Unfulfilled Inflammatory Resolution: A Key Factor in the Pathogenesis of Psoriasis

  • Zohreh Jadali Mail School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
Keywords:
Autoimmunity, Inflammation, Psoriasis, Skin

Abstract

Recent literature has highlighted the importance of chronic inflammation in psoriasis pathogenesis. Non-resolving inflammation can trigger progressive tissue damage and inflammatory mediator release which in turn perpetuate the inflammatory cycle. Under normal conditions, inflammatory responses are tightly controlled through several mechanisms that restore normal tissue function and structure. Defects in regulatory mechanisms of the inflammatory response can result in persistent unresolved inflammation and further increases of inflammation. Therefore, this review focuses on defects in regulatory mechanisms of inflammatory responses that lead to uncontrolled chronic inflammation in psoriasis. Databases such as Pubmed Embase, ISI, and Iranian databases including Iranmedex, and SID were researched to identify relevant literature. The results of this review indicate that dysregulation of the inflammatory response may be a likely cause of various immune-mediated inflammatory disorders such as psoriasis. Based on current findings, advances in understanding the cellular and molecular mechanisms involved in inflammation resolution are not only improving our knowledge of the pathogenesis of chronic inflammatory diseases but also supporting the development of new therapeutic strategies.

References

1. Liang Y, Sarkar MK, Tsoi LC, Gudjonsson JE. Psoriasis: a mixed autoimmune and autoinflammatory disease. Curr Opin Immunol. 2017;49:1-8.
2. Šahmatova L, Sügis E, Šunina M, Hermann H, Prans E, Pihlap M, et al. Signs of innate immune activation and premature immunosenescence in psoriasis patients. Sci Rep.2017;7(1):7553.
3. Jadali Z, Eslami MB. T cell immune responses in psoriasis. Iran J Allergy Asthma Immunol. 2014;13(4):220-30.
4. Doria A, Zen M, Bettio S, Gatto M, Bassi N, Nalotto L, et al. Autoinflammation and autoimmunity: Bridging the divide. Autoimmun Rev. 2012;12(1):22-30.
5. Deng Y, Chang C, Lu Q. The inflammatory response in psoriasis: a comprehensive review. Clin Rev Allergy Immunol.2016;50(3):377-89.
6. Krejsek J. Defensive and damaging inflammation: basic characteristics. Vnitr Lek 2019 Winter;65(2):76-80.
7. Sugimoto MA, Vago JP, Perretti M, Teixeira MM. Mediators of the resolution of the Inflammatory Response. Trends Immunol. 2019;40(3):212-27.
8. Germolec DR, Shipkowski KA, Frawley RP, Evans E.Markers of inflammation. Methods Mol Biol. 2018;1803:57-79.
9. Sugimoto MA, Sousa LP, Pinho V, Perretti M, Teixeira MM.Resolution of inflammation: what controls its onset? Front Immunol. 2016;7:160.
10. Schett G, Neurath MF. Resolution of chronic inflammatory disease: universal and tissue-specific concepts. Nat Commun.2018;9(1):3261.
11. Nathan C, Ding A. Nonresolving inflammation. Cell. 2010;140(6):871-82.
12. Saqib U, Sarkar S, Suk K, Mohammad O, Baig MS, Savai R. Phytochemicals as modulators of M1-M2 macrophages in inflammation. Oncotarget. 2018;9(25):17937-50.
13. Wang N, Liang H, Zen K. Molecular mechanisms that influence the macrophage M1-M2 polarization balance. Front Immunol. 2014;5:614.
14. Hume DA. The many alternative faces of macrophage activation. Front Immunol. 2015;6:370.
15. Glanz V, Myasoedova VA, Sukhorukov V, Grechko A, Zhang D, Romaneneko EB, et al. Transcriptional characteristics of activated macrophages. Curr Pharm Des. 2019;25(3):213-17.
16. Siouti E, Andreakos E. The many facets of macrophages in rheumatoid arthritis. Biochem Pharmacol. 2019 l;165:152-69.
17. Lu CH, Lai CY, Yeh DW, Liu YL, Su YW, Hsu LC, et al. Involvement of M1 macrophage polarization in endosomal toll-like receptors activated psoriatic inflammation. Mediators Inflamm. 2018;2018:3523642.
