Original Article
 

The Role of Cobalamin on Interleukin 10, Osteopontin, and Related MicroRNAs in Multiple Sclerosis

Abstract

Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system (CNS). Considering how vitamin B12 or cobalamin affects the immune system, especially inflammation and the formation of the myelin sheath, it appears as a complementary therapy for MS by affecting some signaling pathways.
Recently diagnosed MS patients were divided into two groups (n=30). One group received interferon-beta (IFN-β or Avonex), and another received IFN-β+B12 for six months. Blood samples were taken before and after treatments.  Interleukin (IL)-10 and osteopontin (OPN) levels in the plasma were determined by the enzyme-linked immunosorbent assay (ELISA) method, and the expression of microRNA (miR)-106a, miR-299a, and miR-146a by real-time PCR.
IFN-β neither changed the IL-10 plasma levels nor miR106a and miR-299a expression, but it led to a remarkable decrease in OPN concentration and enhancement in let-7c and miR-146a expression. There was a significant decrease in IL-10, OPN plasma levels, miR-106a expression, and a substantial increase in let-7c and  miR-146a expression in IFN-β+B12, treated group. There was no correlation between IL-10 and OPN with related miRNAs in the two treatment groups.
Our study indicated that B12 could be a complementary treatment in MS that may influence the disease improvement.

1. Ebers GC. Environmental factors and multiple sclerosis. Lancet Neurol. 2008;7(3):268-77.
2. Healy BC, Ali EN, Guttmann CR, Chitnis T, Glanz BI, Buckle G, et al. Smoking and disease progression in multiple sclerosis. Arch Neurol. 2009;66(7):858-64.
3. Mokry LE, Ross S, Timpson NJ, Sawcer S, Smith GD, Richards JB. Obesity and multiple sclerosis: a mendelian randomization study. PLoS Med. 2016;13(6):21-6
4. Hosseinzadeh A, Baneshi M, Sedighi B, Kermanchi J, Haghdoost A-A. Incidence of multiple sclerosis in Iran: a nationwide, population-based study. Public Health. 2019;175(14):138-44.
5. Rocca MA, Valsasina P, Martinelli V, Misci P, Falini A, Comi G, et al. Large-scale neuronal network dysfunction in relapsing-remitting multiple sclerosis. Neurol. 2012;79(14):1449-57.
6. Venken K, Hellings N, Broekmans T, Hensen K, Rummens J-L, Stinissen P. Natural naive CD4+ CD25+ CD127low regulatory T cell (Treg) development and function are disturbed in multiple sclerosis patients: recovery of memory Treg homeostasis during disease progression. J Immunol. 2008;180(9):6411-20.
7. Pappas DJ, Oksenberg JR. Multiple sclerosis pharmacogenomics: maximizing efficacy of therapy. Neurol. 2010;74(1 Supplement 1):S62-S9.
8. Barbour T, Johnson S, Cohney S, Hughes P. Thrombotic microangiopathy and associated renal disorders. Nephrol Dial Transplant. 2012;27(7):2673-85.
9. Reuss R. PEGylated interferon beta-1a in the treatment of multiple sclerosis–an update. Biol Targets Ther. 2013;7(9):131.
10. Bertolotto A, Capobianco M, Amato MP, Capello E, Capra R, Centonze D, et al. Guidelines on the clinical use for the detection of neutralizing antibodies (NAbs) to IFN beta in multiple sclerosis therapy: report from the Italian Multiple Sclerosis Study group. Neurol Sci. 2014;35(2):307-16.
11. Demerouti E, Karyofyllis P, Athanassopoulos G, Karatasakis G, Tsiapras D, Manginas A, et al. Pulmonary arterial hypertension associated with interferon-beta treatment for multiple sclerosis. Case report and literature review. Mult Scler Relat Disord. 2019;28(9):273-5.
12. Elmazny A, Hamdy SM, Abdel-Naseer M, Shalaby NM, Shehata HS, Kishk NA, et al. Interferon-beta-induced headache in patients with multiple sclerosis: frequency and characterization. J Pain Res. 2020;13(9):537-41.
