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ABSTRACT 

 

Innate lymphoid cells (ILCs) are identified as novel population of hematopoietic cells which 
protect the body by coordinating the innate immune response against a wide range of threats 
including infections, tissue damages and homeostatic disturbances. ILCs, particularly ILC2 
cells, are found throughout the body including the brain. ILCs are morphologically similar to 
lymphocytes, express and release high levels of T-helper (Th)1, Th2 and Th17 cytokines but do 
not express classical cell-surface markers that are associated with other immune cell lineages.  

Three types of ILCs (ILC1, 2 & 3) have been reported depending upon the cytokines 

produced. ILC1 cells encompass natural killer (NK) cells and interferon (IFN)- releasing 
cells; ILC2 cells release the Th2 cytokines, IL-5, IL-9 and IL-13 in response to IL-25 and IL-
33; and ILC3 cells which release IL-17 and IL-22. ILC2 cells have been implicated in 
mucosal reactions occurring in animal models of allergic asthma and virus-induced lung 
disorders resulting in the regulation of airway remodeling and tissue homeostasis.  

There is evidence for increased ILC2 cell numbers in allergic responses in man but little is 
known about the role of ILCs in chronic obstructive pulmonary disease (COPD). Further 
understanding of the characteristics of ILCs such as their origin, location and phenotypes and 
function would help to clarify the role of these cells in the pathogenesis of various lung diseases. 

In this review we will focus on the role of ILC2 cells and consider their origin, function, 
location and possible role in the pathogenesis of the chronic inflammatory disorders such as 
asthma and COPD. 
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INTRODUCION 

 

Innate lymphoid cells (ILCs) are a newly identified 

population of immune cells which have been found in a 

variety of organs such as the gut, the lung and mucosal 

membranes.
1-4

 ILCs share many phenotypic, 

morphological, developmental and functional features 

with CD4+ T helper cells
1,3-6

 but do not express the 

characteristic adaptive immunity receptors/lymphoid 

lineage (Lin-) markers expressed on T-helper (Th) 

cells. ILCs are able to react to a wide array of stimuli 
5,7-9

 and play critical roles in lymphoid tissue formation 

and repair and in immune reactions against helminthic 

infections in several disease models. 

Although ILCs do not express Lin markers, they 

commonly express IL-2R (CD25), the IL-7 receptor α 

chain (IL-7Rα, CD127) and the common  chain 

(CD132) (Table 1).
10 

However, NK cells do not express 

CD127. ILCs are divided into 3 different classes 

depending upon their ability to synthesize and release 

Th1, Th2 and Th17 cytokines. Thus, type1 ILC (ILC1) 

cells produce interferon (IFN)-, type 2 ILC (ILC2) 

cells produce IL-5, IL-9 and IL-13 and type 3 ILC 

(ILC3) cells produce IL-17A and IL-22.
10

 Conventional 

and IFN--producing non-natural killer (NK) cells are 

the predominant examples of ILC1 and produce IFN 

under the control of the transcription factor T-bet as an 

innate counterpart to Th1 CD4+ cells.
10

 ILC3 cells, 

which include ILC17 and lymphoid tissue inducer cells 

(LTi cells) have been known for two decades 
5,11,12

 and 

have the ability to promote the formation of secondary 

lymphoid nodes in addition to Peyer’s patches during 

embryonic development.
5,10,11,13-16

 

The expression of IL-17A by ILC3 cells and their 

subsequent function is dependent upon Th17-associated 

transcription factors such as RORt and the aryl 

hydrocarbon receptor (AhR).
5,10,17-24

 RORt positive 

ILCs represent three subsets of cells namely LTi, 

ILC22 (IL-22 producing ILCs) and ILC17 (IL-17 

producing cells) (Table2). LTi cells are believed to be 

related to CD4+ cells 
5,25,26

 and produce cytokines such 

as TNF-
5,27

 and IL-17A.
5,28

 ILC3 cells which produce 

equal amounts of IL-17A and IL-22 are often 

considered a fourth ILC3 subset. There is debate as to 

whether these subsets represent distinct cell types or 

whether they are the result of local environmental 

stimuli on a single plastic cell type. In addition, a 

progenitor ILC population exists in blood which is 

capable of differentiating into RORt- or ROR-

dependent ILCs which are able to release IL-22 

(ILC22) or IL-13 (ILC2), respectively depending upon 

the local microenvironment.
1,28

 

ILC2 cells include nuocytes; natural helper cells 

(NH) and innate helper type 2 cells (Ih2) 
10,29-35

 which 

compose the third group of ILCs. These cells express 

CD127 (Lin-CD127+), T1-ST2, IL-17RB (a receptor 

for IL-25) and are dependent upon ROR and GATA3 

for their development (RORt-independent ILCs) 
10,28,32,36-39).