18. Zhang J, Lin Y, Li C, Zhang X, Cheng L, Dai L, et al. IL-35 decelerates the inflammatory process by regulating inflammatory cytokine secretion and M1/M2 macrophage ratio in psoriasis. J Immunol. 2016;197(6):2131-44.
19. Lin SH, Chuang HY, Ho JC, Lee CH, Hsiao CC. Treatment with TNF-α inhibitor rectifies M1 macrophage polarization from blood CD14+ monocytes in patients with psoriasis independent of STAT1 and IRF-1 activation. Dermatol Sci. 2018;91(3):276-84.
20. Tang MM, Spanou Z, Tang H, Schibler F, Pelivani N, Yawalkar N.Rapid downregulation of innate immune cells, interleukin-12 and interleukin-23 in generalized pustular psoriasis with infliximab in combination with acitretin. Dermatology. 2012;225(4):338-43.
21. Hou Y, Zhu L, Tian H, Sun HX, Wang R, Zhang L, et al. IL-23-induced macrophage polarization and its pathological roles in mice with imiquimod-induced psoriasis. Protein Cell. 2018;9(12):1027-38.
22. Senra L, Stalder R, Alvarez Martinez D, Chizzolini C, Boehncke WH, Brembilla NC. Keratinocyte-derived IL-17E contributes to inflammation in psoriasis. J Invest Dermatol. 2016;136(10):1970-80.
23. Katayama H. Development of psoriasis by continuous neutrophil infiltration into the epidermis. Exp Dermatol. 2018;27(10):1084-91.
24. Fräki JE, Jakoi L, Davies AO, Lefkowitz RJ, Snyderman R, Lazarus GS. Polymorphonuclear leukocyte function in psoriasis: chemotaxis, chemokinesis, beta-adrenergic receptors, and proteolytic enzymes of polymorphonuclear leukocytes in the peripheral blood from psoriatic patients. J Invest Dermatol. 1983;81(3):254-7.
25. Shao S, Fang H, Dang E, Xue K, Zhang J, Li B, et al. Neutrophil extracellular traps promote inflammatory responses in psoriasis via activating epidermal TLR4/IL-36R crosstalk. Front Immunol. 2019;10:746.
26. Schön M, Denzer D, Kubitza RC, Ruzicka T, Schön MP. Critical role of neutrophils for the generation of psoriasiform skin lesions in flaky skin mice. J Invest Dermatol. 2000;114(5):976-83.
27. Ikeda S, Takahashi H, Suga Y, Eto H, Etoh T, Okuma K, et al.Therapeutic depletion of myeloid lineage leukocytes in patients with generalized pustular psoriasis indicates a major role for neutrophils in the immunopathogenesis of psoriasis. J Am Acad Dermatol. 2013;68(4):609-17.
28. Steffen S, Abraham S, Herbig M, Schmidt F, Blau K, Meisterfeld S, et al. Toll-like receptor-mediated upregulation of CXCL16 in psoriasis orchestrates neutrophil activation. J Invest Dermatol. 2018;138(2):344-54.
29. Morriello F.Neutrophils and inflammation: unraveling a new connection. Biol Med. (Aligarh) 2016, 8(6):1-3.
30. Fox S, Leitch AE, Duffin R, Haslett C, Rossi AG. Neutrophil apoptosis: relevance to the innate immune response and inflammatory disease. J Innate Immun. 2010;2(3):216-27.
31. El Kebir D, Filep JG. Modulation of neutrophil apoptosis and the resolution of inflammation through β2 integrins. Front Immunol. 2013;4(60):1-15.
32. Brach MA, deVos S, Gruss HJ, Herrmann F. Prolongation of survival of human polymorphonuclear neutrophils by granulocyte-macrophage colony-stimulating factor is caused by inhibition of programmed cell death. Blood.1992;80(11):2920-4.
33. Cox G, Gauldie J, Jordana M. Bronchial epithelial cell-derived cytokines (G‐CSF and GM-CSF) promote the survival of peripheral blood neutrophils in vitro. Am J Respir Cell Mol Biol. 1992;7(5):507-13.
34. Bonifati C,Carducci M,Cordiali Fei P,Trento E,Sacerdoti G,Fazio M,et al. Correlated increases of tumour necrosis factor-alpha, interleukin-6 and granulocyte monocyte-colony stimulating factor levels in suction blister fluids and sera of psoriatic patients--relationships with disease severity. Clin Exp Dermatol. 1994;19(5):383-7.
