CD40 and Tolerance Induction
Abstract
CD40 is recognized as a member of tumor necrosis factor receptor super family. It is expressed by the immune and non-immune cells. Its interaction with CD40 ligand (CD154) brings about a regulatory effect on the cellular and humoral immunity. The pathway of CD40-CD154 is influential in various diseases. Investigations on such diseases have revealed dimensional mechanisms whereby this route intensifies host protection. Moreover, through these mechanisms, pathogens subvert the signaling of the CD40, conditions in which the CD40–CD154 pathway promotes disease and also through the relevant modulation for immunotherapy.
This review focuses on the role of CD40–CD40L (CD154) interactions in dendritic cells (DCs) regulation, tolerogenic dendritic cells, role of CD40 in autoimmune disease, allograft rejection and induction of tolerance by down regulation of CD40. According to these roles, it is assumed that CD40 is a functional molecule in the pathologies of conditions like autoimmune diseases and allograft rejection caused by activated T and B cells.
1. Bishop GA, Moore CR, Xie P, Stunz LL, Kraus ZJ. TRAF proteins in CD40 signaling. Adv Exp Biol Med 2007; 597:131–51.
2. Peters AL, Stunz LL, Bishop GA. CD40 and autoimmunity: The dark side of a great activator Semin Immunol 2009; 21(5):293-300.
3. Lederman S, Yellin MJ, Krichevsky A, Belko J, Lee JJ, Chess L. Identification of a novel surface protein on activated CD4+ T cells that induce contact-dependent B cell differentiation (help). J Exp Med 1992; 175(4): 1091–101.
4. van Kooten C, Banchereau J. CD40-CD40 ligand. J Leukoc Biol 2000; 67(1):2–17.
5. Schonbeck U, Libby P. The CD40/CD154 receptor/ligand dyad. Cell Mol Life Sci 2001; 58(1):4– 43.
6. Danese S, Sans M, Fiocchi C. The CD40/CD40L costimulatory pathway in inflammatory bowel disease. Gut 2004; 53(7):1035-43.
7. Subauste CS. CD40 and the immune response to parasitic infections. Semin Immunol 2009; 21(5):273- 82.
8. Ridge JP, Di Rosa F, Matzinger PA. A conditioned dendritic cell can be a temporal bridge between a CD4+ T-helper and a T-killer cell. Nature 1998; 393(6684):474–78.
9. Durie FH, Foy TM, Masters SR, Laman JD, Noelle RJ. The role of CD40 in the regulation of humoral and cell- mediated immunity. Immunol Today 1994; 15(9):406– 11.
10. Aruffo A, Farrington M, Hollenbaugh D, Li X, Milatovich A, Nonoyama S, et al. The CD40 ligand, gp39, is defective in activated T cells from patients with X-linked hyper-IgM syndrome. Cell 1993; 72(2):291– 300.
11. Callard RE, Armitage RJ, Fanslow WC, Spriggs MK.CD40 ligand and its role in X- linked hyper-IgM syndrome. Immunol Today 1993; 14(11):559–64.
12. Xu J, Foy TM, Laman JD, Elliott EA, Dunn JJ, Waldschmidt TJ, et al. Mice deficient for the CD40 ligand. Immunity 1994; 1(5):423–31.
13. Grewal IS, Xu J, Flavell RA. Impairment of antigen-specific T-cell priming in mice lacking CD40 ligand. Nature 1995; 378(6557):617–20.
14. Grewal IS, Flavell RA. CD40 and CD154 in cell mediated immunity. Annu Rev Immunol 1998; 16:111–135.
15. Roy M, Aruffo A, Ledbetter J, Linsley P, Kehry M, Noelle R. Studies on the interdependence of gp39 and B7 expression and function during antigen specific immune responses. Eur J Immunol 1995; 25(2):596–603.
16. Blair PJ, Riley JL, Harlan DM, Abe R, Tadaki DK, Hoffmann SC, et al. CD40 ligand (CD154) triggers a short term CD4+ T cell activation response that results in secretion of immunomodulatory cytokines and apoptosis. J Exp Med 2000; 191(4):651–60.
