Investigating the Relationship between Serum Levels of Interleukin-22 and Interleukin-1 Beta with Febrile Seizure
Abstract
A febrile seizure is the most common type of seizure in young kids, which is not fully known. Inflammatory mediators can affect the pathogenesis of the disease. Considering the controversy about the impacts of interleukin 1 beta (IL-1β) and the lack of a study on interleukin 22 (IL-22), the purpose of the present study was to investigate the relationship between IL-22 and IL-1β serum levels with febrile seizure in young kids.
Our case-control study has been conducted on 120 young kids aged 6-60 months with the sign of the fever. Rectal temperature was measured for allcases. Patients with febrile seizure (n=60) and patients with fever and without a seizure (n=60) were investigated as case and control groups, respectively. Serum levels of IL-22 and IL-1β were measured in all participants through the ELISA method.
The serum level of IL-1β was significantly higher in the case group compared to the control group (p˂0.001), while there were no significant differences between the two groups in terms of IL-22 (p=0.92). Unlike IL-1β (p≤0.021), IL-22 showed no difference between two groups according to some demographic and clinical features like gender, age group, family history of febrile seizure, family history of epilepsy, and evolutionary status (p>0.22). Logistic multiple regression analysis showed that, unlike IL-1β (p˂0.001), IL-22 does not change the chance of febrile seizure in the study groups (p=0.737).
The findings of this study indicated that, unlike IL-1β, IL-22 has not any changes/effects in the febrile seizure.
2. Sadleir LG, Scheffer IE. Febrile seizures. Bmj. 2007;334(7588):307-11.
3. Klein NP, Fireman B, Yih WK, Lewis E, Kulldorff M, Ray P, et al. Measles-mumps-rubella-varicella combination vaccine and the risk of febrile seizures. Pediatrics. 2010;126(1):e1-e8.
4. Sun Y, Christensen J, Hviid A, Li J, Vedsted P, Olsen J, et al. Risk of febrile seizures and epilepsy after vaccination with diphtheria, tetanus, acellular pertussis, inactivated poliovirus, and Haemophilus influenzae type B. Jama. 2012;307(8):823-31.
5. Dubé CM, Brewster AL, Baram TZ. Febrile seizures: mechanisms and relationship to epilepsy. Brain D. 2009;31(5):366-71.
6. Waruiru C, Appleton R. Febrile seizures: an update. Arch Dis Child. 2004;89(8):751-6.
7. Leung AK, Hon KL, Leung TN. Febrile seizures: an overview. Drugs Context. 2018.16;7:212536.
8. Capovilla G, Mastrangelo M, Romeo A, Vigevano F. Recommendations for the management of “febrile seizures” Ad hoc task force of LICE guidelines commission. Epilepsia. 2009;50(1):2-6.
9. Knudsen FU. Febrile seizures: treatment and prognosis. Epilepsia. 2000;41(1):2-9.
10. Saghazadeh A, Gharedaghi M, Meysamie A, Bauer S, Rezaei N. Proinflammatory and anti-inflammatory cytokines in febrile seizures and epilepsy: systematic review and meta-analysis. Rev Neurosci. 2014;25(2):281-305.
11. Eyerich S, Eyerich K, Pennino D, Carbone T, Nasorri F, Pallotta S, et al. Th22 cells represent a distinct human T cell subset involved in epidermal immunity and remodeling. J Clin Invest. 2009;119(12):3573-85.
12. Rishi Vishal Luckheeram,Rui Zhou,Asha Devi Verma, Bing Xia. CD4+T Cells: Differentiation and Functions. Clin Dev Immunol. 2012; 2012: 925135.
13. Trifari S, Kaplan CD, Tran EH, Crellin NK, Spits H. Identification of a human helper T cell population that has abundant production of interleukin 22 and is distinct from T H-17, T H 1 and T H 2 cells. Nat Immunol. 2009;10(8):864-71.
14. Choy M, Dubé CM, Ehrengruber M, Baram TZ. Inflammatory Processes, Febrile Seizures, and Subsequent Epileptogenesis: Inflammatory Processes, Febrile Seizures, and Subsequent Epileptogenesis. Epilepsy Curr. 2014;14(2_suppl):15-22.
15. Kebir H, Kreymborg K, Ifergan I, Dodelet-Devillers A, Cayrol R, Bernard M, et al. Human TH17 lymphocytes promote blood–brain barrier disruption and central nervous system inflammation. Nat Med. 2007;13:1173–5.
16. Caspi R, Mattapallil M, Rigden R, et al. Neuroprotective effects of IL-22 during CNS inflammation. J Immunol. 2015; 194(1 Supplement)118.3.
17. Yu H-M, Liu W-H, He X-H, Peng B-W. IL-1β: an important cytokine associated with febrile seizures? Neurosci Bull. 2012;28(3):301-8.