35. Takematsu H, Tagami H. Granulocyte-macrophage colony-stimulating factor in psoriasis. Dermatologica. 1990;181(1):16-20.
36. Alvarez-Ruiz S, Peñas PF, Fernández-Herrera J, Sánchez-Pérez J, Fraga J, García-Díez A. Maculopapular eruption with enlarged macrophages in eight patients receiving G-CSF or GM-CSF. J Eur Acad Dermatol Venereol. 2004;18(3):310-3.
37. Jacob SE, Nassiri M, Kerdel FA, Vincek V. Simultaneous measurement of multiple Th1 and Th2 serum cytokines in psoriasis and correlation with disease severity. Mediators Inflamm. 2003;12(5):309-13.
38. Lorthois I, Asselineau D, Seyler N, Pouliot R. Contribution of in vivo and organotypic 3D models to understanding the role of macrophages and neutrophils in the pathogenesis of psoriasis. Mediators Inflamm. 2017;2017:7215072.
39. Liu ZG, Hsu H, Goeddel DV, Karin M.Dissection of TNF receptor 1 effector functions: JNK activation is not linked to apoptosis while NF-kappaB activation prevents cell death.Cell. 1996;87(3):565-76.
40. Colotta F, Re F, Polentarutti N, Sozzani S, Mantovani A. Modulation of granulocyte survival and programmed cell death by cytokines and bacterial products. Blood. 1992;80(8):2012-20.
41. Chiricozzi A, Romanelli P, Volpe E, Borsellino G, Romanelli M. Scanning the immunopathogenesis of psoriasis. Int J Mol Sci. 2018;19(1).
42. Opal SM, DePalo VA. Anti-inflammatory cytokines. Chest 2000;117(4):1162-72.
43.Kelly A, Houston SA, Sherwood E, Casulli J, Travis MA. Regulation of innate and adaptive immunity by TGFβ. Adv Immunol. 2017;134:137-233.
44. Shull MM, Ormsby I, Kier AB, Pawlowski S, Diebold RJ, Yin M, et al. Targeted disruption of the mouse transforming growth factor-beta 1 gene results in multifocal inflammatory disease. Nature. 1992;359(6397):693-9.
45. Hahm KB, Im YH, Lee C, Parks WT, Bang YJ, Green JE, et al. Loss of TGF-β signaling contributes to autoimmune pancreatitis. J Clin Invest.2000;105:1057–65.
46. Sanjabi S, Oh SA, Li MO. Regulation of the immune response by TGF-β: from conception to autoimmunity and infection. Cold Spring Harb Perspect Biol. 2017;9(6):a022236.
47. Yoshimura A, Wakabayashi Y, Mori T. Cellular and molecular basis for the regulation of inflammation by TGF-beta.J Biochem. 2010;147(6):781-92.
48. Flisiak I, Chodynicka B,Porebski P,Flisiak R. Association between psoriasis severity and transforming growth factor beta(1) and beta (2) in plasma and scales from psoriatic lesions. Cytokine.2002;19(3):121-5.
49. Flisiak I,Zaniewski P,Chodynicka B. Plasma TGF-beta 1, TIMP-1, MMP-1 and IL-18 as a combined biomarker of psoriasis activity. Biomarkers.2008;13(5):549-56.
50. Nockowski P, Szepietowski JC, Ziarkiewicz M, Baran E. Serum concentrations of transforming growth factor beta 1 in patients with psoriasis vulgaris. Acta Dermatovenerol Croat. 2004;12(1):2-6.
51. KallimanisPG, Xenos K, Markantonis SL, Stavropoulos P, Margaroni G, Katsambas A, et al. Serum levels of transforming growth factor-beta1 in patients with mild psoriasis vulgaris and effect of treatment with biological drugs. Clin Exp Dermatol. 2009;34(5):582–6.
52. Li AG,Wang D,Feng XH,Wang XJ. Latent TGFbeta1 overexpression in keratinocytes results in a severe psoriasis-like skin disorder. EMBO J.2004;23(8):1770-81.
53. Litvinov IV, Bizet AA, Binamer Y, Jones DA, Sasseville D, Philip A. CD109 release from the cell surface in human keratinocytes regulates TGF-β receptor expression, TGF-β signalling and STAT3 activation: relevance to psoriasis. Exp Dermatol.2011;20(8):627-32.