13. Miller A, Korem M, Almog R, Galboiz Y. Vitamin B12, demyelination, remyelination and repair in multiple sclerosis. J. Neurol. Sci. 2005;233(1-2):93-7.
14. Allen RH, Stabler SP, Savage DG, Lindenbaum J. Metabolic abnormalities in cobalamin (vitamin B12) and folate deficiency. FASEB J. 1993;7(14):1344-53.
15. Tamura J, Kubota K, Murakami H, Sawamura M, Matsushima T, Tamura T, et al. Immunomodulation by vitamin B12: augmentation of CD8+ T lymphocytes and natural killer (NK) cell activity in vitamin B12‐deficient patients by methyl‐B12 treatment. Clin Exp Immunol. 1999;116(1):28-32.
16. Erkurt MA, Aydogdu I, Dikilitaş M, Kuku I, Kaya E, Bayraktar N, et al. Effects of cyanocobalamin on immunity in patients with pernicious anemia. Med Princ Pract. 2008;17(2):131-5.
17. Kira J-i, Tobimatsu S, Goto I. Vitamin B12 metabolism and massive-dose methyl vitamin B12 therapy in Japanese patients with multiple sclerosis. Intern Med. 1994;33(2):82-6.
18. Mastronardi FG, Min W, Wang H, Winer S, Dosch M, Boggs JM, et al. Attenuation of experimental autoimmune encephalomyelitis and nonimmune demyelination by IFN-β plus vitamin B12: treatment to modify notch-1/sonic hedgehog balance. J Immunol. 2004;172(10):6418-26.
19. Xu J, Wang W, Zhong X-X, Feng Y-W, Wei X-H, Liu X-G. Methylcobalamin ameliorates neuropathic pain induced by vincristine in rats: Effect on loss of peripheral nerve fibers and imbalance of cytokines in the spinal dorsal horn. Mol Pain. 2016;12:1744806916657089.
20. Krakauer M, Sorensen P, Khademi M, Olsson T, Sellebjerg F. Increased IL-10 mRNA and IL-23 mRNA expression in multiple sclerosis: interferon-β treatment increases IL-10 mRNA expression while reducing IL-23 mRNA expression. Mult Scler J. 2008;14(5):622-30.
21. Stępień A, Chalimoniuk M, Lubina-Dąbrowska N, Chrapusta SJ, Galbo H, Langfort J. Effects of interferon β-1a and interferon β-1b monotherapies on selected serum cytokines and nitrite levels in patients with relapsing-remitting multiple sclerosis: a 3-year longitudinal study. Neuroimmunomodulation. 2013;20(4):213-22.
22. Matejčíková Z, Mareš J, Vranová HP, Klosova J, Sladkova V, Dolakova J, et al. Cerebrospinal fluid inflammatory markers in patients with multiple sclerosis: a pilot study. J Neural Transm. 2015;122(2):273-7.
23. Shinohara ML, Jansson M, Hwang ES, Werneck MB, Glimcher LH, Cantor H. T-bet-dependent expression of osteopontin contributes to T cell polarization. Proc Natl Acad Sci. 2005;102(47):17101-6.
24. Esteller M. Non-coding RNAs in human disease. Nat Rev Genet. 2011;12(12):861.
25. Kasinski AL, Slack FJ. MicroRNAs en route to the clinic: progress in validating and targeting microRNAs for cancer therapy. Nat Rev Cancer. 2011;11(12):849-64.
26. Tufekci KU, Oner MG, Genc S, Genc K. MicroRNAs and multiple sclerosis. Autoimmune Dis. 2011;2011:807426.
27. Lehmann SM, Krüger C, Park B, Derkow K, Rosenberger K, Baumgart J, et al. An unconventional role for miRNA: let-7 activates Toll-like receptor 7 and causes neurodegeneration. Nat Neurosci. 2012;15(6):827-9.
28. Jiang L, Cheng Z, Qiu S, Que Z, Bao W, Jiang C, et al. Altered let-7 expression in Myasthenia gravis and let-7cmediated regulation of IL-10 by directly targeting IL-10 in Jurkat cells. Int Immunopharmacol. 2012;14(2):217-23.
