Original Article
 

Evaluation of IL-17 Serum Level, Brain Inflammation and Demyelination in Experimental Autoimmune Encephalomyelitis C57BL/6 Mice Model with Different Doses of Myelin Oligodendrocyte Glycoprotein

Abstract

Multiple sclerosis (MS) is an autoimmune disease that affects the central nervous system.MS creates a wide range of symptoms with lifelong debilitating consequences. The hallmark of the disease is the inflammation of the nervous system, which can lead to damage to the nerve tissue and loss of function of the neurons. IL-17 has a prominent role in the beginning of inflammatory reactions. Here, we analyzed a mouse model developed using anti-myelin antibodies. This mouse model mimics many symptoms of MS in humans. C57BL/6 mice were randomly divided into five groups. Mice were immunized subcutaneously with 50 μg, 100 μg, 150 μg and 200 μg myelin oligodendrocyte glycoprotein in complete Freund’s adjuvant containing 4 mg/Ml Mycobacterium tuberculosis and two injections of 800 ng of pertussis toxin intraperitoneally, on day 0 and 2 post immunization. Serum level of IL-17 was measured, inflammation and demyelination of brain tissue were also evaluated. Mice with experimental autoimmune encephalomyelitis demonstrated inflammatory cell accumulation, different degrees of demyelination in the brain, and rising levels of serum IL-17 depending on the dose of the anti-myelin antibody. Our study demonstrates that level of IL-17 production is directly associated with inflammation and demyelination. In addition, different degrees of experimental autoimmune encephalomyelitis in mice can be utilized to test a wide range of therapeutic interventions for MS treatment.

                                         

