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Sarcoidosis is characterized by non-caseating 

granulomas and several immunological abnormalities 

in many tissues including the lungs (pulmonary) and 

others such as skin, bone, heart (extra pulmonary)
1
. The 

aetiology of the disease is unknown although probably 

relates to an inflammatory/immune response to an 

unknown infectious agent.
1
 This leads to tissue 

damage, remodeling of airways, airway hyperactivity 

and a resultant loss of lung function. Corticosteroids 

remain the mainstay of first line treatment in 

sarcoidosis although they are not effective in all 

patients.
2,3.

Recent evidence suggests that epigenetic 

mechanisms are involved in the control of 

inflammation and immune cell function in cancer
1 

and 

in the molecular pathways implicated in other 

pulmonary disorders such as chronic obstructive lung 

disease (COPD), severe asthma and interstitial lung 

disease (IPF).
4
 These diseases are all associated with 

epithelial and mesenchymal cell remodelling within the 

airways and alveoli associated with altered patterns 
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of growth factor activity and expression; apoptosis; 

increased oxidative and endoplasmic reticulum stress; 

altered cellular senescence along with impaired 

mucociliary clearance and host defense processes in 

response to environmental agents such as pollution, 

cigarette smoke or allergens in the case of asthma.
5-7

 It 

is also evident that corticosteroid functions are under 

the regulation of epigenetic processes.
8
 

A range of epigenetic processes such as histone 

modifications, non-coding RNAs and DNA 

methylation are associated with the control of gene 

expression.
9,10 

The development and differentiation of 

most cell types including T cells 
11

 are reliant upon 

these mechanisms for efficient tissue- and cell-specific 

expression of genes. These epigenetic mechanisms do 

not act independently of each other but act in a co-

ordinate manner to regulate the induction and sustained 

expression of the myriad of epigenetic tags or marks 

that control gene expression. 

The deposition of acetylated histone marks by 

histone acetyltransferases (HATs) is associated with 

enhanced expression of immune and inflammatory 

genes.
7,12,13

 Recent evidence indicates that deposition of 

acetyl tags by HATs is not highly selective whereas 

removal of these tags by histone deacetylases 
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(HDACs), of which there are 18, is more selective.
14

 

Addition of an acetyl group alters the structure of the 

local chromatin generally allowing enhanced gene 

expression
7 

which is reversed by the action of 

HDACs.
12 

An imbalance in HAT/HDAC activity is reported in 

the airways of patients with severe asthma 
15 

and in 

COPD 
16 

and linked to the reduction in corticosteroid 

responsiveness in these two diseases
17

. In particular a 

selective loss of HDAC2 has been implicated in 

preventing corticosteroid suppression of a number of 

key inflammatory and immune genes.
18-21 

This action is 

due to both a reduced ability of the activated 

glucocorticoid receptor (GR) to remove lysing tags 

from histones at inflammatory gene promoters and due 

to changes in GR acetylation status preventing 

interaction with then nuclear factor κappa B (NF-B) 

p65.
18

 In addition to GR, many other transcription 

factors such as NF-B p65 and p53, transcription co-

regulators including PGC1, RB and c-Myc, 

inflammatory signaling pathways such as mitogen 

activated protein kinases (MAPKs), DNA repair 

proteins such as Ku 70 and the structural protein -

actin can be acetylated. This acetylation can markedly 

affect protein and cellular function.
22,23

 Complex 

interactions between acetylated non-histone proteins 

and HDACs occur, for example, activation of the 

acetylated transcription factor hypoxia-inducible factor-

1α (HIF-1α) which occurs in the lung 

microenvironment of patients with COPD, decreases 

HDAC2 expression, resulting in augmented 

inflammation and steroid resistance.
24

 

However, overall little data exists from primary 

cells/tissues regarding altered histone modifications in 

this disease. The effects of cigarette smoke on primary 

human airway epithelial cells which causes 

corticosteroid insensitivity 
5 

indicates some changes 

such as Histone H4K16 and H3K27 acetylation and 

H3K27 and DNA methylation could be examined 

preferentially in these patients and linked to gene and 

protein expression profiles.
25

  

There are few published links between the above 

epigenetic modifications or the expression of the 

various enzymes involved in depositing or removing 

these marks with corticosteroid function. This remains 

an area of intense interest. In contrast, in fibroblasts 

from patients with idiopathic pulmonary fibrosis (IPF), 

for example, there have been several studies linking 

changes in histone methylation and acetylation with 

alterations in their regulatory enzymes and the control 

of key genes including cyclooxygenase-2 (COX-2). In 

addition, the function of transforming growth factor 

beta (TGF-β) has been associated with several 

microRNAs (miRNAs) such as miR-218, miR-21, miR-

155, miR-20 and let-7d which are differentially 

expressed in fibroblasts from IPF subjects 
25

. 

Environmental stresses induce alterations in DNA 

methylation in COPD patients 22 and these can be 

mimicked in cells exposed to cigarette smoke which 

suggests that similar changes should be observed in 

sarcoidosis.25 

Indeed, the accelerated telomere shortening seen in 

sarcoidosis has been linked to earlier evidence of 

subtelomerichypomethylation.
26

 In addition, sarcoid 

patients also demonstrate higher levels of histone H4 in 

bronchial alveolar lavage (BAL) and histone H2B in 

plasma compared to healthy controls.
27

 Furthermore, 

there were suggestions that BAL histone H4 proteins 

were post-translationally modified although this needs 

to be confirmed. More studies are required in this 

direction to explore the epigenetic mechanisms 

underlying sarcoidosis epigenetics in individual 

response to corticosteroids. 

Inflammation in severe asthma, COPD and IPF has 

also been associated with altered expression of 

microRNAs and with alterations in DNA and histone 

methylation
7
. Similar to control of acetylation, 

methylation at specific residues on histone H3 for 

example is carefully controlled by the relative activities 

of histone methyltransferases (HMT)/histone 

demethylases (HDM) 
7,28,29 

and it is now clear that 

DNA methylation is also highly regulated.
30

 

Again, there is an interaction between these 

processes since altered DNA methylation of the miR-

17~92 cluster promoter results in the over expression of 

genes linked to fibroblast proliferation .
31

  

Several studies have reported alterations in 

microRNA expression profiles in severe asthma and 

COPD
32 

including changes in miR-19, -21, -27, -29a, -

126 and -146a and some of these have been associated 

with corticosteroid function including miR-145. 
33

 

Limited data exists regarding epigenetic processes 

in sarcoidosisal though miR-92b and miR-206 

expression is elevated in both the lung and lymph 

nodes of sarcoidosis patients. In contrast, miR-20a and 

miR-302c expression was elevated in lymph nodes but 

decreased in lung.
34 

In conclusion, there is increasing evidence for 
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similarities, as well as differences, in epigenetic marks 

associated with sarcoidosis and with the pathogenesis 

of other chronic inflammatory airway diseases. Further 

analysis of epigenetic changes associated with 

corticosteroid function should be addressed in future. 

Ideally, blood-based analysis should be performed and 

methods to allow mathematical deconvolution of the 

data to enable links to single cell types have been 

developed.
35

 Identification of common epigenetic 

marks between these diseases or with a lack of 

corticosteroid responsiveness in association with gene 

expression data will allow determination of key 

regulatory modules and delineation of new therapeutic 

targets
10,36 

which is critical for the welfare of these 

patients.  
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