Original Article
 

The Profile of Toll-like Receptor 2 (TLR2), TLR4 and Their Cytosolic Downstream Signaling Pathway in Common Variable Immunodeficiency (CVID) Patients

Abstract

Common variable immunodeficiency (CVID) is the most common clinical primary antibody deficiency, characterized by increased susceptibility to recurrent bacterial infections. Since Toll-like receptors (TLRs) play an important role in the maturation and differentiation of B-cells, TLRs’ defect can be involved in the pathogenesis of CVID. Therefore, we evaluated the expression of TLR2 and TLR4 and their signaling pathway; also their association with autoimmunity, B-cell subtypes and response to pneumovax-23 were assessed in CVID patients. Sixteen CVID patients were enrolled in the study. Flow cytometry was used for assessing the protein expression of TLR2 and TLR4, and real-time PCR was used for gene expression of myeloid differentiation primary response 88 (MyD88) and toll interacting protein (Tollip). We found a higher protein expression of TLR2 in CVID patients which was associated with lower number of end stage B-cells and hyporesponse to pneumovax-23 vaccination. We showed a lower mRNA expression of MyD88 and an almost equal Tollip mRNA expression in CVID patients compared with controls. There was a profound association between MyD88 gene expression and autoimmunity in CVID patients. According to the presence of the lower number of end stage B-cells and poor vaccine response in CVID patients and their correlation with the higher expression of TLR2, we hypothesized that there is a functional defect in this receptor and/or its downstream in the peripheral blood mononuclear cells (PBMCs) of CVID patients.

Aghamohammadi A, Abolhassani H, Latif A, Tabassomi F, Shokuhfar T, Torabi Sagvand B, et al. Long-term evaluation of a historical cohort of Iranian common variable immunodeficiency patients. Expert Rev Clin Immunol 2014;10(10):1405-17.
2. Azizi G, Abolhassani H, Asgardoon MH, Alinia T, Yazdani R, Mohammadi J, et al. Autoimmunity in common variable immunodeficiency: epidemiology, pathophysiology and management. Expert Rev ClinImmunol2017;13(2):101-15.
3. Yazdani R, Ganjalikhani-Hakemi M, Esmaeili M, Abolhassani H, Vaeli S, Rezaei A, et al. Impaired Akt phosphorylation in B-cells of patients with common variable immunodeficiency. Clin Immunol 2017;175:124-32.
4. Yazdani R, Fatholahi M, Ganjalikhani-Hakemi M, Abolhassani H, Azizi G, Hamid KM, et al. Role of apoptosis in common variable immunodeficiency and selective immunoglobulin A deficiency. Mol Immunol2016;71:1-9.
5. Rezaei N, Aghamohammadi A, Kardar GA, Nourizadeh M, Pourpak Z. T- helper 1 and 2 cytokine assay in patients with common variable immunodeficiency. J Investig Allergol Clin Immunol 2008;18(6):449-53.
6. Sharifi L, Tavakolinia N, Kiaee F, Rezaei N, Mohsenzadegan M, Azizi G, et al. A Review on Defectsof Dendritic Cells in Common Variable Immunodeficiency. Endocrine, metabolic & immune disorders drug targets 2017; 17(2):100-13..
7. Abolhassani H, Wang N, Aghamohammadi A, Rezaei N, Lee YN, Frugoni F, et al. A hypomorphic recombination-activating gene 1 (RAG1) mutation resulting in a phenotype resembling common variable immunodeficiency. J Allergy Clin Immunol 2014;134(6):1375-80.
8. Yazdani R, Hakemi MG, Sherkat R, Homayouni V, Farahani R. Genetic defects and the role of helper T-cells in the pathogenesis of common variable immunodeficiency. Adv Biomed Res 2014; 3:2.
9. Yazdani R, Abolhassani H, Rezaei N, Azizi G, Hammarstrom L, Aghamohammadi A. Evaluation of Known Defective Signaling-Associated Molecules in Patients Who Primarily Diagnosed as Common Variable Immunodeficiency. Int Rev Immunol 2016;35(1):7-24.