54. Antiga E, Del Bianco E, Difonzo E, Fabbri P, Caproni M. Serum levels of the regulatory cytokines transforming growth factor-β and interleukin-10 are reduced in patients with discoid lupus erythematosus. Lupus.2011;20(6):556-60.
55. Zaher H, Shaker OG, EL-Komy MH, El-Tawdi A, Fawzi M, Kadry D. Serum and tissue expression of transforming growth factor beta1 in psoriasis.J Eur Acad Dermatol Venereol. 2009;23(4):406-9.
56. Iyer SS, Cheng G. Role of interleukin 10 transcriptional regulation in inflammation and autoimmune disease. Crit Rev Immunol. 2012;32(1):23-63.
57. Sabat R, Grütz G, Warszawska K, Kirsch S, Witte E, Wolk K, et al. Biology of interleukin-10. Cytokine Growth Factor Rev. 2010;21(5):331-44.
58. Kumar R, Ng S, Engwerda C. The Role of IL-10 in Malaria: A Double-Edged Sword. Front Immunol. 2019;10:229.
59. Asadullah K, Sabat R, Friedrich M, Volk HD, Sterry W. Interleukin-10: an important immunoregulatory cytokine with major impact on psoriasis. Curr Drug Targets Inflamm Allergy. 2004;3(2):185-92.
60. Cheng J, Tu Y,Li J,Huang C,Liu Z,Liu D. A study on the expression of interleukin (IL)-10 and IL-12 P35, P40 mRNA in the psoriatic lesions. J Tongji Med Univ.2001;21(1):86-8.
61. Sobhan MR, Farshchian M, Hoseinzadeh A, Ghasemibasir HR, Solgi G. Serum levels of IL-10 and IL-22 cytokines in patients with psoriasis. Iran J Immunol. 2016;13(4):317-23.
62.Karam RA, Zidan HE, Khater MH. Polymorphisms in the TNF-α and IL-10 gene promoters and risk of psoriasis and correlation with disease severity. Cytokine. 2014; 66(2): 101-5.
63. Glowacka E,Lewkowicz P,Rotsztejn H,Zalewska A. IL-8, IL-12 and IL-10 cytokines generation by neutrophils, fibroblasts and neutrophils- fibroblasts interaction in psoriasis. Adv Med Sci.2010;55(2):254-60.
64. Kimball AB, Kawamura T, Tejura K, Boss C, Hancox AR, Vogel JC, et al. Clinical and immunologic assessment of patients with psoriasis in a randomized, doubleblind, placebo-controlled trial using recombinant human interleukin 10. Arch Dermatol. 2002;138(10):1341–6.
65 Döcke WD, Asadullah K, Belbe G, Ebeling M, Höflich C, Friedrich M, et al. Comprehensive biomarker monitoring in cytokine therapy: heterogeneous, timedependent, and persisting immune effects of interleukin-10 application in psoriasis. J Leukoc Biol. 2009;85(3):582–93.
66. Hayashi M,Yanaba K,Umezawa Y,Yoshihara Y,Kikuchi S,Ishiuji Y, et al. IL-10-producing regulatory B cells are decreased in patients with psoriasis. J Dermatol Sci. 2016;81(2):93-100.
67.Traupe H. Psoriasis and the interleukin-10 family: evidence for a protective genetic effect, but not an easy target as a drug. Br J Dermatol.2017;176(6):1438-39.
68. Mavropoulos A, Varna A, Zafiriou E, Liaskos C, Alexiou I, Roussaki-Schulze A, et al. IL-10 producing Bregs are impaired in psoriatic arthritis and psoriasis and inversely correlate with IL-17- and IFNγ-producing T cells. Clin Immunol. 2017;184:33-41.
69. Trifunović J, Miller L, Debeljak Ž, Horvat V. Pathologic patterns of interleukin 10 expression—are view. Biochem Med (Zagreb). 2015;25(1):36-48.
70. Aadil W, Kaur R, Ganai BA, Akhtar T, Narang T, Hassan I,et al. Variation atinterleukin-10locus represents susceptibility to psoriasis in north indian population. Endocr Metab Immune Disord Drug Targets.2019;19(1):53-8.
71. Verghese B, Bhatnagar S, Tanwar R, Bhattacharjee J. Serum cytokine profile in psoriasis-a case-control study in a tertiary care hospital from northern India. Indian J Clin Biochem.2011;26(4):373-7.