 These ILCs are derived from the common 

lymphoid progenitor cells in the bone marrow and 

require IL-25 and IL-33 for their development.
33,36,40 

 

Development of ILCs 

RORt-dependent ILCs are found in fetal liver in 

mice
5,41

 and after adoptive transfer are able to develop 

into several ILC lineages
5
 although this has not been 

formally confirmed for ILC3 cells. These ILC3 cells 

from fetal liver in mice are phenotypically similar to 

the common lymphoid precursor (CLP) cells found in 

adult bone marrow.
5
  

 

 

Table1. The ILC family 

Cell type Function Signature cytokine 

produced 

Major stimulating 

cytokines 

ILC1 cells 

(cytotoxic ILCs include NK and 

IFN-producing non-NK cells) 

Innate immunity against viral infections, 

tumor immunosurveillance 

IFN- IL-18, IL-12, IL-15 

ILC2 cells Innate immunity against extracellular 

parasites 

IL-5, IL-13 IL-25, IL-33 

ILC3 cells 

(RORt+ cells) 

Lymphoid tissue formation and repair, 

innate immunity against bacteria 

IL-17, IL-22 IL-1β, IL-23 

ILC: innate lymphoid cell, IFN: interferon, IL: interleukin, NK: natural killer, ROR: retinoic acid orphan receptor 
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Table 2. The retinoic acid orphan receptor (ROR)t+ ILC populations 

Subset Name Species Tissue distribution Function 

LTi cells LTi 

(fetal) 

Humans, mice Fetal lymphoid organs Lymphoid organ development 

LTi cells LTi-like 

(adult) 

Humans, mice Tonsil, adult mouse intestine, 

spleen 

Mucosal immunity, ILF 

formation, tissue modeling 

IL-22-producing ILCs NK22 Humans Tonsil, intestine, Peyer’s 

patches 

Epithelial homeostasis, 

intestinal immunity 

IL-22-producing ILCs NCR22 Mice Intestines, Peyer’s patches, 

spleen 

Epithelial homeostasis, 

intestinal immunity 

IL-22-producing ILCs NKR-LTi Mice Intestine Intestinal immunity 

IL-22-producing ILCs ILC22 Humans, mice Intestine, tonsil, Peyer’s patches Epithelial homeostasis, 

intestinal immunity 

IL-17 producing, IL-

17/IL-22 producing 

ILCs 

ILC17 Humans, mice Intestine, mouse spleen, tonsil Yeast immunity, intestinal 

pathology 

IL: interleukin, ILC: innate lymphoid cell, LTi: Lymphoid tissue-inducer cells, NCR: natural cytotoxicity receptors, NK: natural killer, NKR: NK cell 

receptor 

 

The expression of natural cytotoxicity receptors 

(NCRs) on ILC3 cells and NK cells in mouse and man 

initially suggested that ILC3 cells were a subpopulation 

of NK cells but recent evidence suggests that they are 

both derived from a common precursor cell following 

distinct developmental pathways.
5,42,43

 It is possible that 

the expression of RORt follows the commitment to the 

ILC3 lineage.  