10. Driessen GJ, van Zelm MC, van Hagen PM, Hartwig NG, Trip M, Warris A, et al. B-cell replication history and somatic hypermutation status identify distinct pathophysiologic backgrounds in common variable immunodeficiency. Blood 2011;118(26):6814-23.
11. Azizi G, Rezaei N, Kiaee F, Tavakolinia N, Yazdani R, Mirshafiey A, et al. T-Cell Abnormalities in Common Variable Immunodeficiency. J Investig Allergol Clin Immunol 2016;26(4):233-43.
12. Taraldsrud E, Fevang B, Aukrust P, Beiske KH, Floisand Y, Froland S, et al. Common variable immunodeficiency revisited: normal generation of naturally occurring dendritic cells that respond to Toll-like receptors 7 and 9. Clin Exp Immunol 2014;175(3):439-48.
13. Hong R, Agrawal S, Gollapudi S, Gupta S. Impaired pneumovax-23-induced monocyte-derived cytokine production in patients with common variable immunodeficiency. J Clin Immunol 2010;30(3):435-41.
14. Azizi G, Hafezi N, Mohammadi H, Yazdai R, Alinia T, Tavakol M, et al. Abnormality of regulatory T cells in common variable immunodeficiency. Cell Immunol 2017; 315:11-17.
15. Aspalter RM, Sewell WA, Dolman K, Farrant J, Webster AD. Deficiency in circulating natural killer (NK) cell subsets in common variable immunodeficiency and X-linked agammaglobulinaemia. Clin Exp Immunol 2000;121(3):506-14.
16. Ganjalikhani-Hakemi M, Yazdani R, Sherkat R, Homayouni V, Masjedi M, Hosseini M. Evaluation of the T helper 17 cell specific genes and the innate lymphoid cells counts in the peripheral blood of patients with the common variable immunodeficiency. J Res Med Sci 2014;19(Suppl 1):S30-5.
17. Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity. Cell 2006;124(4):783-801.
18. Medzhitov R. Recognition of microorganisms and activation of the immune response. Nature 2007;449(7164):819-26.
19. Schenten D, Medzhitov R. The control of adaptive immune responses by the innate immune system. Adv Immunol 2011;109:87-124.
20. Sharifi L, Mirshafiey A, Rezaei N, Azizi G, Magaji Hamid K, Amirzargar AA, et al. The role of toll-like receptors in B-cell development and immunopathogenesis of common variable immunodeficiency. Expert Rev Clin Immunol 2016;12(2):195-207.
21. Cunningham-Rundles C, Radigan L, Knight AK, Zhang L, Bauer L, Nakazawa A. TLR9 activation is defective in common variable immune deficiency. J Immunol 2006;176(3):1978-87.
22. Escobar D, Pons J, Clemente A, Iglesias J, Regueiro V, Bengoechea JA, et al. Defective B cell response to TLR9 ligand (CpG-ODN), Streptococcus pneumoniae and Haemophilus influenzae extracts in common variable immunodeficiency patients. Cell Immunol 2010;262(2):105-11.
23. Yu JE, Knight AK, Radigan L, Marron TU, Zhang L, Sanchez-Ramon S, et al. Toll-like receptor 7 and 9 defects in common variable immunodeficiency. J Allergy Clin Immunol 2009;124(2):349-56.
24. Yu JE, Zhang L, Radigan L, Sanchez-Ramon S, Cunningham-Rundles C. TLR-mediated B cell defects and IFN-alpha in common variable immunodeficiency. J Clin Immunol 2012;32(1):50-60.
25. Scott-Taylor TH, Green MR, Eren E, Webster AD.Monocyte derived dendritic cell responses in common variable immunodeficiency. Clin Exp Immunol 2004;138(3):484-90.
