Bradykinin as a Probable Aspect in SARS-Cov-2 Scenarios: Is Bradykinin Sneaking out of Our Sight?

  • Seyed-Mohammad Ghahestani Children’s Medical Center Hospital, Tehran University of Medical Sciences, Tehran, Iran
  • Javad Mahmoudi Mail Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
  • Sakineh Hajebrahimi Research Center for Evidence-Based-Medicine, Iranian EBM Center, A JBI Affiliated Center of Excellence, Tabriz University of Medical Sciences, Tabriz, Iran AND Department of Urology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
  • Amir-Babak Sioofy-Khojine Research Center for Evidence-Based-Medicine, Iranian EBM Center, A JBI Affiliated Center of Excellence, Tabriz University of Medical Sciences, Tabriz, Iran AND Faculty of Medicine and Life Technologies, Tampere University, Tampere, Finland AND Research Center for Infectious and Tropical Disease, Tabriz University of Medical Sciences, Tabriz, Iran
  • Hanieh Salehi-Pourmehr Research Center for Evidence-Based-Medicine, Iranian EBM Center, A JBI Affiliated Center of Excellence, Tabriz University of Medical Sciences, Tabriz, Iran
  • Fatemeh Sadeghi-Ghyassi Research Center for Evidence-Based-Medicine, Iranian EBM Center, A JBI Affiliated Center of Excellence, Tabriz University of Medical Sciences, Tabriz, Iranersity of Medical Sciences, Tabriz, Iran 7 Department of Urology, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
  • Hadi Mostafaei Department of Urology, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
Keywords:
Aprotinin, Angiotensin-converting enzyme 2, Bradykinin, Icatibant, SARS-CoV-2

Abstract

The new virus SARS-CoV-2 is savagely spreading out over the world. The biologic studies show that the target receptor for the virus might be angiotensin-converting enzyme 2 (ACE2). This peptide is responsible for converting angiotensin II (Ang II), which is a profoundly active peptide, into Ang 1-7 with quite a balancing barbell function. It is emphasized that the direct target of the virus is ACE2 underlining the obvious difference with ACE. Nevertheless, we hypothesized that a back load build up effect on Ang II may usurp the ACE capacity and subsequently leave the bradykinin system unabated. We think there are clinical clues for dry cough and the presumed aggravating role of ACE inhibitors like captopril on the disease process. Thereby, we speculated that inhibition of bradykinin synthesis and/or blockade of bradykinin B2 receptor using Aprotinin/ecallantide and Icatibant, respectively, may hold therapeutic promise in severe cases and these molecules can be advanced to clinical trials.

