukast to fluticasone propionate for the treatment of perennial allergic rhinitis. Ann Allergy Asthma Immunol. 2010;105(2):155-61.
13. Erdogan BA, Sanli A, Paksoy M, Altin G, Aydin S. Quality of life in patients with persistent allergic rhinitis treated with desloratadine monotherapy or desloratadine plus montelucast combination. Kulak Burun Bogaz Ihtis Derg. 2014;24(4):217-24.
14. Hashiguchi K, Kanzaki S, Wakabayashi K, Tanaka N, Kawashima K, Suematsu K, et al. Efficacy of fluticasone furoate nasal spray and levocetirizine in patients with Japanese cedar pollinosis subjected to an artificial exposure chamber. J Drug Assess. 2013;2(1):94-105.
15. Pullerits T, Praks L, Ristioja V, Lotvall J. Comparison of anasal glucocorticoid, antileukotriene, and a combination of antileukotriene and antihistamine in the treatment of seasonal allergic rhinitis. J Allergy Clin Immunol. 2002;109(6):949-55.
16. Feng L, Sun F, Chen Y, Athari SS, Chen X. Studying the Effects of Vitamin A on the Severity of Allergic Rhinitis and Asthma. Iran J Allergy Asthma Immunol. 2021; 20(6):684-¬692.
17. Bui TT, Piao CH, Hyeon E, Fan Y, Nguyen TV, Jung SY, et al. The protective role of Piper nigrum fruit extract in an ovalbumin-induced allergic rhinitis by targeting of NFκBp65 and STAT3 signalings. Biomed Pharmacother. 2019;109(11):1915-23.
18. Kuyama S, Yamamoto A, Sugiyama M, Kakuta H, Sugimoto Y. Effect of 5-aminosalicylate on allergic rhinitis model in mice. Int Immunopharmacol. 2010;10(6):713-6.
19. Nathan RA. Pharmacotherapy for allergic rhinitis: a critical review of leukotriene receptor antagonists compared with other treatments. Ann Allergy Asthma Immunol. 2003;90(2):182–91.
20. Li J, Wang B, Luo Y, Zhang Q, Bian Y, Wang R. Resveratrol-mediated SIRT1 activation attenuates ovalbumin-induced allergic rhinitis in mice. Mol Immunol. 2020;122(15):156-62.
21. Liang K, Kandhare AD, Mukherjee-Kandhare AA, Bodhankar SL, Xu D. Morin ameliorates ovalbumin-induced allergic rhinitis via inhibition of STAT6/SOCS1 and GATA3/T-bet signaling pathway in BALB/c mice. J Functi Food. 2019;5(1):391–401.
22. Zhang W, Ba G, Tang R, Li M, Lin H. Ameliorative effect of selective NLRP3 inflammasome inhibitor MCC950 in an ovalbumin-induced allergic rhinitis murine model. Int Immunopharmacol. 2020;83(14):106394.
23. Athari SS, Athari SM, Beyzay F, Movassaghi M, Mortaz E, Taghavi M. Critical role of Toll-like receptors in pathophysiology of allergic asthma. Eur J Pharmacol. 2017;808(25):21-7.
24. Athari SM, Mehrabi Nasab E, Athari SS. Study effect of Ocimumbasilicum seeds on mucus production and cytokine gene expression in allergic asthma mice model. Rev Fr Allergol. 2018;58(7):489-93.
25. Moon PD, Han NR, Lee JS, Kim HY, Hong S, Kim HJ, et al. β-eudesmol inhibits thymic stromal lymphopoietin through blockade of caspase-1/NF-κB signal cascade in allergic rhinitis murine model. Chem Biol Interact. 2018;294(32):101-6.
26. Hami M, Naddaf SR, Mobedi I, Zare-Bidaki M, Athari SS, Hajimohammadi B, Anaraki-Mohammadi G. Prevalence of Linguatulaserrata infection in domestic bovids slaughtered in Tabriz Abattoir, Iran. Iranian J Parasitol. 2009; 4(3):25-31
27. Haddadzadeh HR, Athari SS, Abedini R, Khazraii Nia S, Khazraii Nia P, Nabian S, Haji-Mohamadi B. One-Humped Camel (Camelusdromedarius) Infestation with Linguatula serrata in Tabriz, Iran. Iran J Arthropod Borne Dis. 2010; 4(1):54-9.
28. Du K, Qing H, Zheng M, Wang X, Zhang L. Intranasal antihistamine is superior to oral H1-antihistamine as an add-on therapy to intranasal corticosteroid for treating allergic rhinitis. Ann Allergy Asthma Immunol. 2020;125(5):589-96.
29. Athari SS, Athari SM. The importance of eosinophil, platelet and dendritic cell in asthma. Asian Pac J Trop Dis. 2014;4(Sup1):S41-S47.
Files | ||
Issue | Vol 21 No 2 (2022) | |
Section | Original Article(s) | |
DOI | https://doi.org/10.18502/ijaai.v21i2.9222 | |
Keywords | ||
Allergy and immunology Histamine Inflammation Leukotrienes Pathology Prostaglandins Steroids |
Rights and permissions | |
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. |