26. Scott-Taylor TH, Green MR, Raeiszadeh M, Workman S, Webster AD. Defective maturation of dendritic cells in common variable immunodeficiency. Clin Exp Immunol 2006;145(3):420-7.
27. Hua Z, Hou B. TLR signaling in B-cell development and activation. Cell Mol Immunol 2013;10(2):103-6.
28. Liu Y, Yin H, Zhao M, Lu Q. TLR2 and TLR4 in autoimmune diseases: a comprehensive review. Clin Rev Allergy Immunol 2014;47(2):136-47.
29. Brandt D, Gershwin ME. Common variable immune deficiency and autoimmunity. Autoimmun Rev 2006;5(7):465-70.
30. Tomlinson G, Chimalapati S, Pollard T, Lapp T, Cohen J, Camberlein E, et al. TLR-mediated inflammatory responses to Streptococcus pneumoniae are highly dependent on surface expression of bacterial lipoproteins. J Immunol 2014;193(7):3736-45.
31. Conley ME, Notarangelo LD, Etzioni A. Diagnostic criteria for primary immunodeficiencies. Representing PAGID (Pan-American Group for Immunodeficiency) and ESID (European Society for Immunodeficiencies). Clin Immunol 1999;93(3):190-7.
32. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001;25(4):402-8.
33. Yazdani R, Seify R, Ganjalikhani-Hakemi M, Abolhassani H, Eskandari N, Golsaz-Shirazi F, et al. Comparison of various classifications for patients with common variable immunodeficiency (CVID) using measurement of B-cell subsets. Allergol Immunopathol (Madr) 2017; 45(2):183-92.
34. Shokouhi Shoormasti R, Azimdoost A, Saghafi S, Movahhedi M, Haghi Ashtiani MT, Pourpak Z, et al. Normal range determination of lymphocytes subsets in normal adults in Iran. Iran J Allergy Asthma Immunol 2011;10(4):295-8.
35. Zhang G, Ghosh S. Negative regulation of toll-like receptor-mediated signaling by Tollip. J Biol Chem 2002;277(9):7059-65.
36. von Bernuth H, Picard C, Jin Z, Pankla R, Xiao H, Ku CL, et al. Pyogenic bacterial infections in humans with MyD88 deficiency. Science 2008;321(5889):691-6.
37. Picard C, Casanova JL, Puel A. Infectious diseases in patients with IRAK-4, MyD88, NEMO, or IkappaBalpha deficiency. Clin Microbiol Rev 2011;24(3):490-7.
38. Koedel U, Angele B, Rupprecht T, Wagner H, Roggenkamp A, Pfister HW, et al. Toll-like receptor 2 participates in mediation of immune response in experimental pneumococcal meningitis. J Immunol 2003;170(1):438-44.
39. Bekeredjian-Ding I, Inamura S, Giese T, Moll H, Endres S, Sing A, et al. Staphylococcus aureus protein A triggers T cell-independent B cell proliferation by sensitizing B cells for TLR2 ligands. J Immunol 2007;178(5):2803-12.
40. Bekeredjian-Ding IB, Wagner M, Hornung V, Giese T, Schnurr M, Endres S, et al. Plasmacytoid dendritic cells control TLR7 sensitivity of naive B cells via type I IFN. J Immunol 2005;174(7):4043-50.
41. Mansson A, Adner M, Hockerfelt U, Cardell LO. A distinct Toll-like receptor repertoire in human tonsillar B cells, directly activated by PamCSK, R-837 and CpG-2006 stimulation. Immunology 2006;118(4):539-48.
42. Ganley-Leal LM, Liu X, Wetzler LM. Toll-like receptor 2-mediated human B cell differentiation. Clin Immunol 2006;120(3):272-84.
43. Wehr C, Kivioja T, Schmitt C, Ferry B, Witte T, Eren E, et al. The EUROclass trial: defining subgroups in common variable immunodeficiency. Blood 2008;111(1):77-85.