1. Sospedra M, Martin R. Immunology of multiple sclerosis. Annual Review of Immunology 2005; 23(1):683–747.
2. Steinbach K, Merkler D. Neuropathological techniques to investigate CNS pathology in Experimental Autoimmune Encephalomyelitis (EAE). Methods Mol Biol2016; 1304:189–209.
3. Thompson AJ, Toosy AT, Ciccarelli O. Pharmacological management of symptoms in multiple sclerosis: current approaches and future directions. Lancet Neurol 2010; 9(12):1182–99.
4. Peterson LK, Fujinami RS. Inflammation, demyelination, neurodegeneration and neuroprotection in the pathogenesis of multiple sclerosis. J Neuroimmunol2007; 184(1-2):37–44.
5. Constantinescu CS, Farooqi N, O’Brien K, Gran B. Experimental autoimmuneencephalomyelitis (EAE) as a model for multiple sclerosis (MS). Br J Pharmacol 2011; 164(4):1079-106.
6. Duffy SS, Lees JG, Moalem-Taylor G. The contribution of immune and glial cell types in experimental autoimmune encephalomyelitis and multiple sclerosis. MultScler Int 2014;285245.
7. Christie D, Zhu J. Transcriptional regulatory networks for CD4 T cell differentiation. Curr Top Microbiol Immunol 2014; 381:125–72.
8. Song X, GaoH, Qian Y. Th17 differentiation and their pro-inflammation function. Adv Exp Med Biol 2014; 841:99–151.
9. Stromnes IM, Cerretti LM, Liggitt D, Harris RA, Goverman JM. Differential regulation of central nervous system autoimmunity by T(H)1 and T(H)17 cells. Nat Med 2008; 14(3):337–42.
10.Zambrano-Zaragoza JF, Romo-Martínez EJ, Durán-Avelar M, García-Magallanes N, Vibanco-Pérez. Th17 cells in autoimmune and infectious diseases. Int J Inflam 2014; 2014:651503. doi: 10.1155/2014/651503.
11. Merrill JE, Kono DH, Clayton J, Ando DG, Hinton DR, Hofman FM. Inflammatory leukocytes and cytokines in the peptide-induced disease of experimental allergic encephalomyelitis in SJL and B10.PL mice. Proc Natl Acad Sci U S A1992; 89(2):574-8.
12. Ando DG, Clayton J, Kono D, Urban JL, Sercarz EE. EncephalitogenicT cells in the B10.PL model of experimental allergic encephalomyelitis (EAE) are of the Th-1 lymphokine subtype. Cell Immunol 1989; 124(1):132–43.
13. Cua DJ, Sherlock J, Chen Y, Murphy CA, Joyce B,Seymour B, et al. Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain.Nature 2003; 421(6924):744–8.
14. Langrish CL, Chen Y, Blumenschein WM, Mattson J,Basham B, Sedgwick JD, et al. IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J Exp Med 2005; 201(2):233–40.
15. Kleinschek MA, Owyang AM, Joyce-Shaikh B, Langrish CL, et al. IL-25 regulates Th17 function in autoimmune inflammation. J Exp Med 2007; 204(1):161–70.
16. Chen Y, Langrish CL, McKenzie B, Joyce-Shaikh B, Stumhofer JS, McClanahan T, et al. Anti-IL-23 therapy inhibits multiple inflammatory pathways and ameliorates autoimmune encephalomyelitis. J Clin Invest 2006; 116(5):1317–26.
17. Uyttenhove C, Van Snick J. Development of an anti-IL-17A auto-vaccine that prevents experimental auto-immune encephalomyelitis. Eur J Immunol 2006; 36(11):2868–74.
18. Kikly K, Liu L, Na S, Sedgwick JD. The IL-23/Th(17) axis: therapeutic targets for autoimmune inflammation. CurrOpin Immunol 2006; 18(6):670–5.
19.O'Connor RA, Prendergast CT, Sabatos CA, Lau CW, Leech MD, Wraith DC, et al. Cutting Edge: Th1 Cells Facilitate the Entry of Th17 Cells to the Central Nervous Systemduring Experimental Autoimmune Encephalomyelitis. J Immunol 2008; 181(6):3750-4.
20. Becher B, Segal BM. T(H)17 cytokines in autoimmune neuro-inflammation. CurrOpin Immunol 2011;23(6):707–12.
21. Kolls JK,Lindén A. Interleukin-17 family members and inflammation. Immunity 2004; 21(4):467–76.
22. Jovanovic DV, Di Battista JA, Martel-Pelletier J, Jolicoeur FC, He Y, Zhang M, et al. IL-17 stimulates the production and expression of proinflammatory cytokines, IL-beta and TNF-alpha, by human macrophages. J Immunol 1998; 160(7):3513–21.
23. Langer-Gould A, Strober S, Cannella B, Allard J, et al. Gene-microarray analysis of multiple sclerosis lesions yields new targets validated in autoimmune encephalomyelitis. Nat Med2002; 8:500–8.
24. Chabaud M, Durand JM, Buchs N, Fossiez F, Page G, Frappart L, et al. Human interleukin-17: A T cell-derived proinflammatory cytokine produced by the rheumatoid synovium. Arthritis Rheum 1999; 42(5):963–70.
25. Wong CK, Ho CY, Li EK, Lam CW. Elevation of proinflammatorycytokine (IL-18, IL-17, IL-12) and Th2 cytokine (IL-4) concentrations in patients with systemic lupus erythematosus. Lupus 2000; 9(8):589–93.
26. Wong CK, Ho CY, Ko FW, Chan CH, Ho AS, Hui DS, Lam CW. Proinflammatory cytokines (IL-17, IL-6, IL-18 and IL-12) and Th cytokines (IFN-gamma, IL-4, IL-10 and IL-13) in patients with allergic asthma. Clin Exp Immunol 2001; 125(2):177-83.27.
27. Wojkowska DW, Szpakowski P, Ksiazek-Winiarek D, Leszczynski M, Glabinski A. Interactions between neutrophils, Th17 cells, and chemokines during the initiation of experimental model of multiple sclerosis. Mediators Inflamm 2014; 2014: 590409.doi: 10.1155/2014/590409.
28. Rostami A, Ciric B. Role of Th17 cells in the pathogenesis of CNS inflammatory demyelination. J Neurol Sci 2013; 333(1-2):76–87.