29. Sharma A, Kumar M, Aich J, Hariharan M, Brahmachari SK, Agrawal A, et al. Posttranscriptional regulation of interleukin-10 expression byhsa-miR-106a. Proc Natl Acad Sci. 2009;106(14):5761-6.
30. Majd M, Hosseini A, Ghaedi K, Kiani-Esfahani A, Tanhaei S, Shiralian-Esfahani H, et al. MiR-9-5p and miR-106a-5p dysregulated in CD4+ T-cells of multiple sclerosis patients and targeted essentialfactors of T helper17/regulatory T-cells differentiation. Iran J Basic Med Sci. 2018;21(3):277-81.
31. Hurst DR, Edmonds MD, Scott GK, Benz CC, Vaidya KS, Welch DR. Breast cancer metastasis suppressor 1 up-regulates miR-146, which suppresses breast cancer metastasis. Cancer Res. 2009;69(4):1279-83.
32. Chen Y, Zeng Z, Shen X, Wu Z, Dong Y, Cheng JC-H. MicroRNA-146a-5p negatively regulates pro-inflammatory cytokine secretion and cell activation in lipopolysaccharide stimulated human hepatic stellate cells through inhibition of toll-like receptor 4 signaling pathways. Int J Mol Sci. 2016;17(7):1076.
33. Tang H, Lai Y, Zheng J, Chen K, Jiang H, Xu G. miR-146a promotes tolerogenic properties of dendritic cells and through targeting Notch1 signaling. Immunol Invest. 2020;49(5):555-70.
34. Peng Y, He X, Chen H, Duan H, Shao B, Yang F, et al. Inhibition of microRNA-299-5p sensitizes glioblastoma cells to temozolomide via the MAPK/ERK signaling pathway. Biosci Rep. 2018;38(5):49-61.
35. Polman CH, Reingold SC, Banwell B,Clanet M, Cohen JA, Filippi M, et al. Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria. Ann Neurol. 2011;69(2):292-302.
36. Ozturk M, Basoglu F, Yilmaz M, Ozagari AA, Baybas S. Interferon β associated nephropathy in a Multiple Sclerosis patient: A case and review. Mult Scler Relat Disord. 2016;9(1):50-3.
37. Carmel R. How I treat cobalamin (vitamin B12) deficiency. Blood. 2008;112(6):2214-21.
38. Porro C, Cianciulli A, Panaro MA. The Regulatory Role of IL-10 in Neurodegenerative Diseases. Biomolecules. 2020;10(7):1017.
39. Dimisianos N, Rodi M, Kalavrizioti D, Georgiou V, Papathanasopoulos P, Mouzaki A. Cytokines as biomarkers of treatment response to IFNβ in relapsing-remitting multiple sclerosis. Mult Scler Int. 2014;2014.
40. Trenova AG, Slavov GS, Manova MG, Kostadinova II. Cytokines and disability in interferon-β-1b treated and untreated women with multiple sclerosis. Arch Med Res. 2014;45(6):495-500.
41. Miao X, Tong X, Hu J, Wang J. Diagnostic value of miR-106a-5p in patients with psoriasis and its regulatory role in inflammatory responses. 2020.
42. Sanctuary MR, Huang RH, Jones AA, Luck ME, Aherne CM, Jedlicka P, et al. miR-106a deficiency attenuates inflammation in murine IBD models. Mucosal immunology. 2019;12(1):200-11.43
43. Kästle M, Bartel S, Geillinger‐Kästle K, Irmler M, Beckers J, Ryffel B, et al. micro RNA cluster 106a~ 363 is involved in T helper 17 cell differentiation. Immunol. 2017;152(3):402-13.
44. Zhang W, Liu H, Liu W, Liu Y, Xu J. Polycomb-mediated loss of microRNA let-7c determines inflammatory macrophage polarization via PAK1-dependent NF-κ B pathway. Cell Death Differ. 2015;22(2):287-97.