IL-22 producing immature NK cells can 

differentiate into mature cytotoxic NK cells under the 

control of IL-1 
46-49

 suggesting a precursor role for 

immature NK cells in the induction of CD127+ IL-22 

producing ILCs. Further evidence for a developmental 

link between NK cells and LTi cells is that they both 

require the common cytokine receptor -chain (c; also 

known as IL-2R) and the transcriptional repressor 

inhibitor of DNA binding 2 (ID2) to develop. In 

contrast, ILC3 and LTi cell-like NKp46+ cells isolated 

from the gut express ROR indicating that they 

probably develop independently from NK cells.
44,45

 

In terms of ILC2 development, exposure to IL-7 is 

critical since ILC2 cell numbers are reduced in IL-7 

deficient mice.
5,30

 IL-2R is also present in ILC2 cells 

and in vitro evidence highlights key roles for IL-2 in 

ILC2 cell development, survival and expansion.
5
 It is 

likely, therefore, that ILC2 development is absolutely 

dependent upon the presence of at least two cytokines: 

IL-7 for ILC2 cell development and IL-25, IL-33 and 

indirectly IL-2 for the ILC2 recruitment, expansion and 

activity (Figure 1).
 5
 

 

Function of ILCs 

A) Mediator and Cytokine Release 

As described above, the three types of ILCs include 

NK cells (ILC1), ROR-(ILC2) and RORt-dependent 

ILCs (ILC3).
40,50

 Two latter types of ILCs do not 

express surface markers associated with the major 

hematopoietic lineages but they do express CD25 (IL-

2R); CD90 (Thy1); CD117 (c-Kit) and CD127 (IL-

7R).
40

 ILC2 cells express and produce ICOS 

(CD278); ST2 (IL-33R) and IL-17BR in response to 

IL-25 and IL-33 exposure.
51

 The same stimulus results 

in high levels of IL-5, IL-9 and IL-13 expression which 

is characteristic of these cells (Figure 2).
 10,40,51-54

 

In contrast, ILC3 cells in fetal lymph nodes (LN) 

and other tissues respond to IL-23 by secreting IL-17A 

and IL-22.
7,9,10,14,55

 ILC22 cells, despite being a 

member of the LTi group of ILCs, produce large 

amounts of IL-22, and to a lesser extent IL-26, in 

response to IL-23.
7,10,55-57

 However, it is evident that 

the local environment can also affect the cytokine 

profile produce by ILC22 cells. Thus, ILC22 cells also 

synthesize cytokines and chemokines such as IL-2; IL-

13, CXCL8, GM-CSF, and BAFF
5,8,58

 depending upon 

the local mucosal immune system and this is 

particularly evident in the intestine.
5,7,55,56,59,60

 The 

expression of inflammatory mediators and subsequent 

function by other ILC3 subsets also varies depending 
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upon context. Hence, whilst ILC17 cells have a critical 

role in the pathogenesis of intestinal diseases in mice 

where they co-produce IFN-, IL-22 and IL-17,
10

 ILC3 

are also involved in several aspects of tissue and 

mucosal functions such as organogenesis, tissue repair, 

mucosal immunity, homeostasis and pathology as well 

as modulating cancer progression in the absence of 

IFN- production.
5
 Deep immunophenotyping of 

human circulating blood ILC subsets indicated that 

patients with psoriasis have much greater numbers of 

IL-17A and IL-22 producing NKp44+ ILC3 cells than 

healthy individuals. The numbers of these cells was 

further increased in the skin of these patients 

suggesting a possible role for these cells in the 

pathogenesis of psoriasis.
61 

B) Lymphoid Organogenesis 

It is clear from their name that LTi cells are 

involved in the induction of lymphoid tissue 

organogenesis. This occurs mainly during fetal 

development even though LTi cells are present 

throughout life.
5,6

 The appearance of these Lin- 

RORt+ ILCs expressing high levels of CD117 and 

CD127 in human fetal lymph nodes occurs well before 

that of T cells.
5,6

 Mouse LTi cells express CD4 whereas 

this is not expressed on human LTi cells. However, 

lymphoid organogenesis is not affected in CD4 

knockout mice.
14, 62 

 

 

 
Figure 1. Simplified cartoon to indicate the drivers that regulate the production of the various innate lymphoid cell (ILC) 

subtypes. When exposed to interleukins (IL)-12, -15 or -18, ILC precursor (ILCP) cells are driven to produce ILC1 cells such 

as natural killer (NK) cells which produce interferon (IFN)-.  In contrast, exposure of ILCP cells to c cytokines such as  

IL-25 and IL-33 induces IL-5-, -9- and -13-producing ILC2 cells. The transcription factor retinoic acid receptor orphan 

receptor (ROR) is required to enable Th2 cytokine production. ILC3 cells are produced from RORt-containing ILCP cells 

under the control of IL-1 and IL-23.  Subpopulations of ILC3 cells are found which predominantly express IL-22 (ILC22), 