References

1. Sohrabi C, Alsafi Z, O'Neill N, Khan M, Kerwan A, Al-Jabir A, et al. World Health Organization declares global emergency: A review of the 2019 novel coronavirus (COVID-19). Int J Surg. 2020;76:71-6.
2. Parker E. Covid 2019 tracker. 2020.
3. Shah SGS, Farrow A. A commentary on "World Health Organization declares global emergency: A review of the 2019 novel Coronavirus (COVID-19)". Int J Surg. 2020;76:128-9.
4. Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS, Manson JJ. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet. 2020;395(10229):1033-4.
5. Mukae S, Itoh S, Aoki S, Iwata T, Nishio K, Sato R, et al. Association of polymorphisms of the renin-angiotensin system and bradykinin B2 receptor with ACE-inhibitor-related cough. J Hum Hypertens. 2002;16(12):857-63.
6. Sharma J. Activation of the bradykinin system by angiotensin-converting enzyme inhibitors. Eur J Inflamm. 2010.
7. Hewitt MM, Adams G, Jr., Mazzone SB, Mori N, Yu L, Canning BJ. Pharmacology of Bradykinin-Evoked Coughing in Guinea Pigs. J Pharmacol Exp Ther. 2016;357(3):620-8.
8. Ricciardolo FLM, Folkerts G, Folino A, Mognetti B. Bradykinin in asthma: Modulation of airway inflammation and remodelling. Eur J Pharmacol. 2018;827:181-8.
9. Takei Y, Ando H, Tsutsui K. Handbook of hormones: comparative endocrinology for basic and clinical research: Academic Press; 2015.
10. Fox AJ, Lalloo UG, Belvisi MG, Bernareggi M, Chung KF, Barnes PJ. Bradykinin-evoked sensitization of airway sensory nerves: a mechanism for ACE-inhibitor cough. Nat med. 1996;2(7):814-7.
11. Zhang Y, Adner M, Cardell LO. IL-1beta-induced transcriptional up-regulation of bradykinin B1 and B2 receptors in murine airways. Am J Respir Cell Mol Biol. 2007;36(6):697-705.
12. Coyle AJ, Ackerman SJ, Burch R, Proud D, Irvin CG. Human eosinophil-granule major basic protein and synthetic polycations induce airway hyperresponsiveness in vivo dependent on bradykinin generation. J Clin Invest. 1995;95(4):1735-40.
13. Fuller RW, Dixon CM, Cuss FM, Barnes PJ. Bradykinin-induced bronchoconstriction in humans. Mode of action. Am Rev Respir Dis. 1987;135(1):176-80.
14. Homma T, Irvin CG. Bradykinin-induced bronchospasm in the rat in vivo: a role for nitric oxide modulation. Eur Respir J. 1999;13(2):313-20.
15. Taddei S, Bortolotto L. Unraveling the Pivotal Role of Bradykinin in ACE Inhibitor Activity. Am J Cardiovasc Drugs. 2016;16(5):309-21.
16. Kaufman MB. ACE Inhibitor-Related Angioedema: Are Your Patients at Risk? P T. 2013;38(3):170-2.
17. Kaplan AP, Joseph K, Silverberg M. Pathways for bradykinin formation and inflammatory disease. J Allergy Clin Immunol. 2002;109(2):195-209.
18. Li W, Moore MJ, Vasilieva N, Sui J, Wong SK, Berne MA, et al. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature. 2003;426(6965):450-4.
19. Tikellis C, Thomas MC. Angiotensin-Converting Enzyme 2 (ACE2) Is a Key Modulator of the Renin Angiotensin System in Health and Disease. Int J Pept. 2012;2012:256294.
20. Wong MK. Angiotensin converting enzymes. Handbook of Hormones: Elsevier; 2016. p. 263-e29D-4.
21. Te Velthuis AJ, van den Worm SH, Sims AC, Baric RS, Snijder EJ, van Hemert MJ. Zn2+ inhibits coronavirus and arterivirus RNA polymerase activity in vitro and zinc ionophores block the replication of these viruses in cell culture. PLoS pathogens. 2010;6(11).
22. van de Veerdonk F, Netea MG, van Deuren M, van der Meer JW, de Mast Q, Bruggemann RJ, et al. Kinins and Cytokines in COVID-19: A Comprehensive Pathophysiological Approach. 2020.
23. Tolouian R, Vahed SZ, Ghiyasvand S, Tolouian A, Ardalan M. COVID-19 interactions with angiotensin-converting enzyme 2 (ACE2) and the kinin system; looking at a potential treatment. Journal of Renal Injury Prevention. 2020;9(2).
24. Andrejak M, Andrejak M-T, Osterman G. Enalapril, captopril, and cough. Arch Intern Med 1988;148(1):249-.
25. Overlack A. ACE inhibitor-induced cough and bronchospasm. Drug saf. 1996;15(1):72-8.
26. Guimarães JA, Borges DR, Prado ES, Prado J. Kinin-converting aminopeptidase from human serum. Biochem Pha
rmacol. 1973;22(24):3157-72.
27. Patel AB, Verma A. COVID-19 and Angiotensin-Converting Enzyme Inhibitors and Angiotensin Receptor Blockers: What Is the Evidence? JAMA. 2020.
28. Danser AHJ, Epstein M, Batlle D. Renin-Angiotensin System Blockers and the COVID-19 Pandemic: At Present There Is No Evidence to Abandon Renin-Angiotensin System Blockers. Hypertension. 2020.
Published
2020-05-17
How to Cite
1.
Ghahestani S-M, Mahmoudi J, Hajebrahimi S, Sioofy-Khojine A-B, Salehi-Pourmehr H, Sadeghi-Ghyassi F, Mostafaei H. Bradykinin as a Probable Aspect in SARS-Cov-2 Scenarios: Is Bradykinin Sneaking out of Our Sight?. Iran J Allergy Asthma Immunol. 19(S1):13-17.
Section
Coronavirus Disease (COVID-19)-Original Article