72. Borska L, Andrys C, Krejsek J, Hamakova K, Kremlacek J, Ettler K, et al. Serum levels of the pro-inflammatory cytokine interleukin-12 and the anti-inflammatory cytokine interleukin-10 in patients with psoriasis treated by the Goeckerman regimen. Int J Dermatol.2008;47(8):800-5.
73. Roussaki-Schulze AV, Kouskoukis C, Petinaki E, Klimi E, Zafiriou E, Galanos A, et al. Evaluation of cytokine serum levels in patients with plaque-type psoriasis. Int J Clin Pharmacol Res.2005;25(4):169-73.
74. Musk P. Unfulfilled inflammatory resolution leads to chronic inflammatory diseases.Discov Med. 2004;4(22):191-3.
75. Shimizu T. Biological control by lipid mediators and pathophysiology. Japan Med Assoc J.2001; 44(8):369–74.
76. Kendall AC, Nicolaou A. Bioactive lipid mediators in skin inflammation and immunity. Prog Lipid Res. 2013;52(1):141-64.
77. Chiurchiù V, Leuti A, Maccarrone M. Bioactive lipids and chronic inflammation: managing the fire within. Front Immunol.2018;9:38.
78. Ikai K. Psoriasis and the arachidonic acid cascade. J Dermatol Sci. 1999;21(3):135-46.
79. Nicolaou A. Eicosanoids in skin inflammation. Prostaglandins Leukot Essent Fatty Acids. 2013;88(1):131-8.
80. Aleem D, Tohid H. Pro-inflammatory cytokines, biomarkers, genetics and the immune system: A mechanistic approach of depression and psoriasis. Rev Colomb Psiquiatr.2018;47(3):177-86
81. Moskot M, Bocheńska K, Jakóbkiewicz-Banecka J, Banecki B, Gabig-Cimińska M. Abnormal sphingolipid world in inflammation specific for lysosomal storage diseases and skin disorders. Int J Mol Sci. 2018;19(1): 247.
82. Río CD, Millán E, García V, Appendino G, DeMesa J, Muñoz E. The endocannabinoid system of the skin. A potential approach for the treatment of skin disorders.Biochem Pharmacol. 2018;157:122-33.
83. Tóth KF,Ádám D,Bíró T,Oláh A. Cannabinoid Signaling in the Skin: Therapeutic Potential of the "C(ut)annabinoid" System. Molecules.2019;24(5).
84. Serhan CN, Savill J. Resolution of inflammation: the beginning programs the end. Nat Immunol.2005;6(12):1191-7.
85.Ji RR, Xu ZZ, Strichartz G, Serhan CN. Emerging roles of resolvins in the resolution of inflammation and pain. Trends Neurosci. 2011;34(11):599–609.
86. Tang S, Wan M, Huang W, Stanton RC, Xu Y. Maresins : specialized proresolving lipid mediators and their potential role in inflammatory-related diseases.Mediators Inflamm. 2018;2018:2380319.
87. Serhan CN,Dalli J,Colas RA,Winkler JW,Chiang N. Protectins and maresins: New pro-resolving families of mediators in acute inflammation and resolution bioactive metabolome. Biochim Biophys Acta.2015;1851(4):397-413.
88. Sorokin AV, Norris PC, English JT, Dey AK, Chaturvedi A,Baumer Y,et al. Identification of proresolving and inflammatory lipid mediators in human psoriasis. J Clin Lipidol. 2018;12(4):1047-60.
89. Sorokin AV, Domenichiello AF, Dey AK, Yuan ZX, Goyal A, Rose SM, et al. Bioactive lipid mediator profiles in human psoriasis skin and blood. J Invest Dermatol. 2018;138(7):1518-28.
90. Clark CCT, Taghizadeh M, Nahavandi M, Jafarnejad S. Efficacy of ω-3 supplementation in patients with psoriasis: a meta-analysis of randomized controlled trials. Clin Rheumatol. 2019;38(4):977-88.
91. Rahman M, Beg S, Ahmad MZ, Kazmi I, Ahmed A, Rahman Z, et al. Omega-3 fatty acids as pharmacotherapeutics in psoriasis: current status and scope of nanomedicine in its effective delivery. Curr Drug Targets. 2013;14(6):708-22.
Published
2020-08-25
How to Cite
1.
Jadali Z. Unfulfilled Inflammatory Resolution: A Key Factor in the Pathogenesis of Psoriasis. Iran J Allergy Asthma Immunol. 19(4):337-347.
Section
Review Article(s)