IL-17 (ILC17) or both IL-17 and TNF- (lymphoid tissue-inducer, LTi) cells. Some ILC3 cells produce equal amounts of 

both IL-17A and IL-22. 
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Figure 2. The role of ILC2 cells in the lung. IL-25 and IL-33 are produced by a diverse array of cell types including epithelial 

cells, alveolar macrophages (m) and dendritic cells (DC) in response to allergens, viruses and other parasitic stimuli e.g. 

helminthes within the lung. These cytokines activate type 2 innate lymphoid cells (ILC2) to produce large amounts of 

interleukin (IL)-5 and IL-13. This has profound effects in the lung causing the proliferation and survival of eosinophils (IL-

5), goblet cell differentiation and mucus production (IL-13), epithelial cell hyperproliferation (IL-13), airway smooth muscle 

hypercontractility and airway fibrosis (IL-13). Overall, this results in the impairment of airways hyperresponsiveness. Cross-

talk exists between ILC2 and other lymphocyte subsets including IL-22 producing ILC22 cells, Th2-cells and B-cells to 

enhance and maintain the interface between the innate and adaptive inflammatory/immune response in asthma.  

 

 

LTi cells are also required for the development of 

secondary lymphoid organs specifically lymph nodes 

and Peyer’s patches but not the spleen.
5,6

 In all cases of 

lymphoid organogenesis the key effector proteins are 

the TNF super family members lymphotoxins (LT)-α 

and -β and and TNF-α. Lymphotoxin binding to the 

LTR on stromal cells leads to the production of 

CXCL13 and of adhesion molecules providing a feed-

forward mechanism to recruit more LTi cells and the 

eventual formation of a lymphoid organ. 

RORt-positive ILC3-induced lymphoid 

organogenesis also occurs in the adult intestine.
63-66

 

ILC3 cells are important for the formation of small 

lymphocyte clusters in the gut, known as crypto 

patches, which contain ILCs, a small number of DCs 

but almost no T or B cells. 
63-66

 In addition, ILC3 cells 

also drive crypto patch transformation into isolated 

lymphoid follicles (ILFs) in response to microbial-

derived signals and high local IgA levels. These ILFs 

are important for the generation of IgA-producing 

plasma cells in the gut.
63-66

  

 

C) Tissue and Mucosal Repair 

The most important role of ILC3 cells with respect 

to tissue damage and repair is the reconstitution of the 

damaged spleen architecture resulting from infection by 

lymphocytic choriomeningitis virus (LCMV). This 

leads to a complete loss of B and T cell segregation and 

disrupts germinal center formation in adult human.
67

 

RORt positive ILCs show a capability of rebuilding in 
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these aspects.
67

 

IL-22 and IL-17 are absolutely essential in mucosal 

immunity, homeostasis and pathology.
5
 For example, 

IL-17-producing ILCs have been implicated in the 

pathology of intestinal infections and Crohn’s 

disease.
57,68

 RORt
+
 NKp46

+
ILCs are the major source 

of IL-22 in the mouse intestine and they reside mainly 

in intestinal mucosal tissue and palatine tonsils.
6, 55, 56, 

60, 69
 Cross-talk between these cells and epithelial cells, 

immune cells and the gut microflora is essential for gut 

homeostasis. For example, IL-22 can act directly on 

epithelial cells to induce the release of antimicrobial 

proteins and IL-23 release from DCs can modulate IL-

22 production from ILCs in an LTR-mediated 

manner.
70,71

 

In adults, the major sites of CD4+ ILC localization 

is within secondary lymphoid tissues particularly 

Peyer’s patches.
25

 NKp46
+
 ILCs also reside within the 

lamina properia of the intestine where they also 

produce large quantities of IL-22 and regulate mucosal 

homeostasis including mucus production.
69,72

 As 

described before, CD4
+
 RORt

+
 ILC3 cells are strongly 

associated with crypto patches, ILFs and the mesenteric 

lymph nodes in the murine intestine.
25,55,59,60

  

