Original Article
 

Alterations in Mitochondrial and Inflammasome Homeostasis by 2-Chloroethyl Ethyl Sulfide and Their Mitigation by Curcumin: An in Vitro Study

Abstract

The mitochondrion has a substantial role in innate immunity and inflammasome signaling pathways. Sulfur mustard (SM) induces toxicity in cytoplasmic organelles. We aimed to evaluate the potential therapeutic effect of curcumin on the toxicity of SM analog through measuring gene expression levels of mitochondrial dynamics followed by induction of the inflammasome signaling pathway.
After the treatment of pulmonary epithelial cell line (A549) by 2-chloroethyl ethyl sulfide (CEES) (2500 mM) for 48h, the transcriptional activity of mitochondrial fission and fusion genes such as dynamin-related protein 1 (Drp1), mitochondrial fission 1 protein (Fis1), mitofusin-1 (Mfn1), mitofusin-2 (Mfn2), and Dominant optic atrophy (Opa1) and inflammasome pathway genes including absent in melanoma 2 (AIM2), NLR family containing protein 3 (NLRP3), and Apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) was measured. Furthermore, the inhibitory effect of curcumin (160 mM) concurrent with SM analog on the expression level of mitochondria and inflammasome genes was investigated.
CEES was able to over-express the fission, fusion (Drp1 ~ 8, Fis1 4.5, Mfn2 15, and Opa1 16-fold) and inflammasome genes (AIM2, NLRP3,  8 and 6-fold, respectively), whereas Mfn1 was significantly decreased (0.5-fold) and a not statistically significant decrease was observed in the ASC gene. Curcumin could modulate the effect of CEES, mitigate the expression of fission, fusion, and inflammasome genes exceedingly. However, a major increase in the repairer fusion gene (Mfn1, 6-fold) and complete suppression of the ASC gene were the outcomes of using the curcumin.
In conclusion, we suggest curcumin alleviates the disturbance of mitochondrial dynamics and downregulates the inflammasome genes exposed to the CEES.

