Iranian Journal of Allergy, Asthma and Immunology 2017. 16(5):386-395.

The Changes of Th17/Treg and Related Cytokines: IL-17, IL-23, IL-10, and TGF-β in Respiratory Syncytial Virus Bronchiolitis Rat Model
Meng Gao, Liang-Xiao Liu, Fu-Ling Wu, Xuejing Zhang, Ying-Ying Li, Tao Shi, De-Zhi Li, Ting-Ting Han

Abstract


Respiratory syncytial virus (RSV) is the leading cause of bronchiolitis and hospitalization that lead to high morbidity and mortality among young infants. T helper 17 (Th17) cells and regulatory T cells (Tregs) play essential roles in the pathogenesis of autoimmune, cancer, and inflammatory diseases. However, whether changes in T-cell subsets are related to the systemic immune responses in RSV-caused bronchiolitis merit further investigation. Three-week-old Sprague Dawley (SD) rats were randomly divided into the normal control (NC) and RSV bronchiolitis (RSV-B) groups. An RSV-B model was successfully established using nasal drip containing RSV. Furthermore, pathological changes in the lung tissues were observed using hematoxylin and eosin staining. Flow cytometry determined the levels of Th17 and Treg subsets. The related cytokines were measured using enzyme-linked immunosorbent assay (ELISA). The expression levels of related transcription factors, such as RORγt and FOXP3, were examined using real-time quantitative PCR and western blot analysis. The RSV-B group exhibited pulmonary interstitial hyperemia and edema, inflammatory cell infiltration, wide alveolar septa, and bronchial collapse and deformation. The percentage of Th17 cells in RSV-B group was about 2.3 fold higher than that of NC group, and the concentration of IL-17, IL-23 and RORγt was higher than in NC group. In contrast, the percentage of Treg cells in the RSV-B group was approximately 0.7 fold lower than that in the NC group, and the levels of IL-10, TGF-β, and FOXP3 in the RSV-B group were lower than those in the NC group. The above results were statistically significant. The changes of Th17/Treg, and their associated cytokines, specific transcription factors, are present in RSV bronchiolitis model rats, which may play an important role in the pathogenesis of RSV bronchiolitis. 


Keywords


Bronchiolitis; Th17 cells regulatory; T cells; Respiratory syncytial virus

Full Text:

PDF

References


1.Meng J, Stobart CC, Hotard AL, Moore ML: An overview of respiratory syncytial virus. PLoS Pathog 2014; 10: e1004016.

2.Hall CB, Simoes EA, Anderson LJ: Clinical and epidemiologic features of respiratory syncytial virus.Curr Top Microbiol Immunol 2013; 372: 39-57.

3.Hall CB, Walsh EE, Long CE, Schnabel KC: Immunity to and frequency of reinfection with respiratory syncytial virus. Infect Dis 1991; 163: 693-698.

4.Simoes EA, Carbonell-Estrany X, Rieger CH, Mitchell I, Fredrick L, Groothuis JR: The effect of respiratory syncytial virus on subsequent recurrent wheezing in atopic and nonatopic children. J Allergy Clin Immunol 2010; 126: 256-262.

5.Hall CB, Weinberg GA, Iwane MK, Blumkin AK, Edwards KM, Staat MA,  Auinger P, Griffin MR, Poehling KA, Erdman D, Grijalva CG, Zhu Y, Szilagyi P: The burden of respiratory syncytial virus infection in young children.  N Engl J Med 2009; 360: 588-598.

6.Cosmi L, Liotta F, Maggi E, Romagnani S, Annunziato F: Th17 cells: newplayers in asthma pathogenesis. Allergy 2011 ; 66: 989-998.

7.Bettelli E, Korn T, Oukka M, Kuchroo VK: Induction and effector functions of T(H)17 cells. Nature 2008; 453: 1051–1057.

8.Iwakura Y, Ishigame H, Saijo S, Nakae S: Functional specialization ofinterleukin-17 family members. Immunity 2011; 34: 149-162.

9.Ohkura N, Kitagawa Y, Sakaguchi S:Development and maintenance ofregulatory T cells. Immunity 2013; 38: 414-423.

10.Rudensky AY: Regulatory T cells and Foxp3. Immunol Rev. 2011 ; 241: 260-268.

11.Kearley J, Robinson DS, Lloyd CM: CD4+CD25+ regulatory T cells reverseestablished allergic airway inflammation and prevent airway remodeling. J Allergy Clin Immunol 2008; 122: 617-624.

12.Pickles R J, DeVincenzo J P: Respiratory syncytial virus (RSV) and its propensity for causing bronchiolitis[J]. J Pathol 2015; 235: 266-276

13.Byington CL, Wilkes J, Korgenski K, Sheng X: Respiratory Syncytial Viru-Associated Mortality in Hospitalized Infants and Young Children[J]. Pediatrics 2015; 135: e24-e31.