Human tonsil-derived ILC3s have similar 

characteristics to those from the murine gut. These cells 

also secrete IL-22 in response to IL-23 but this process 

requires a co-stimulus such as IL-2 or TLR activation. 
5
 

Interestingly, human ILC3 cells can produce IL-2 

raising the possibility of autocrine cell activation. IL-1 

can also modulate IL-22 production in conjunction with 

IL-2 and IL-15.
5
  

 

D) Role of ILCs in Cancer and Immunomodulation 

“The immune system plays a dual role in cancer” as 

Spits and Cupedo quote from de Visser et al.
5
 On one 

hand, the immune system may attack tumor cells 

leading to cancer regression whilst on the other hand, 

the same system can promote tumor growth through 

providing an immunosuppressive milieu within the 

tumor microenvironment.
5
 In a murine model of 

melanoma, RORt knockout mice did not show 

CCL21-mediated tumor growth due to a lack of 

CCR7
+
CD4

+
RORt

+ 
cells. This effect is due to these 

cells facilitating the recruitment and differentiation of 

suppressive cells such as Treg cells.
73

 However, in 

other murine melanoma models, NK46
+
RORt

+
 cells 

had the opposite effect.
74

 Similarly, ILCs may have a 

dual effect in the regulation of inflammation depending 

upon the local conditions and cellular targets.
75

 

ILCs also modulate adaptive immune responses 

within the airway by controlling Th2
76-81

 and memory 

T cell 
82, 83

 survival. This process is mediated via direct 

interaction between ILCs and T-cells utilizing the 

expression of the T-cell costimulatory molecules OX40 

ligand and CD30 ligand on the ILC3 cell surface. The 

expression of these co-stimulatory molecules is 

regulated by the TNF family member TL1A and by IL-

7R signaling for OX40L and CD30L, respectively.
76-83

 

In addition, ILCs also drive the production of ILFs and 

IgA in the gut (see above). ILC3s activate latent 

Transforming growth factor beta 

Transforming growth factor beta (TGF-) and 

induce IgA synthesis via stimulation of matrix 

metalloproteinases. 
64

 Together this highlights the 

importance of RORt
+
ILCs in immune homeostasis in 

response to commensal bacteria in the gut 
64

 and 

potentially many other tissues.
75

 Interestingly, the 

circadian rhythm of blood eosinophilia may also be 

under ILC control.
84

 Long-lived tissue resident ILCs 

maintain blood eosinophil levels under the control of 

the vasoactive intestinal peptide (VIP). VIP is released 

in a circadian manner and stimulates ILCs to increase 

IL-5 expression. 

 

E) Role of ILCs in Respiratory Systems 

As described earlier, ILCs represent distinct 

immune cell populations which perform key immune 

functions throughout the body. They are classified into 

three categories depending upon their developmental 

origins: Type 1 cells are represented by IFN--

producing NK cells, Type 2 cells are ROR
+
 Th2 

cytokine producing cells and Type 3 cells are RORt
+
 

cells that produce IL-17A, IL-22 and TNF- depending 

upon the subset.
1-4

 Many allergic or noxious challenges 

to the respiratory system may trigger airway epithelial 

cells to release cytokines such as IL-25 and IL-33.
1,29,85

 

These cytokines, in turn, can act on ILC2 or ILC-

precursor cells to express Th2 cytokines such as IL-5 

and IL-13
1,29,85

 rather than IL-22, IL-17A or IFN-.
31,86

 

Non-lineage-expressing (Lin-) cells which express 

CD25 and CD127 markers are found in the lung 

parenchyma and bronchoalveolar lavage (BAL) fluid of 

subjects undergoing lung transplantation.
1,39,86,87

 These 

cells are analogous to murine ILCs and have previously 

been found in gut-associated lymphoid tissue (GALT), 

fat-associated lymphoid clusters (FALC) and in the 

spleen.
29, 30, 32

 

http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0CDMQFjAA&url=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FTransforming_growth_factor_beta&ei=4EbGVKTpGIuuU9uIg6AB&usg=AFQjCNEY5tw_9zKv7APc0NJaY0ad2LXPlQ&sig2=XpzzlMENIfGtLB-lvHmrFA&bvm=bv.84349003,d.d24
http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0CDMQFjAA&url=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FTransforming_growth_factor_beta&ei=4EbGVKTpGIuuU9uIg6AB&usg=AFQjCNEY5tw_9zKv7APc0NJaY0ad2LXPlQ&sig2=XpzzlMENIfGtLB-lvHmrFA&bvm=bv.84349003,d.d24
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Animal models, and to a much lesser extent studies 