1. Roshan R, Rahnama P, Ghazanfari Z, Montazeri A, Soroush MR, Naghizadeh MM, et al. Long-term effects of sulfur mustard on civilians’ mental health 20 years after exposure (The Sardasht-Iran Cohort Study). Health Qual Life Outcomes. 2013;11(1):69.
2. Iman M, Rezaei R, Azimzadeh Jamalkandi S, Shariati P, Kheradmand F, Salimian J. Th17/Treg immunoregulation and implications in treatment of sulfur mustard gas-induced lung diseases. Expert Rev Clin Immunol. 2017;13(12):1173-88.
3. Imani S, Panahi Y, Salimian J, Fu J, Ghanei M. Epigenetic: A missing paradig in cellular and molecular pathways of sulfur mustard lung: a prospective and comparative study. Iran JBasic Med Sci 2015;18(8):723.
4. Shahriary A, Seyedzadeh MH, Ahmadi A, Salimian J. The footprint of TGF-β in airway remodeling of the mustard lung. Inhal Toxicol. 2015;27(14):745-53.
5. Białas AJ, Sitarek P, Miłkowska-Dymanowska J, Piotrowski WJ, Górski P. The role of mitochondria and oxidative/antioxidative imbalance in pathobiology of chronic obstructive pulmonary disease. Oxid. Med. Cell Longev. 2016;2016.
6. Zorov DB, Vorobjev IA, Popkov VA, Babenko VA, Zorova LD, Pevzner IB, et al. Lessons from the discovery of mitochondrial fragmentation (fission): a review and update. Cells. 2019;8(2):175-8.
7. Kwong FNK, Nicholson AG, Harrison CL, Hansbro PM, Adcock IM, Chung KF. Is mitochondrial dysfunction a driving mechanism linking COPD to nonsmall cell lung carcinoma? Europ ResRev. 2017;26(146):18-21.
8. Sabnam S, Rizwan H, Pal S, Pal A. CEES-induced ROS accumulation regulates mitochondrial complications and inflammatory response in keratinocytes. ChemBiol Interact. 2020:109031.
9. Sabnam S, Pal A. Relevance of Erk1/2-PI3K/Akt signaling pathway in CEES-induced oxidative stress regulates inflammation and apoptosis in keratinocytes. Cell Biol Toxicol. 2019;35(6):541-64.
10. Sagar S, Parida SR, Sabnam S, Rizwan H, Pal S, Swain MM, et al. Increasing NO level regulates apoptosis and inflammation in macrophages after 2-chloroethyl ethyl sulphide challenge. IntJBiochem cell biol. 2017;83:1-14.
11. Gurung P, Lukens JR, Kanneganti T-D. Mitochondria: diversity in the regulation of the NLRP3 inflammasome. Trends Mol Med. 2015;21(3):193-201.
12. Asnaf SE, Sabetghadam M, Jaafarinejad H, Halabian R, Parvin S, Vahedi E, et al. Is the Inflammasome Pathway Active in the Peripheral Blood of Sulfur Mustard-exposed Patients? Iran J Allergy, Asthma Immunol. 2019.
13. Jo E-K, Kim JK, Shin D-M, Sasakawa C. Molecular mechanisms regulating NLRP3 inflammasome activation. CellMol Immunol. 2016;13(2):148-59.
14. Chehardoli B. NM, Khamis Abadi A., Kia A., Shahriary A., Salimian J. Immunomodulatory Effect of Curcumin in the Upregulation of Inflammasome Pathway Genes Induced by Sulfur Mustard Analog: an In-Vitro Study. Iran J Allergy Asthma Immunol. 2021;20(5):169-177.
15. Liu Q, Zhang D, Hu D, Zhou X, Zhou Y. The role of mitochondria in NLRP3 inflammasome activation. Mol Immunol. 2018;103(11):115-24.
16. Sandhir R, Halder A, Sunkaria A. Mitochondria as a centrally positioned hub in the innate immune response. Biochim Biophys Acta2017;1863(5):1090-7.
17. Mirzaei H, Shakeri A, Rashidi B, Jalili A, Banikazemi Z, Sahebkar A. Phytosomal curcumin: A review of pharmacokinetic, experimental and clinical studies. Biomed. Pharmacother. 2017;85(6):102-12.
18. Hewlings SJ, Kalman DS. Curcumin: a review of its’ effects on human health. Foods. 2017;6(10):92-9.
19. Kahkhaie KR, Mirhosseini A, Aliabadi A, Mohammadi A, Mousavi MJ, Haftcheshmeh SM, et al. Curcumin: a modulator of inflammatory signaling pathways in the immune system. Inflammopharmacology. 2019;27(5):885-900.
20. Garone C, Minczuk M, Tilokani L, Nagashima S, Paupe V, Prudent J. Mitochondrial dynamics: overview of molecular mechanisms. Essays biochem. 2018;62(3):341-60.
21. Schrepfer E, Scorrano L. Mitofusins, from mitochondria to metabolism. Mol. cell. 2016;61(5):683-94.
22. Mitra K. Mitochondrial fission‐fusion as an emerging key regulator of cell proliferation and differentiation. Bioessays. 2013;35(11):955-64.
23. Yang J, Guo W, Wang J, Yang X, Zhang Z, Zhao Z. T-2 toxin-induced oxidative stress leads to imbalance of mitochondrial fission and fusion to activate cellular apoptosis in the human liver 7702 cell line. Toxins. 2020;12(1):43-9.
24. Li Q, Dong Z, Lian W, Cui J, Wang J, Shen H, et al. Ochratoxin A causes mitochondrial dysfunction, apoptotic and autophagic cell death and also induces mitochondrial biogenesis in human gastric epithelium cells. Archiv Toxicol. 2019;93(4):1141-55.
25. Shao Y, Zhao H, Wang Y, Liu J, Zong H, Xing M. Copper-mediated mitochondrial fission/fusion is associated with intrinsic apoptosis and autophagy in the testis tissues of chicken. Biol Trace Elem Res. 2019;188(2):468-77.
26. Wang W, Wang R, Zhang Q, Mor G, Zhang H. Benzo (a) pyren-7, 8-dihydrodiol-9, 10-epoxide induces human trophoblast Swan 71 cell dysfunctions due to cell apoptosis through disorder of mitochondrial fission/fusion. EnvironPollut. 2018;233(13):820-32.
27. Hoffmann RF, Zarrintan S, Brandenburg SM, Kol A, de Bruin HG, Jafari S, et al. Prolonged cigarette smoke exposure alters mitochondrial structure and function in airway epithelial cells. Respir Res. 2013;14(1):97-101.
28. Aravamudan B, Kiel A, Freeman M, Delmotte P, Thompson M, Vassallo R, et al. Cigarette smoke-induced mitochondrial fragmentation and dysfunction in human airway smooth muscle. Am J Physiol. 2014;306(9): L840-L54.
29. Zhong Z, Liang S, Sanchez-Lopez E, He F, Shalapour S, Lin X-j, et al. New mitochondrial DNA synthesis enables NLRP3 inflammasome activation. Nature. 2018;560(7717):198-203.
30. Park S, Won J-H, Hwang I, Hong S, Lee HK, Yu J-W. Defective mitochondrial fission augments NLRP3 inflammasome activation. Sci reports. 2015;5(8):15489-97.
31. Zhou R, Yazdi AS, Menu P, Tschopp J. A role for mitochondria in NLRP3 inflammasome activation. Nature. 2011;469(7329):221-5.
32. Trujillo J, Granados‐Castro LF, Zazueta C, Andérica‐Romero AC, Chirino YI, Pedraza‐Chaverrí J. Mitochondria as a target in the therapeutic properties of curcumin. Archiv der Pharmazie. 2014;347(12):873-84.
33. Olcum M, Tastan B, Ercan I, Eltutan IB, Genc S. Phytochemicals and NLRP3 Inflammasome Inhibitory effects of Phytochemicals on NLRP3 Inflammasome Activation: A Review. Phytomedicine. 2020:153238.
Files
IssueVol 20 No 5 (2021) QRcode
SectionOriginal Article(s)
DOI https://doi.org/10.18502/ijaai.v20i5.7411
Keywords
2-chloroethyl ethyl sulfide Curcumin Inflammasomes Mitochondrial genes

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
1.
Kia A, Nadi M, Hajhasan V, Salimian J. Alterations in Mitochondrial and Inflammasome Homeostasis by 2-Chloroethyl Ethyl Sulfide and Their Mitigation by Curcumin: An in Vitro Study. Iran J Allergy Asthma Immunol. 2021;20(5):614-622.