29. Moseley TA, Haudenschild DR, Rose L, Reddi AH. Interleukin-17 family and IL-17 receptors. Cytokine Growth Factor Rev. 2003; 14(2):155-74.30.
30. Trivedi A, Olivas AD, Noble-Haeusslein LJ. Inflammation and spinal cord injury: infiltrating leukocytes as determinants of injury and repair processes.Clin Neurosci Res 2006; 6(5):283–92.
31. Gaillard PJ, van Der Meide PH, de Boer AG, Breimer DD. Glucocorticoid and type 1 interferon interactions at the blood–brain barrier: relevance for drug therapies for multiple sclerosis. Neuroreport 2001; 12(10):2189–93.
32. Kleinewietfeld M, Hafler DA. The plasticity of human Treg and Th17 cells and its role in autoimmunity. Semin Immunol 2013; 25(4):305–12.
33. Rao P, Segal BM. Experimental autoimmune encephalomyelitis. Methods Mol Biol 2004; 102:363-75.
34. Youssef S, Stuve O, Patarroyo JC, Ruiz PJ, Radosevich JL, Hur EM, et al. The HMG-CoA reductase inhibitor,atorvastatin, promotes a Th2 bias and reverses paralysis in central nervous system autoimmune disease. Nature 2002; 420(6911):78-84.
35.Stuve O, Youssef S, Weber MS, Nessler S, von Budingen HC, Hemmer B,et al. Immunomodulatory synergy by combination of atorvastatin and glatiramer acetate in treatment of CNS autoimmunity. J Clin Invest 2006; 116(4):1037-44.
36. Stuve O, Youssef S, Slavin AJ, King CL, Patarroyo JC, Hirschberg DL,et al. The role of the MHC class II transactivator in class II expression and antigen presentation by astrocytes and in susceptibility to central nervous system autoimmune disease. J Immunol 2002, 169(12):6720-32.
37. Hussain RZ, Hopkins SC, Frohman EM, Eagar TN, Cravens PC, Greenberg BM, et al. Direct and consensual murine pupillary reflex metrics: Establishing normative values. AutonNeurosci 2009; 151(4):164-7.
38. Hu W, Metselaar J, Ben LH, Cravens PD, Singh MP, Frohman EM, et al. PEG minocycline-liposomes ameliorate CNS autoimmune disease. PLoS ONE 2009; 4:e4151.doi: 10.1371/journal.pone.0004151.
39. Singh MP, Horste GM, Hu W, Mausberg AK, Cravens P, Eager TN, et al.Quinpramine is a novel compound effective in ameliorating brain autoimmune disease. Exp Neurol 2009, 215(2):397-400.
40.Yang J, Jiang Z, Fitzgerald DC, Ma C, Yu S, Li H, et al. Adult neural stem cells expressing IL-10 confer potent mmunomodulation and remyelination in experimental autoimmune encephalitis. J Clin Invest 2009; 119(12):3678–91.
41.Bettelli E, Pagany M, Weiner HL, Linington C, Sobel RA, Kuchroo VK. Myelin oligodendrocyte glycoprotein-specific T cell receptor transgenic mice develop spontaneous autoimmune optic neuritis. J Exp Med 2003; 197(9):1073-81.
42. Encinas JA, Lees MB, Sobel RA, Symonowicz C, Weiner HL, Seidman CE, et al. Identification of genetic loci associated with paralysis, inflammation andweight loss in mouse experimental autoimmune encephalomyelitis. Int Immunol 2001; 13(3):275-64.
43. Becanovic K, Wallstrom E, Kornek B, Glaser A, Broman KW, Dahlman I, et al. New loci regulating rat myelin oligodendrocyte glycoprotein-induced experimental autoimmune encephalomyelitis.J Immunol 2003; 170(2):1062-9.
44. O’Connor RA, Prendergast CT, Sabatos CA, Lau CW, Leech MD, Wraith DC, et al: Cutting edge: Th1 cells facilitate the entry of Th17 cells to the central nervous system during experimental autoimmune encephalomyelitis. J Immunol 2008, 181(6):3750-4.
45. Cravens PD, Hussain RZ, Zacharias TE, Ben LH, Herndon E, Vinnakota R, et al. Lymph node-derived donor encephalitogenic CD4+ T cells in C57BL/6 mice adoptive transfer experimental autoimmune encephalomyelitis highly express GM-CSF and T-bet. J Neuroinflammation 2011; 8:73. doi: 10.1186/1742-2094-8-73.46.
46. Zheng Q, Yang T, Fang L, Liu L, Liu H, Zhao H, et al. Effects of Bu Shen Yi Sui Capsule on Th17/Tregcytokines in C57BL/6 mice with experimentalautoimmune encephalomyelitis. BMC Complement Altern Med 2015; 15:60
47. Belloli S, Zanotti L, Murtaj V, Mazzon C, Di Grigoli G, Monterisi C, et al. 18F-VC701-PET and MRI in the in vivo neuroinflammation assessment of a mouse model of multiple sclerosis. J Neuroinflammation 2018; 15(1):33.
48. Haak S, Croxford AL, Kreymborg K, Heppner FL, Pouly S, Becher B, et al. IL-17A and IL-17F do not contribute vitally to autoimmune neuro-inflammation in mice. J Clin Invest 2009; 119(1):61-9.
49. Zhang Y, Li X, Ciric B, Ma CG, Gran B, Rostami A, et al. Therapeutic effect of baicalin on experimental autoimmune encephalomyelitis is mediated by SOCS3 regulatory pathway. Sci Rep 2015; 5:17407.
Files
IssueVol 18, No 3 (2019) QRcode
SectionOriginal Article(s)
DOI https://doi.org/10.18502/ijaai.v18i3.1123
PMID31522437
Keywords
Demyelination Experimental autoimmune encephalomyelitis Inflammation Interleukin 17 Multiple sclerosis

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
1.
Ghorbani M, Farazmandfar T, Nasirikenari M, Abediankenari S, Meamarian A, Shahbazi M. Evaluation of IL-17 Serum Level, Brain Inflammation and Demyelination in Experimental Autoimmune Encephalomyelitis C57BL/6 Mice Model with Different Doses of Myelin Oligodendrocyte Glycoprotein. Iran J Allergy Asthma Immunol. 2019;18(3):300-309.