in human tissue, have begun to reveal the critical role 

of ILC2 cells in the respiratory tract during asthma and 

chronic rhino-sinusitis, in protease-allergen-induced 

airway inflammation and in parasitic and fungal 

infections.
10, 28-32, 39, 50, 53

 These challenges result in the 

increased production of Th2 cytokines which is 

characteristic of the pathogenesis of these disorders.
10, 

28-32, 39, 50, 53, 88
 Not surprisingly, the most common ILC 

reported in the human respiratory tract are RORt-

independent ILC2 cells which, as detailed above, 

produce Th2 cytokines in response to IL-25, IL-33 and 

IL-2 exposure.
28

 The local airway environment may 

affect the expression of ILC2 cell surface markers such 

as CD117 and CD45 which may have functional 

consequences.
89

  

ILC2 cells represent less than 1% of all CD45
+
 cells 

in tissues and only 0.01-0.03% of cells in circulating 

blood of healthy people. However, cell numbers are 

increased in human lung, intestine and palatine tonsils.
5
 

Table 3 describes the distribution and function of ILC2 

cell in mouse and man. Studies have also established 

that ILC2 cells from human peripheral blood have a 

more plastic phenotype regarding their IL-22 

production compared to tissue-localized ILC2 cells 

with some expressing low levels of, or even no, IL-

22.
28

  

ILC2 cells accumulate in the lung following H1N1 

influenza virus infection. ILC2 cells do not directly 

affect immunity against the virus since depletion of 

ILC2 after H1N1 infection did not affect viral load. 

Rather, ILC2 cells are likely to play a major role in 

maintaining the epithelial cell barrier since ILC2 

depletion had profound effects on epithelial cell 

damage following viral infection.
90

 This effect was not 

mediated by IL-22 but by the release of amphiregulin, a 

member of the epidermal growth factor (EGF) family, 

from ILC2 cells.
33

 IL-22 may also be important in 

epithelial cell damage/repair processes in ovalbumin-

challenge models 
33

 through promoting epithelial cell 

proliferation following IL-13 release from ILC2 cells.
39, 

91-94 

 

F) ILCs in Pathogenesis of Asthma 

The possible role of ILC2 in the pathogenesis of 

human allergic asthma recently has been appreciated.
95

 

Allergic asthma is a chronic inflammatory condition of 

the airways which is characterized by airway 

hyperreactivity (AHR), bronchoconstriction, increased 

mucus secretion and limited airflow. This is usually 

associated with elevated serum IgE, eosinophilia and 

goblet cell hyperplasia in those patients with a clear 

allergic disease with heightened expression of Th2 

cytokines.
52, 96-103

 ILC2 cells identified in the human 

lung resemble their intestinal counterparts as they 

express ICOS, ST2, CD25 and CD44 on the cell 

surface.
28, 33, 40, 102, 103

  

Both NK cells and ILC2s are found asthmatic and 

healthy volunteer lung and peripheral blood. Severe 

asthma patients had evidence for activated NK cells 

which were able to promote eosinophil apoptosis.104
 

 

Table 3. ILC2 cell populations/subtypes 

Cell Species Tissue distribution Function/pathology 

Natural helper cells 

(NH) 

Wild type mouse Fat associated lymphoid 

tissue, lung 

Nematode expulsion, airway pathology/tissue 

repair following viral infection 

Nuocytes IL-13-GFP reporter 

mouse 

Intestine, mesenteric lymph 

nodes 

Nematode expulsion 

Innate helper 2 cells 

(ih2) 

IL-13-GFP and IL-

14-GFP reporter 

mice 

Broad, spleen, liver, 

mesenteries 

Nematode expulsion 

Multi-potent progenitor 

population (MPP) 2 

IL-25 knock out 

mice 

Gut-associated lymphoid 

tissue 

Promotes Th2 cytokine responses in response 

to IL-25 and confers protective immunity to 

helminth infection 

ILC2 Humans Fetal and adult gut and 

lung, adult peripheral blood 

Chronic rhinosinusitis 

IL: interleukin, ILC: innate lymphoid cell, GFP: green fluorescent protein. 
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In addition, the combination of mast cell-derived 

prostaglandin D2 and epithelial cell-derived IL-25 and 

IL-33 resulted in enhanced ILC2 production of IL-13. 