17. Bourgeois C, Rocha B, Tanchot C. A role for CD40 expression on CD8+ T cells in the generation of CD8+ T cell memory. Science 2002; 297(5589):2060–63.
18. Déchanet J, Grosset C, Taupin JL, Merville P, Banchereau J, Ripoche J, et al. CD40 ligand stimulates proinflammatory cytokine production by human endothelial cells. J Immunol 1997; 159(11):5640–47.
19. Mach F, Schönbeck U, Fabunmi RP, Murphy C, Atkinson E, Bonnefoy JY, et al. T lymphocytes induce endothelial cell matrix metalloproteinase expression by a CD40L-dependent mechanism. Am J Pathol 1999; 154(1):229–38.
20. Thienel U, Loike J, Yellin MJ. CD154 (CD40L) induces human endothelial cell chemokine production and migration of leukocyte subsets. Cell Immunol 1999; 198(2):87–95.
21. Inwald DP, McDowall A, Peters MJ, Callard RE, Klein NJ. CD40 is constitutively expressed on platelets and provides a novel mechanism for platelet activation. Circ Res 2003; 92(9): 1041-8.
22. Danese S, de la Motte C, Reyes BM, Sans M, Levine AD, Fiocchi C. T-cells trigger CD40- dependent platelet activation and granular RANTES release: a novel pathway for immune response amplification. J Immunol 2004; 172(4): 2011–15.
23. Jacobson EM, Huber AK, Akeno N, Sivak M, Li CW, Concepcion E, et al. A CD40 Kozak sequence polymorphism and susceptibility to antibody-mediated autoimmune conditions: the role of CD40 tissue specific expression. Genes Immun 2007; 8(3):205–14.
24. Raychaudhuri S, Remmers EF, Lee AT, Hackett R, Guiducci C, Burtt NP, et al. Common variants at CD40 and other loci confer risk of rheumatoid arthritis. Nat Genet 2008; 40(10):1216–23.
25. Tomer Y, Concepcion E, Greenberg DA. A C/T single- nucleotide polymorphism in the region of the CD40 gene is associated with Graves’ disease. Thyroid 2002;12(12):1129–35.
26. Dolen Y, Yilmaz G, Esendagli G, Guler NE, Guc D. CD40 _1C>T single nucleotide polymorphism and CD40 expression on breast tumors. Cytokine 2010;50(3): 243–4.
27. Jacobson EM, Concepcion E, Oashi T, Tomer Y. A Graves’ disease-associated Kozak sequence single- nucleotide polymorphism enhances the efficiency of CD40 gene translation: a case for translational pathophysiology. Endocrinology 2005; 146(6):2684–91.
28. Skibola CF, Nieters A, Bracci PM, Curry JD, Agana L, Skibola DR, et al. A functional TNFRSF5 gene variant is associated with risk of lymphoma. Blood 2008; 111(8):4348–54.
29. Naik SH. Demystifying the development of dendritic cell subtypes, a little. Immunol Cell Biol 2008; 86(5):439–52.
30. Hellman P, Eriksson H. Early activation markers of human peripheral dendritic cells. Hum Immunol 2007; 68(5):324–33.
31. Della Bella S, Giannelli S, Taddeo A, Presicce P, VillaML. Application of six color flow cytometry for the assessment of dendritic cell responses in whole blood assays. J Immunol Methods 2008; 339(2):153–64.
32. Ma DY, Clark EA. The role of CD40 and CD154/CD40L in dendritic cells. Semin Immunol 2009; 21(5):265-72.
33.Vandenabeele S, Hochrein H, Mavaddat N, Winkel K, Shortman K. Human thymus contains 2 distinct dendritic cell populations. Blood 2001; 97(6):1733–41.