14.Turner TL, Kopp BT, Paul G, Landgrave LC, Hayes D Jr, Thompson R: Respiratory syncytial virus: current and emerging treatment options. Clinicoecon Outcomes Res. 2014; 6: 217-225.

15.Wakashin H, Hirose K, Maezawa Y, Kagami SI, Suto A, Watanabe N, Saito Y, Hatano M,Tokuhisa T, Iwakura Y, Puccetti P, Iwamoto I, Nakajima H: IL-23 and Th17 cells enhance Th2 cell-mediated eosinophilic airway inflammation in mice. Am J Respir Crit Care Med 2008; 178: 1023-1032.

16.Pichavant M, Goya S, Meyer EH, Johnston RA, Kim HY, Matangkasombut P, Zhu M, Iwakura Y, Savage PB, DeKruyff RH, Shore SA, Umetsu DT: Ozone exposure in a mouse model induces airway hyperreactivity that requires the presence of natural killer T cells and IL-17[J].J Exp Med 2008; 205 : 385-393.

17.Wakeland E K: Hunting autoimmune disease genes in NOD: Early steps on a long road to somewhere important (hopefully)[J]. J Immunol 2014; 193: 3-6.

18.Wilson NJ, Boniface K, Chan JR, McKenzie BS, Blumenschein WM, Mattson JD, Basham B, Smith K, Chen T, Morel F, Lecron JC,Kastelein RA, Cua DJ, McClanahan TK,Bowman EP, de Waal Malefyt R: Development, cytokine profile and function of human interleukin 17-producing helper T cells.Nat Immunol 2007; 8: 950-957.

19.Ferraro A, Socci C, Stabilini A, Valle A, Monti P, Piemonti L, Nano R, Olek S, Maffi P, Scavini M, Secchi A, Staudacher C, Bonifacio E, Battaglia M: Expansion of Th17 cells and functional defects in T regulatory cells are key features of the pancreatic lymph nodes in patients with type 1 diabetes[J].Diabetes 2011; 60: 2903-2913.

20.Ohkura N, Kitagawa Y, Sakaguchi S: Development and maintenance of regulatory T cells[J]. Immunity 2013;38: 414-423.

21.Manel N, Unutmaz D,Littman DR: The differentiation of human T(H)-17 cells requires transforming growth factor-β and inductionnof the nuclear receptor RORγt. Nat Immunol 2008; 9: 641-649.

22.Lee WW, Kang SW, Choi J, Lee SH, Shah K, Eynon EE, Flavell RA, Kang I: Regulating human Th17 cells via differential expression of IL-1 receptor[J]. Blood 2010;115: 530-540.

23.Ivanov II, McKenzie BS, Zhou L, Tadokoro CE, Lepelley A, Lafaille JJ, Cua DJ, Littman DR: The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T helper cells[J]. Cell 2006 ; 126: 1121-1133.

24.Rudensky A Y: Regulatory T cells and Foxp3[J]. Immunological reviews 2011; 241: 260-268.

25. Ohkura N, Kitagawa Y, Sakaguchi S: Development and maintenance of regulatory T cells[J]. Immunity 2013; 38 : 414-423.

26.Kearley J, Robinson D S: Lloyd C M. CD4+ CD25+ regulatory T cells reverse established allergic airway inflammation and prevent airway remodeling[J]. Journal of Allergy and Clinical Immunology 2008; 122: 617-624.

27. Joetham A, Takeda K, Taube C, Miyahara N, Matsubara S, Koya T, Rha YH, Dakhama A, Gelfand EW: Naturally occurring lung CD4+ CD25+ T cell regulation of airway allergic responses depends on IL-10 induction of TGF-β[J]. The Journal of Immunology 2007; 178: 1433-1442.

28.Kim HP, Leonard WJ: CREB/ATF-dependent T cell receptor-induced FoxP3gene expression: a role for DNA methylation. J Exp Med 2007; 204: 1543-1551.

29.Mantel PY, Kuipers H, Boyman O, Rhyner C, Ouaked N, Rückert B, Karagiannidis C, Lambrecht BN, Hendriks RW, Crameri R, Akdis CA, Blaser K, Schmidt-Weber CB: GATA3-driven Th2 responses inhibit TGF-beta1-induced FOXP3 expression and the formation of regulatory T cells. PLoS Biol 2007; 5(12): e329.

30.Chaudhry A, Rudra D, Treuting P, Samstein RM, Liang Y, Kas A, Rudensky AY: CD4+ regulatory T cells control TH17 responses in a Stat3-dependent manner[J]. Science 2009; 326: 986-991.

31.Torgerson T R, Ochs H D: Immune dysregulation, polyendocrinopathy, enteropathy, X-linked: forkhead box protein 3 mutations and lack of regulatory T cells[J]. Journal of Allergy and Clinical Immunology 2007; 120: 744-750.


Refbacks

  • There are currently no refbacks.


Creative Commons Attribution-NonCommercial 3.0

This work is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License which allows users to read, copy, distribute and make derivative works for non-commercial purposes from the material, as long as the author of the original work is cited properly.