Since the expression of lipoxin A4 is reduced in severe 

asthma, ILC activation may not be regulated in these 

patients. 

In animal models of allergic asthma, IL-13 release 

from ILC2 cells has been shown to be an essential 

director of AHR, mucus hyper secretion and 

inflammation.
39, 40, 50, 52, 98,105-107

 These studies indicate 

that activation of ILC2 occurs not only following 

intranasal IL-25 or IL-33, as the main stimulators of 

ILCs, but also following the exposure to fungal 

aeroallergens such as Alternariaalternata.
31, 35, 39, 40, 50, 

52, 87, 108
 Alternaria exposure, in turn, results in an 

increase in the expression of IL-5, IL-13, IL-6, IL-9, 

and IL-10.
29, 35, 108

 IL-33 is also released from alveolar 

macrophages, (DCs) and type 2 pneumocytes following 

infection or exposure to allergens 
31, 87, 103, 109-112

 and 

would be able to activate ILC2 cells.
1, 31, 52

 In addition, 

IL-25 may also be released from basophils and 

eosinophils following allergen challenge in animal 

models of asthma.
113, 114

 Furthermore, infection by 

parasites and by viruses also leads to the production of 

IL-5 and IL-13 from ILC2 cells.
115, 116

 In all cases the 

level of Th2 cytokines released from ILC2 cells into 

the lungs is at least similar to that released from Th2 

cells and is often much greater than the Th2-dependent 

release.
95

 In contrast, ILC2 cells produce little IL-4 and 

most IL-4 is derived from Th2 cells in animal models 

of asthma.
50, 98

  

Chronic rhinosinusitis is an inflammatory disease 

associated with high levels of IL-13, IgE, eosinophils 

and the presence of nasal polyps. Human ILC2 express 

a prostaglandin D2 receptor named chemoattractant 

receptor expressed on Th2 cells (CRTH2) and elevated 

numbers of CRTH2
+
 ILCs were found in nasal polyps 

of chronic rhinosinusitis patients compared to control 

subjects.
28

 The authors did not measure IL-25 or IL-33 

levels in the polyps. In addition, the utility of anti-IL-

13 treatment in patients with severe asthma.
117

 

New therapeutic strategies targeting ILCs may 

therefore be important for allergic airway diseases.
28

 

In addition to ILC2 cells, IL-22-producing ILCs 

have also been recently found in the lung parenchyma 

of mouse models of allergic asthma.
118, 119

 As described 

above, ILC22 cells play important roles in tissue repair 

and epithelial integrity in the respiratory tract and may, 

as reported for IL-17A, also have a protective effect on 

inflammation through effects on DCs.
120-122

 

 

G) ILCs in COPD 

Chronic obstructive pulmonary disease (COPD) is 

characterized by a chronic inflammation of the airways 

triggered by inhaled noxious particles and gases, 

mostly cigarette smoke (CS), leading to progressive 

bronchitis and/or emphysema that causes an 

irreversible airflow limitation of the lungs.
123-125

 

COPD-induced lung inflammation involves 

neutrophils, CD4
+
 and CD8

+
 lymphocytes, 

macrophages and DCs. Although eosinophils are not 

usually present in stable disease, increased numbers 

have been observed during acute exacerbations of 

COPD (AECOPD) in a large (30%) subgroup of 

patients.
126

 Liesker et al.
127

 demonstrated that sputum 

eosinophil numbers are significantly increased during 

AECOPD which coincides with a significant 30-fold 

increase in IL-13 mRNA levels.
127, 128

 At present, the 

trigger and cellular source for IL-13 gene expression in 

AECOPD is unknown. Although Th2 lymphocytes 

express IL-13, these cells are not considered to be 

implicated in COPD pathogenesis. It is tempting to 

speculate that ILC2 cells may play a role in this 

scenario.  