34. Martín P, del Hoyo GM, Anjuère F, Ruiz SR, Arias CF, Marín AR, et al. Concept of lymphoid versus myeloid dendritic cell lineages revisited: both CD8alpha(−) and CD8alpha(+) dendritic cells are generated from CD4 (low) lymphoid committed precursors. Blood 2000;96(7):2511–9.
35. Jomantaite I, Dikopoulos N, Kröger A, Leithäuser F, Hauser H, Schirmbeck R, et al. Hepatic dendritic cell subsets in the mouse. Eur J Immunol 2004; 34(2):355–65.
36. Reise Sousa C. Dendritic cells in a mature age. Nat Rev Immunol 2006; 6(6):476–83.
37.Delgado M, Gonzalez-Rey E, Ganea D. The neuropeptide vasoactive intestinal peptide generates tolerogenic dendritic cells. J Immunol 2005; 175(11):7311–24.
38. Wakkach A, Fournier N, Brun V, Breittmayer JP, Cottrez F, Groux H. Characterization of dendritic cells that induce tolerance and T regulatory 1 cell differentiation in vivo. Immunity 2003; 18(5):605–17.
39. Coquerelle C, Moser M. Are dendritic cells central to regulatory T cell function? Immunol Lett 2008; 119(1-2):12–16.
40. Kretschmer K, Apostolou I, Hawiger D, Khazaie K, Nussenzweig MC, von Boehmer H. Inducing and expanding regulatory T cell populations by foreign antigen. Nat Immunol 2005; 6(12):1219–27.
41. Hawiger D, Masilamani RF, Bettelli E, Kuchroo VK, Nussenzweig MC. Immunological unresponsiveness characterized by increased expression of CD5 on peripheral T cells induced by dendritic cells in vivo. Immunity 2004; 20(6):695–705.
42. Jaen O, Rulle S, Bessis N, Zago A, Boissier MC, Falgarone G. Dendritic cells modulated by innate immunity improve collagen-induced arthritis and induce regulatory T cells in vivo. Immunology 2009;126(1):35–44.
43. Sospedra M, Martin R. Immunology of MS. Annu Rev Immunol 2005; 23:683–747.
44. Balashov KE, Smith DR, Khoury SJ, Hafler DA, Weiner HL. Increased IL-12 production in pMS: induction by activated CD4+ T cells via CD40L. Proc Natl Acad Sci U S A 1997; 94(2):599–603.
45. Teleshova N, Bao W, Kivisakk P, Ozenci V, Mustafa M, Link H. Elevated CD40Lexpressing blood T-cell levels in MS are reversed by interferon-beta treatment. Scand J Immunol 2000; 51(3):312–20.
46. Issazadeh S, Navikas V, SchaubM, SayeghM, Khoury S. Kinetics of expression of costimulatory molecules and their ligands in murine rEAE in vivo. J Immunol 1998; 161(3):1104–12.
47. Samoilova EB, Horton JL, Zhang H, Chen Y. CD40L blockade prevents autoimmune encephalomyelitis and hampers TH1 but not TH2 pathway of T cell differentiation. J Mol Med 1997; 75(8):603–8.
48. Abromson-Leeman S, Maverakis E, Bronson R, Dorf ME. CD40-mediated activation of T cells accelerates, but is not required for, encephalitogenic potential of MBP-recognizing T cells in a model of pEAE. Eur J Immunol 2001; 31(2):527–38.
49. Howard LM, Dal Canto MC, Miller SD. Transient anti- CD154-mediated immunotherapy of ongoing rEAE induces long-term inhibition of disease relapses. J Neuroimmunol 2002; 129(1-2):58–65.
50. Tan J, Town T, Paris D, Placzek A, Parker T, CrawfordF, et al. Activation of microglial cells by the CD40 pathway: relevance to multiple sclerosis. J Neuroimmunol 1999; 97(1-2):77–85.
51. Ponomarev ED, Shriver LP, Dittel BN. CD40 expression by microglial cells is required for their completion of a two-step activation process during CNSautoimmune inflammation. J Immunol 2006; 176(3):1402–10.