18. Mahyar A, Ayazi P, Orangpour R, Daneshi-Kohan MM, Sarokhani MR, Javadi A, et al. Serum interleukin-1beta and tumor necrosis factor-alpha in febrile seizures: is there a link? Korean J Pediatr. 2014;57(10):440-4.
19. Güven A, Icagasioglu F, Duksal F, Sancakdar E, Alaygut D, Uysal E, et al. Serum adiponectin, leptin, and interleukin 6 levels as adipocytokines in children with febrile seizures: The role of adipose tissue in febrile seizures. Hum Exp Toxicol. 2015;34(9):878-83.
20. Al Morshedy S, Elsaadany HF, Ibrahim HE, Sherif AM, Farghaly MA, Allah MA, et al. Interleukin-1β and interleukin-1receptor antagonist polymorphisms in Egyptian children with febrile seizures: a case-control study. Medicine. 2017;96(11).
21. Straussberg R, Amir J, Harel L, Punsky I, Bessler H. Pro-and anti-inflammatory cytokines in children with febrile convulsions. Pediatr Neurol. 2001;24(1):49-53.
22. Tütüncüoğlu S, Kütükçüler N, Kepe L, Çoker C, Berdeli A, Tekgül H. Proinflammatory cytokines, prostaglandins and zinc in febrile convulsions. Pediatr Int. 2001;43(3):235-9.
23. Gallentine WB, Shinnar S, Hesdorffer DC, Epstein L, Nordli Jr DR, Lewis DV, et al. Plasma cytokines associated with febrile status epilepticus in children: a potential biomarker for acute hippocampal injury. Epilepsia. 2017;58(6):1102-11.
24. Allan SM, Tyrrell PJ, Rothwell NJ. Interleukin-1 and neuronal injury. Nat Rev Immunol. 2005;5(8):629.
25. Zhu G, Okada M, Yoshida S, Mori F, Hirose S, Wakabayashi K, et al. Involvement of Ca2+-induced Ca2+ releasing system in interleukin-1β-associated adenosine release. Eur J Pharmacol. 2006;532(3):246-52.
26. Patel H, Ross F, Heenan L, Davies R, Rothwell N, Allan S. Neurodegenerative actions of interleukin‐1 in the rat brain are mediated through increases in seizure activity. J Neurosci Res. 2006;83(3):385-91.
27. Amna Rana, Alberto E. Musto. The role of inflammation in the development of epilepsy. J Neuroinflammation. 2018; 15:144.
28. Riazi K, Galic MA, Pittman QJ. Contributions of peripheral inflammation to seizure susceptibility: cytokines and brain excitability. Epilepsy Res. 2010;89(1):34-42.
29. Nakayama J, Arinami T. Molecular genetics of febrile seizures. Epilepsy Res. 2006;70:190-8.
30. Eun BL, Abraham J, Mlsna L, Kim MJ, Koh S. Lipopolysaccharide potentiates hyperthermia‐induced seizures. Brain Behav. 2015;5(8):e00348.
31. Haspolat S, Mihçi E, Coşkun M, Gümüslü S, Özbenm T, Yegin O. Interleukin-1β, tumor necrosis factor-α, and nitrite levels in febrile seizures. J Child Neurol. 2002;17(10):749-51.
32. Lahat E, Livne M, Barr J, Katz Y. Interleukin-1β levels in serum and cerebrospinal fluid of children with febrile seizures. Pediatr Neurol. 1997;17(1):34-6.
33. Tomoum HY, Badawy NM, Mostafa AA, Harb MY. Plasma interleukin-1β levels in children with febrile seizures. J Child Neurol. 2007;22(6):689-92.
34. Bo Feng, Yangshun Tang, Bin Chen, et al. Transient increase of interleukin-1β after prolonged febrile seizures promotes adult epileptogenesis through long-lasting upregulating endocannabinoid signaling. Sci Rep. 2016;6:21931.
35. Lehtimäki K, Keränen T, Palmio J, Mäkinen R, Hurme M, Honkaniemi J, et al. Increased plasma levels of cytokines after seizures in localization‐related epilepsy. Acta Neurol Scand. 2007;116(4):226-30.
36. Peltola J, Laaksonen J, Haapala A, Hurme M, Rainesalo S, Keränen T. Indicators of inflammation after recent tonic–clonic epileptic seizures correlate with plasma interleukin-6 levels. Seizure. 2002;11(1):44-6.
Files | ||
Issue | Vol 19 No 4 (2020) | |
Section | Original Article(s) | |
DOI | https://doi.org/10.18502/ijaai.v19i4.4115 | |
PMID | 33463107 | |
Keywords | ||
Febrile seizure Interleukin-1 beta Interleukin-22 |
Rights and permissions | |
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. |