Interestingly, respiratory viral infection, important 

triggers of AECOPD, induces the accumulation of ILCs 

in lung tissue of mice.
129

 Depletion of ILCs with anti-

CD90.2 antibody strongly reduced BAL eosinophil 

numbers and IL-5 and IL-13 mRNA expression in lung 

tissue upon respiratory viral infection.
130

 Since IL- 33 is 

a critical trigger for ILC activation after respiratory 

viral infection in mice, it is tempting to speculate that 

IL-33 release and subsequent ILC2 activation results in 

the enhanced IL-5/IL-13 expression and eosinophilia 

seen in AECOPD.  

IL-33 is a chromatin-associated nuclear cytokine 

that is abundant in epithelial and endothelial cells and 

is considered not to be actively secreted but only 

released upon cellular damage or necrotic cell death.
131

 

NALP3 inflammasome-mediated activation of caspase-

1 activity results in the release of an inactive form of 

IL-33 in contrast to the production of active forms of 

IL-1β and IL-18.
131

 Interestingly, full-length IL-33 is 

processed into a mature form with superior biological 

activity (10-fold higher than full-length IL-33) by 

neutrophil elastase and cathepsin G.
132

 Neutrophilic 
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airway inflammation is a characteristic of COPD 

patients and neutrophil elastase and cathepsin G levels 

are increased in sputum from AECOPD patients.
133

 

Therefore, neutrophil elastase and cathepsin may 

induce maturation of IL-33 released from necrotic 

epithelial or endothelial cells into a molecule with 

superior biological activity. 

ILCs may not only play a role in AECOPD but also 

in the early development of COPD
129

 since cigarette 

smoke extract (CSE) switches airway epithelial cell 

apoptosis into necrosis.
134

 Furthermore, CSE-induced 

necrosis of airway epithelial cells was associated with 

the release of various damage-associated molecular 

patterns (DAMPs).
135

 In a mouse model of cigarette 

smoke-induced neutrophilic airway inflammation, a 

model of COPD inflammation, we have demonstrated 

that the inflammation is preceded by epithelial 

sloughing and the presence of DAMPs in BAL fluid, 

indicating necrosis of airway epithelial cells.
135

 

Although we have not measured the levels of IL-33 in 

this model, it is tempting to speculate that ILC17 and 

ILC2 cells have been activated since serum IL-17 and 

BAL IL-5 levels were significantly increased.  

These increases in IL-5 and IL-17 levels occur too 

early to be produced by differentiated Th17 cells and 

point to a role for ILC2 and ILC17 cells. However, a 

role for other IL-17-producing innate immune cells or 

even epithelial cells
136

 cannot be excluded. 

Interestingly, there is evidence that IL-17 is produced 

by innate immune cells in COPD patients. Chang et 

al.
31

 demonstrated that 80% of the IL17
+
 cells in the 

airways of COPD patients were not CD4
+
 or CD8

+
 

lymphocytes.  

 

Future Perspectives on the Roles of ILCs in Lung 

Disease 

Although the role of ILC cells in animal models of 

asthma and COPD are clear, there is little evidence in 

human disease. It is important that future studies 

examine the expression of these cells in human 

airways, sputum and bronchoalveolar lavage for 

example and determine how they link with the adaptive 

immune system within the human lung. It is also 

unclear what effects anti-inflammatory agents such as 

steroids have on the number and function co these cells.  

In addition, it is unclear whether ILC subsets 

represent truly distinct populations of cells or merely 

reflect different states of a plastic precursor cell 

exposed to a specific local microenvironment. More 

sophisticated analysis of the gene expression and 

regulatory patterns are needed in these cells. The 

critical signaling pathways or proteins that control cell-

cell interactions are also areas that need to be 

elucidated. This is even more evident in the case of 

human airways disease where these may provide 

important novel therapeutic targets particularly in 

relation to viral and bacterial infections and the 

maintenance of an intact epithelial barrier. 

The discovery of the role of these cells in mouse 

models of asthma and COPD has opened up an exciting 

era of research which may explain the anomalies 

reported to date regarding the presence of Th2 cells and 

markers in asthma for example. It is hoped that further 

understanding of the functions of these cells in human 

disease will lead to novel anti-inflammatory approaches 

in severe asthma and COPD where there is a major 

unmet clinical need. 
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