52. Lettre G, Rioux JD. Autoimmune diseases: insights from genome-wide association studies. Hum Mol Genet 2008; 17(R2):116–21.
53. Buck D, Kroner A, Rieckmann P, Maurer M, Wiendl H. Analysis of the C/T(-1) SNP in the CD40 gene in MS. Tissue Antigens 2006; 68(4):335–8.
54. Kurylowicz A, Kula D, Ploski R, Skorka A, Jurecka- Lubieniecka B, Zebracka J, et al. Association of CD40 gene polymorphism (C-1T) with susceptibility and phenotype of GD. Thyroid 2005; 15(10):1119–24.
55. Noss EH, Brenner MB. The role and therapeutic implications of fibroblast like synoviocytes in inflammation and cartilage erosion in RA. Immunol Rev 2008; 223:252–70.
56. Brennan FM, McInnes IB. Evidence that cytokines play a role in RA. J Clin Invest 2008; 118(11):3537–45.
57. Yellin MJ, Winikoff S, Fortune SM, Baum D, Crow MK, Lederman S, et al. Ligation of CD40 on fibroblasts induces CD54 and CD106 upregulation, IL-6 production, and proliferation. J Leukoc Biol 1995; 58(2):209–16.
58. Min DJ, Cho ML, Lee SH, Min SY, Kim WU, Min JK, et al. Augmented production of chemokines by the interaction of type II collagen-reactive T cells with rheumatoid synovial fibroblasts. Arthritis Rheum 2004; 50(4):1146–55.
59. Cho ML, Yoon CH, Hwang SY, Park MK, Min SY, Lee SH. Effector function of type II collagen-stimulated T cells from RA patients: crosstalk between T cells and synovial fibroblasts. Arthritis Rheum 2004; 50(3):776–84.
60. Lee HY, Jeon HS, Song EK, Han MK, Park SI, Lee SI.CD40 ligation of rheumatoid synovial fibroblasts regulates RANKL-mediated osteoclastogenesis: evidence of NF-kB-dependent, CD40-mediated bone destruction in RA. Arthritis Rheum 2006; 54(6):1747–58.
61. Liu MF, Chao SC, Wang CR, Lei HY. Expression of CD40 and CD40L among cell populations within rheumatoid synovial compartment. Autoimmunity 2001; 34(2):107–13.
62. Lakey RL, Morgan TG, Rowan AD, Isaacs JD, Cawston TE, Hilkens CM. A novel paradigm for DC as effectors of cartilage destruction. Rheumatology 2009; 48(5):502–7.
63. Reparon-Schuijt CC, van Esch WJ, van Kooten C, Schellekens GA, de Jong BA, van Venrooij WJ, et al. Secretion of anti-CCP antibody by B lymphocytes in RA. Arthritis Rheum 2001; 44(1):41–7.
64. Berner B,Wolf G, Hummel KM, Muller GA, Reuss Borst MA. Increased expression of CD154 on CD4+ T cells as a marker of disease activity in RA. Ann Rheum Dis 2000; 59(3):190–95.
65. Rothstein DM, Sayegh MH. T-cell costimulatory pathways in allograft rejection and tolerance. Immunol Rev 2003; 196:85-108.
66. Larsen CP, Alexander DZ, Hollenbaugh D, Elwood ET, Ritchie SC, Aruffo A, et al. CD40–gp39 interactions play a critical role during allograft rejection:suppression of allograft rejection by blockade of the CD40–gp39 pathway. Transplantation 1996; 61(1):4–9.
67. Sho M, Sandner SE, Najafian N, Salama AD, Dong V, Yamada A, et al. New insights into the interactions between T cell costimulatory blockade and conventional immunosuppressive drugs. Ann Surg2002; 236(5):667–75.
68. Kirk AD, Harlan DM, Armstrong NN, Davis TA, Dong Y, Gray GS, et al. CTLA4-Ig and anti-CD40 ligand prevent renal allograft rejection in primates. Proc Natl Acad Sci USA 1997; 94(16):8789–94.