45. Yu J-H, Long L, Luo Z-X, Li L-M, You J-R. Anti-inflammatory role of microRNA let-7c in LPS treated alveolar macrophages by targeting STAT3. Asian Pac J Trop Med. 2016;9(1):72-5.
46. Lv J, Zeng Y, Qian Y, Dong J, Zhang Z, Zhang J. MicroRNA let-7c-5p improves neurological outcomes in a murine model of traumatic brain injury by suppressing neuroinflammation and regulating microglial activation. Brain Res. 2018;1685:91-104.
47. Muñoz-Culla M, Irizar H, Castillo-Triviño T, Sáenz-Cuesta M, Sepúlveda L, Lopetegi I, et al. Blood miRNA expression pattern is a possible risk marker for natalizumab-associated progressive multifocal leukoencephalopathy in multiple sclerosis patients. Mult Scler J. 2014;20(14):1851-9.
48. Bollyky PL, Wu RP, Falk BA, Lord JD, Long SA, Preisinger A, et al. ECMcomponents guide IL-10 producing regulatory T-cell (TR1) induction from effector memory T-cell precursors. Proc Natl Acad Sci. 2011;108(19):7938-43.
49. Vogt M, Floris S, Killestein J, Knol D, Smits M, Barkhof F, et al. Osteopontin levels and increased disease activity in relapsing–remitting multiple sclerosis patients. J Neuroimmunol. 2004;155(1-2):155-60.
50. Wen S-R, Liu G-J, Feng R-N, Gong F-C, Zhong H, Duan S-R, et al. Increased levels of IL-23 and osteopontin in serum and cerebrospinal fluid of multiple sclerosis patients. J Neuroimmunol. 2012;244(1-2):94-6.
51. Shimizu Y, Ota K, Ikeguchi R, Kubo S, Kabasawa C, Uchiyama S. Plasma osteopontin levels are associated with disease activity in the patients with multiple sclerosis and neuromyelitis optica. J Neuroimmunol. 2013;263(1-2):148-51.
52. Runia TF, van Meurs M, Nasserinejad K, Hintzen RQ. No evidence for an association of osteopontin plasma levels with disease activity in multiple sclerosis. Mult Scler. 2014;20(12):1670-1.
53. Kivisäkk P, Healy BC, Francois K, Gandhi R, Gholipour T, Egorova S, et al. Evaluation of circulating osteopontin levels in an unselected cohort of patients with multiple sclerosis: relevance for biomarker development. Mult Scler J. 2014;20(4):438-44.
54. Taganov KD, Boldin MP, Chang K-J, Baltimore D. NF-κB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc Natl Acad Sci. 2006;103(33):12481-6.
55. Koch MA, Perdue NR, Killebrew JR, Urdahl KB, Campbell DJ. The transcription factor T-bet controls regulatory T cell homeostasis and function during type 1 inflammation. Nat Immunol. 2009;10(6):595-602.
56. Shevde LA, Metge BJ, Mitra A, Xi Y, Ju J, King JA, et al. Spheroid‐forming subpopulation of breast cancer cellsdemonstrates vasculogenic mimicry via hsa‐miR‐299–5p regulated de novo expression of osteopontin. J Cell Mol Med. 2010;14(6b):1693-706.
57. Jin J-C, Jin X-L, Zhang X, Piao Y-S, Liu S-P. Effect of OSW-1 on microRNA expression profiles of hepatoma cells and functions of novel microRNAs. Mol Med Rep. 2013;7(6):1831-7.
Files
IssueVol 21 No 3 (2022) QRcode
SectionOriginal Article(s)
DOI https://doi.org/10.18502/ijaai.v21i3.9806
Keywords
Interleukin-10 Multiple sclerosis Osteopontin Vitamin B 12

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
1.
Hesamian MS, Shaygannejad V, Golabi M, Mirmosayyeb O, Andalib A, Eskandari N. The Role of Cobalamin on Interleukin 10, Osteopontin, and Related MicroRNAs in Multiple Sclerosis. Iran J Allergy Asthma Immunol. 2022;21(3):332-343.