Increased miR-223-3p in Leukocytes Positively Correlated with IL-17A in Plasma of Asthmatic Patients

  • Wenjuan Xu Department of Respiratory and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
  • Yimin Wang Department of Respiratory and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
  • Chen Wang Clinical Laboratory, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
  • Ying Ma Department of Respiratory and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
  • Shaojun He Department of Respiratory and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
  • Yanmeng Kang Department of Respiratory Medicine, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, China
  • Jiong Yang Mail Department of Respiratory and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
Keywords:
Asthma, Interleukin-17, miR-223-3p

Abstract

Asthma is a common airway inflammation with an intricate underlying mechanism. The role played by circulating miRNAs in asthma remains unclear. In the present study, we aimed to investigate the role of miR-223-3p in leukocytes of asthma and identify the relationship between miR-223-3p and inflammatory cytokines in asthma.
Using real-time polymerase chain reaction (RT-PCR), we detected miR-223-3p expression in peripheral blood leukocytes from 23 asthmatic patients and 20 healthy controls. The levels of IFN-γ (Th1 cytokine), IL-4 (Th2 cytokine), IL-17A (Th17 cytokine) in plasma were examined using enzyme-linked immunosorbent assay (ELISA). Analysis of variance (ANOVA) and Spearman’s test was used for statistical analysis.
The expression of miR-223-3p in peripheral blood leukocytes was upregulated in the asthmatic patients compared with that in the healthy controls. Increased miR-223-3p expression was associated with forced expiratory volume in 1-second percent predicted (FEV1% predicted). A positive correlation was noted between miR-223-3p and IL-17A.
The findings of this study showed that miR-223-3p plays a vital role in the pathogenesis of asthma and can serve as a novel biomarker for asthma.