69. Kirk AD, Burkly LC, Batty DS, Baumgartner RE, Berning JD, Buchanan K, et al. Treatment with humanized monoclonal antibody against CD154 prevents acute renal allograft rejection in nonhuman primates. Nat Med 1999; 5(6): 686–93.
70. Kenyon NS, Chatzipetrou M, Masetti M, Ranuncoli A, Oliveira M, Wagner JL, et al. Long-term survival and function of intrahepatic islet allografts in rhesus monkeys treated with humanized anti-CD154. Proc Natl Acad Sci USA 1999; 96(14):8132–7.
71. Kenyon NS, Fernandez LA, Lehmann R, Masetti M, Ranuncoli A, Chatzipetrou M, et al. Long-term survival and function of intrahepatic islet allografts in baboons treated with humanized anti-CD154. Diabetes 1999;48(7):1473–81.
72. Ensminger SM, Witzke O, Spriewald BM, MorrisonK, Morris PJ, Rose ML, et al. CD8+ T cells contribute to the development of transplant arteriosclerosis despite CD154 blockade. Transplantation 2000; 69(12):2609–12.
73. Shimizu K, Schonbeck U, Mach F, Libby P, Mitchell RN. Host CD40 ligand deficiency induces long-term allograft survival and donor-specific tolerance in mouse cardiac transplantation but does not prevent graft arteriosclerosis. J Immunol 2000; 165(6):3506–18.
74. Morelli AE, Thomson AW. Dendritic cells: regulators of alloimmunity and opportunities for tolerance induction. Immunol Rev 2003; 196: 125–46.
75. Takayama T, Tahara H, Thomson AW. Transduction of dendritic cell progenitors with a retroviral vector encoding viral interleukin-10 and enhanced green fluorescent protein allows purification of potentially tolerogenic antigen-presenting cells. Transplantation1999; 68(12):1903–9.
76. Giannoukakis N, Bonham CA, Qian S, Chen Z, Peng L, Harnaha J, et al. Prolongation of cardiac allograft survival using dendritic cells treated with NF-kB decoy oligodeoxyribonucleotides. Mol Ther 2000; 1(5 Pt1):430–7.
77. Fjose A, Ellingsen S, Wargelius A, Seo HC. RNA interference: mechanisms and applications. Biotechnol Annu Rev 2001; 7:31-57.
78. Lu L, Gambotto A, Lee WC, Qian S, Bonham CA, Robbins PD, et al. Adenoviral delivery of CTLA4Ig into myeloid dendritic cells promotes their in vitro tolerogenicity and survival in allogeneic recipients. Gene Ther 1999; 6(4):554-63.
79. Zamecnik PC, Stephenson ML. Inhibition of Rous sarcoma virus replication and cell transformation by a specific oligodeoxynucleotide. Proc Natl Acad Sci USA1978; 75:280–4.
80. Kurreck J. Antisense technologies improvement through novel chemical modifications. Eur J Biochem 2003; 270(8): 1628–44.
81. Meister G, Tuschl T. Mechanisms of gene silencing by double stranded RNA. Nature 2004; 431(7006):343–9.
82. Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 2001; 411(6836):494–8.
83. Corey DR. RNA learns from antisense. Nat Chem Biol 2007; 3(1):8–11.
84. Hannon GJ. RNA interference. Nature 2002; 418(6894): 244-51.
85. Dorsett Y, Tuschl T. siRNAs: applications in functional genomics and potential as therapeutics. Nat Rev Drug Discov 2004; 3(4):318–29.
86. Grewal IS, Flavell RA. The role of CD40 ligand in costimulation and T-cell activation. Immunol Rev 1996; 153:85-106.
87. Blazar BR, Taylor PA, Panoskaltsis-Mortari A, Buhlman J, Xu J, Flavell RA, et al. Blockade of CD40 ligand-CD40 interaction impairs CD4+ T cell-mediated alloreactivity by inhibiting mature donor T cell expansion and function after bone marrow transplantation. J Immunol 1997; 158(1):29-39.