44. Warnatz K, Schlesier M. Flowcytometric phenotyping of common variable immunodeficiency. Cytometry B Clin Cytom 2008;74(5):261-71.
45. Radstake TR, Roelofs MF, Jenniskens YM, Oppers-Walgreen B, van Riel PL, Barrera P, et al. Expression of toll-like receptors 2 and 4 in rheumatoid synovial tissue and regulation by proinflammatory cytokines interleukin-12 and interleukin-18 via interferon-gamma. Arthritis Rheum 2004;50(12):3856-65.
46. Kowalski ML, Wolska A, Grzegorczyk J, Hilt J, Jarzebska M, Drobniewski M, et al. Increased responsiveness to toll-like receptor 4 stimulation in peripheral blood mononuclear cells from patients with recent onset rheumatoid arthritis. Mediators Inflamm 2008;2008:132732.
47. Kirchner M, Sonnenschein A, Schoofs S, Schmidtke P, Umlauf VN, Mannhardt-Laakmann W. Surface expression and genotypes of Toll-like receptors 2 and 4 in patients with juvenile idiopathic arthritis and systemic lupus erythematosus. Pediatr Rheumatol Online J 2013;11(1):9.
48. Kwok SK, Cho ML, Her YM, Oh HJ, Park MK, Lee SY, et al. TLR2 ligation induces the production of IL-23/IL-17 via IL-6, STAT3 and NF-kB pathway in patients with primary Sjogren's syndrome. Arthritis Res Ther 2012;14(2):R64.
49. Carrasco S, Neves FS, Fonseca MH, Goncalves CR, Saad CG, Sampaio-Barros PD, et al. Toll-like receptor (TLR) 2is upregulated on peripheral blood monocytes of patients with psoriatic arthritis: a role for a gram-positive inflammatory trigger? Clin Exp Rheumatol 2011;29(6):958-62.
50. Garcia-Rodriguez S, Arias-Santiago S, Perandres-Lopez R, Castellote L, Zumaquero E, Navarro P, et al. Increased gene expression of Toll-like receptor 4 on peripheral blood mononuclear cells in patients with psoriasis. J Eur Acad Dermatol Venereol 2013;27(2):242-50.
51. Andersson A, Covacu R, Sunnemark D, Danilov AI, Dal Bianco A, Khademi M, et al. Pivotal advance: HMGB1 expression in active lesions of human and experimental multiple sclerosis. J Leukoc Biol. 2008;84(5):1248-55.
52. Silver KL, Crockford TL, Bouriez-Jones T, Milling S, Lambe T, Cornall RJ. MyD88-dependent autoimmune disease in Lyn-deficient mice. Eur J Immunol2007;37(10):2734-43.
53. Pacheco GV, Novelo Noh IB, Velasco Cardenas RM, Angulo Ramirez AV, Lopez Villanueva RF, Quintal Ortiz IG, et al. Expression of TLR-7, MyD88, NF-kB, and INF-alpha in B Lymphocytes of Mayan Women with Systemic Lupus Erythematosus in Mexico. Front Immunol 2016;7:22.

Files
IssueVol 17, No 2 (2018) QRcode
SectionOriginal Article(s)
Keywords
Common variable immunodeficiency (CVID) Myeloid differentiation primary response 88 (MyD88) Toll-like receptor 2 (TLR2) Toll-like receptor 4 (TLR4) Toll interacting protein (Tollip)

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
1.
Sharifi L, Aghamohammadi A, Rezaei N, Yazdani R, Mahmoudi M, Amiri MM, Masoumi F, Bokaie S, Tavasolian P, Sanaei R, Moshiri M, Tavakolinia N, Alinia T, Azizi G, Mirshafiey A. The Profile of Toll-like Receptor 2 (TLR2), TLR4 and Their Cytosolic Downstream Signaling Pathway in Common Variable Immunodeficiency (CVID) Patients. Iran J Allergy Asthma Immunol. 2018;17(2):188-200.