References

1. Bibliography. Lautenbacher L, Perzanowski MS. Global asthma burden and poverty in the twenty-first century. Int J Tuberc Lung Dis 2017;21(11):1093.
2. Bibliography. Wenzel SE. Asthma phenotypes: the evolution from clinical to molecular approaches. Nat Med 2012;18(5):716-25.
3. Bibliography. Renz H, Autenrieth IB, Brandtzaeg P, et al. Gene-environment interaction in chronic disease: a European Science Foundation Forward Look. J Allergy Clin Immunol 2011;128(6 Suppl):S27-49.
4. Bibliography. Guggino G, Orlando V, Saieva L, et al. Downregulation of miRNA17-92 cluster marks Vgamma9Vdelta2 T cells from patients with rheumatoid arthritis. Arthritis Res Ther 2018;20(1):236.
5. Bibliography. Lodish HF, Zhou B, Liu G, et al. Micromanagement of the immune system by microRNAs. Nat Rev Immunol 2008;8(2):120-30.
6. Bibliography. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004;116(2):281-97.
7. Bibliography. Yang JS, Phillips MD, Betel D, et al. Widespread regulatory activity of vertebrate microRNA* species. RNA 2011;17(2):312-26.
8. Bibliography. Ambros V. The functions of animal microRNAs. Nature 2004;431(7006):350-5.
9. Bibliography. Denli AM, Tops BB, Plasterk RH, et al. Processing of primary microRNAs by the Microprocessor complex. Nature 2004;432(7014):231-5.
10. Bibliography. Farh KK, Grimson A, Jan C, et al. The widespread impact of mammalian MicroRNAs on mRNA repression and evolution. Science 2005;310(5755):1817-21.
11. Bibliography. Gao H, Deng H, Xu H, et al. MicroRNA-223 promotes mast cell apoptosis by targeting the insulin-like growth factor 1 receptor. Exp Ther Med 2016;11(6):2171-76.
12. Bibliography. Calin GA, Dumitru CD, Shimizu M, et al. Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci U S A 2002;99(24):15524-9.
13. Bibliography. Calin GA, Ferracin M, Cimmino A, et al. A MicroRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. N Engl J Med 2005;353(17):1793-801.
14. Bibliography. Liu H, Deng H, Zhao Y, et al. LncRNA XIST/miR-34a axis modulates the cell proliferation and tumor growth of thyroid cancer through MET-PI3K-AKT signaling. J Exp Clin Cancer Res 2018;37(1):279.
15. Bibliography. Lu TX, Hartner J, Lim EJ, et al. MicroRNA-21 limits in vivo immune response-mediated activation of the IL-12/IFN-gamma pathway, Th1 polarization, and the severity of delayed-type hypersensitivity. J Immunol 2011;187(6):3362-73.
16. Bibliography. Singh PB, Pua HH, Happ HC, et al. MicroRNA regulation of type 2 innate lymphoid cell homeostasis and function in allergic inflammation. J Exp Med 2017;214(12):3627-43.
17. Bibliography. Kuo G, Wu CY, Yang HY. MiR-17-92 cluster and immunity. J Formos Med Assoc 2018.
18. Bibliography. Mattes J, Collison A, Plank M, et al. Antagonism of microRNA-126 suppresses the effector function of TH2 cells and the development of allergic airways disease. Proc Natl Acad Sci U S A 2009;106(44):18704-9.
19. Bibliography. Collison A, Mattes J, Plank M, et al. Inhibition of house dust mite-induced allergic airways disease by antagonism of microRNA-145 is comparable to glucocorticoid treatment. J Allergy Clin Immun 2011;128(1):160-U251.
20. Bibliography. Tang X, Wu F, Fan JS, et al. Posttranscriptional Regulation of Interleukin-33 Expression by MicroRNA-200 in Bronchial Asthma. Mol Ther 2018;26(7):1808-17.
21. Bibliography. Polikepahad S, et al. Proinflammatory role for let-7 microRNAS in experimental asthma. J Biol Chem 2010;285(39):30139-49.
22. Bibliography. Chen X, Liang HW, Zhang JF, et al. Secreted microRNAs: a new form of intercellular communication. Trends Cell Biol 2012;22(3):125-32.
23. Bibliography. Mittelbrunn M, Gutierrez-Vazquez C, Villarroya-Beltri C, et al. Unidirectional transfer of microRNA-loaded exosomes from T cells to antigen-presenting cells. Nat Commun 2011;2.
24. Bibliography. Alexander M, Hu RZ, Runtsch MC, et al. Exosome-delivered microRNAs modulate the inflammatory response to endotoxin. Nat Commun 2015;6.
25. Bibliography. Shibuya H, Nakasa T, Adachi N, et al. Overexpression of microRNA-223 in rheumatoid arthritis synovium controls osteoclast differentiation. Mod Rheumatol 2013;23(4):674-85.
26. Bibliography. Haneklaus M, Gerlic M, Kurowska-Stolarska M, et al. Cutting edge: miR-223 and EBV miR-BART15 regulate the NLRP3 inflammasome and IL-1beta production. J Immunol 2012;189(8):3795-9.
27. Bibliography. Maes T, Cobos FA, Schleich F, et al. Asthma inflammatory phenotypes show differential microRNA expression in sputum. J Allergy Clin Immun 2016;137(5):1433-46.
28. Bibliography. Becker AB, Abrams EM. Asthma guidelines: the Global Initiative for Asthma in relation to national guidelines. Curr Opin Allergy Clin Immunol 2017;17(2):99-103.
29. Bibliography. O'Connell RM, Rao DS, Baltimore D. microRNA regulation of inflammatory responses. Annu Rev Immunol 2012;30:295-312.
30. Bibliography. Lu TX, Munitz A, Rothenberg ME. MicroRNA-21 is up-regulated in allergic airway inflammation and regulates IL-12p35 expression. J Immunol 2009;182(8):4994-5002.
31. Bibliography. Malmhall C, Alawieh S, Lu Y, et al. MicroRNA-155 is essential for T(H)2-mediated allergen-induced eosinophilic inflammation in the lung. J Allergy Clin Immunol 2014;133(5):1429-38.
32. Bibliography. Williams AE, Larner-Svensson H, Perry MM, et al. MicroRNA expression profiling in mild asthmatic human airways and effect of corticosteroid therapy. PLoS One 2009;4(6):e5889.
33. Bibliography. Solberg OD, Ostrin EJ, Love MI, et al. Airway epithelial miRNA expression is altered in asthma. Am J Respir Crit Care Med 2012;186(10):965-74.
34. Bibliography. Ezzie ME, Crawford M, Cho JH, et al. Gene expression networks in COPD: microRNA and mRNA regulation. Thorax 2012;67(2):122-31.
35. Bibliography. Vroman H, van den Blink B, Kool M. Mode of dendritic cell activation: the decisive hand in Th2/Th17 cell differentiation. Implications in asthma severity? Immunobiology 2015;220(2):254-61.
36. Bibliography. Li K, Wang Z, Cao Y, et al. The study of the ratio and distribution of Th17 cells and Tc17 cells in asthmatic patients and the mouse model. Asian Pac J Allergy Immunol 2013;31(2):125-31.
37. Bibliography. Wang W, Li P, Yang J. Decreased Circulating Interleukin-35 Levels Are Related to Interleukin-4-Producing CD8+ T Cells in Patients with Allergic Asthma. Iran J Allergy Asthma Immunol 2015;14(4):379-85.
Published
2020-06-23
How to Cite
1.
Xu W, Wang Y, Wang C, Ma Y, He S, Kang Y, Yang J. Increased miR-223-3p in Leukocytes Positively Correlated with IL-17A in Plasma of Asthmatic Patients. Iran J Allergy Asthma Immunol. 19(3):289-296.
Section
Original Article(s)