88. Crooke ST. Progress in antisense technology. Annu. Rev. Med 2004; 55: 61–95.
89. Wu H, Lima WF, Zhang H, Fan A, Sun H, Crooke ST. Determination of the role of the human RNase H1 in the pharmacology of DNA-like antisense drugs. J Biol Chem 2004; 279(17): 17 181–89.
90. Scherer LJ, Rossi JJ. Approaches for the sequence specific knockdown of mRNA. Nat Biotechnol 2003; 21(12): 1457–65.
91. Hill JA, Ichim TE, Kusznieruk KP, Li M, Huang X, Yan X, et al. Immune modulation by silencing IL-12 production in dendritic cells using small interfering RNA. J Immunol 2003; 171(2):691–6.
92. Ebadi P, Karimi MH, Pourfathollah AA, Saheb ghadam Lotfi A, Soheili ZS, Moazzeni SM, et al. The efficiency of CD40 down regulation by siRNA and antisense ODN: comparison of Lipofectamine and FuGENE6. Iran J Immunol 2009; 6(1):1-11.
93. Karimi MH, Ebadi P, Pourfathollah AA, Soheili ZS, Samiee SH, Ataee Z, et al. Immune modulation through RNA interference-mediated silencing of CD40 in dendritic cells. Cell Immunol 2009; 259(1):74-81.
94. Karimi MH, Ebadi P, Pourfathollah AA, Soheili ZS, Samiee SH, Ataee Z, et al. Tolerance induction by CD40 silenced dendritic cells through antisense. Iran Red Cres Med J 2009; 11:1-9.
95. Xu Y, Zhang HY, Thormeyer D, Larsson O, Du Q, Elmen J, et al. Effective small interfering RNAs and phosphorothioate antisense DNAs have different preferences for target sites in the luciferase mRNAs. Biochem Biophys Res Commun 2003; 306(3):712–7.
96. Grünweller A, Wyszko E, Bieber B, Jahnel R, Erdmann VA, Kurreck J. Comparison of different antisense strategies in mammalian cells using locked nucleic acids, 2-O-methyl RNA, phosphorothioates and small interfering RNA. Nucleic Acids Res 2003;31(12):3185-93.
97. Hiroi N, Funahashi A, Kitano H. Comparative studies of suppression of malignant cancer cell phenotype by antisense oligo DNA and small interfering RNA. Cancer Gene Ther 2006; 13(1):7-12.
98. Miyagishi M, Hayashi M, Taira K. Comparison of the suppressive effects of antisense oligonucleotides and siRNAs directed against the same targets in mammalian cells. Antisense Nucleic Acid Drug Dev 2003; 13(1):1-7.
99. Bilanges B, Stokoe D. Direct comparison of the specificity of gene silencing using antisense oligonucleotides and RNAi. Biochem J 2005; 388(pt2):573-83.
100. Chi JT, Chang HY, Wang NN, Chang DS, Dunphy N, Brown PO. Genome wide view of gene silencing by small interfering RNAs. Proc Natl Acad Sci USA 2003;100(11): 6343–6.
101. Bertrand JR, Pottier M, Vekris A, Opolon P, Maksimenko A, Malvy C. Comparison of antisense oligonucleotides and siRNAs in cell culture and in vivo. Biochem Biophys Res Commun 2002; 296(4):1000–4.
102. Vickers TA, Koo S, Bennett CF, Crook ST, Dean NM, Baker BF. Efficient reduction of target RNAs by small interfering RNA and RNase H-dependent antisense agents. J Biol Chem 2003; 278(9): 7108-18.
103. Kim DH, Rossi JJ. RNAi mechanisms and applications.biotechniques 2008; 44(5): 613-6.
104. Aigner A. Applications of RNA interference: current state and prospects for siRNA-based strategies in vivo. Appl Microbiol Biotechnol 2007; 76(1):9–21.
Files | ||
Issue | Vol 11, No 1 (2012) | |
Section | Articles | |
Keywords | ||
CD40 Tolerance |
Rights and permissions | |
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. |