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ABSTRACT 

 

Asthma is one of the fastest growing syndromes in many countries and is adding a huge 

cost to the health care system. Increasing reports have linked airway infectious diseases to 

asthma. Influenza is one of the most serious airway infectious diseases and in recent years 

there have been some serious influenza virus pandemics which caused increased fatality in 

numerous different populations. Diverse host response pathways during virus infection have 

been identified, including different cell death and survival pathways. These pathways include 

1) programmed cell death I (apoptosis), 2) programmed cell death II (autophagy), and 3) 

endoplasmic reticulum stress with subsequent unfolded protein response (UPR). There has 

been extensive research on the regulatory roles of these pathways during the influenza virus 

life cycle. These studies address the benefits of enhancing or inhibiting these pathways on 

viral replication. Here we review the most recent and significant knowledge in this area for 

possible benefits to clinicians and basic scientist researchers in different areas of the 

respiratory and virology sciences.  
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Importance of Influenza Virus infection in Asthma 

and Allergy 

Asthma is the most common chronic disease     

among children and young adults and is a major   

public health problem that affects nearly 300 million 
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people worldwide.1 Asthma is a chronic inflammatory 

disorder of the airways characterized by reversible 

airway obstruction and hyperresponsiveness (AHR) 

associated with pulmonary inflammation, airway wall 

remodeling and mucus overproduction. These events 

are believed to be coordinated by eosinophils and 

basophils in combination with allergen-specific T 

helper type 2 (TH2) cells.
2
 More specifically, asthma is 

thought to arise from an imbalance in T helper type 1 

(TH1)-TH2 immune regulation, resulting in increased 

TH2 cytokines (IL-4, IL-5 and IL-13) as well as 

increased immunoglobulin E (IgE) titers in the lung.  

A series of additional factors, including exposure to 

environmental allergens (such as animals, moulds, 

pollens and mites), cold, exercise, air pollution and 

drugs can worsen AHR and other aspects of the 

disease. For a long time, it was believed that airway 

infection in infancy and early childhood was protective 

against the development of atopic asthma. For example, 

a study conducted by Ball et al.
3
 showed that exposure 

of young children to other children at day care, or to 

older children at home, protected against the 

development of asthma and frequent wheezing later in 

life. However, over the past decade, this concept has 

been progressively refined in light of the growing body 

of evidence that suggests most acute asthma 

exacerbations are caused by respiratory viral infections 

as well as the resulting innate immune response.
4-10

 In 

fact, respiratory tract viral infections are associated 

with 60% of asthma exacerbations in adults and up to 

80-85% in children.11,12 Depending on the different 

factors (age, gender and race), rhinovirus (RV), 

coronavirus, influenza virus, parainfluenza virus, 

adenovirus and respiratory syncytial (RS) virus are 

known to be the most common viruses that trigger 

wheezing in infants and exacerbate asthma symptoms 

in older children. These manifestations occur through 

different mechanisms, including airway inflammation, 

mucus hypersecretion and bronchial hyper 

responsiveness.
13-15

  

Among the respiratory viruses, influenza A virus 

(IAV) is a particularly important cause of viral 

infection-induced exacerbation of asthma as patients 

with asthma, especially children, are at higher risk of 

developing influenza and have more severe problems 

associated with this disease.
14

 However, the exact 

mechanisms by which influenza virus infection causes 

asthma exacerbation are not fully understood. The 

airway epithelial cells (AECs) are the primary sites for 

influenza virus infections. AEC viral infection leads to 

activation of signaling cascades to initiate expression of 

cytokines and chemokines.
16-18

 Destruction of AECs 

and a pro-inflammatory immune response are the 

primary factors that contribute to the inflammatory cell 

influx and AHR associated with asthma exacerbation. 

Asthmatic patients have been shown to have higher 

levels of IL-13 which promotes a series of events 

including goblet cell formation, increased mucin 

secretion, profibrotic repair of airway epithelium, and 

decreased production of interferon gamma (IFN-γ).
19

 

Furthermore, direct comparisons of normal and 

asthmatic AECs in various studies revealed that 

asthmatic AECs display differential expression of 

genes associated with inflammation, repair, and 

remodeling20-22 that could contribute to viral infection-

induced exacerbations of chronic asthma. 

It is widely accepted that TH1 cytokines such as 

IFN-γ antagonize allergic diseases mediated by TH2 

cytokines. Respiratory infection by Influenza virus has 

been shown to lead to the production of high local IFN-

γ concentrations by CD4+ and CD8+ T cells expressing 

low to undetectable amounts of ex vivo TH2 

cytokine.23,24 Dahl and colleagues have shown that IAV 

infection provokes a robust IFN-γ response in the lung 

that leads to the development of strong, TH1-polarizing 

dendritic cells (DCs).
10

 Using a TH2-dependent mouse 

model of allergen-induced lung inflammation, they also 

demonstrated that these DCs strengthen subsequent 

immunity via enhancing both TH1 and TH2 immune 

cytokines and immunoglobulin production.
10

 In a more 

recent study, Chang et al.
25 have shown that IAV can 

also promote AHR independently of the adaptive 

immune system, via production of IL-33 in alveolar 

macrophages, its receptor ST2 (aka IL1RL1) and cells 

of the non-T cell, non-B cell innate lymphoid type 

called “natural helper cells”.  

Association of asthma exacerbations with influenza 

infection led to development of early intervention 

strategies for prevention of asthma. In fact, influenza 

vaccination is recommended for asthmatic patients, 

particularly children, in many countries,26 although 

there is currently little evidence to support this practice. 

Despite uncertainty regarding the effectiveness of 

influenza vaccination in preventing influenza-related 

asthma exacerbations,27-29 several other studies 

conducted on both older and young patients with 
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asthma diagnosis suggest a protective effect of 

influenza vaccination on asthma exacerbations.
26,30-33

 

Influenza infection is a frequent cause of 

hospitalization of asthmatic patients; thus, regardless of 

the controversy, patients with asthma will certainly 

receive the most benefit from influenza vaccination. 

 

Influenza Virus Replication Process 

Influenza virus attaches to neuraminic acids on the 

surface of AECs to initiate infection and replication
34

 

(Figure 1). Human influenza viruses preferentially bind 

to α2,6 linkage (SAα2,6Gal), whereas avian influenza 

viruses mostly bind to sialic acid with an α2,3 

linkage.
34

 Although there remains some debate about 

how many viruses enter cells, clathrin-mediated 

endocytosis has been the accepted model for influenza 

virus entry.35 However, a non-clathrin, non-caveolae-

mediated internalization mechanism has also been 

described for influenza viruses.35 Influenza viruses are 

generally thought to require low pH to fuse with 

endosomal membranes for effective uncoating. Fusion 

occurs in three general steps: (1) Influenza 

hemagglutinin (HA) is first cleaved into HA1 and HA2 

subunits; (2) the low pH environment induces a 

conformational change in the HA subunits to expose 

the fusion peptide at the N-terminus of HA2; (3) the 

transmembrane domain of the HA2 (in the viral 

membrane) and the fusion peptide (inserted into the 

host endosomal membrane) are in juxtaposition in the 

low pH-induced HA structure.
34,36

 

 

 
Figure 1. Influenza virus life cycle. Influenza virus binds to sialic acid molecules on the surface of host cells (epithelial cells 

lining the respiratory tract) using glycoprotein HA spikes on the virus envelope. This triggers the formation of clatherin 

coated pits and internalization into endosomes. Inside the endosome, the virus is exposed to a low pH, which triggers a 

conformational change in the HA protein that leads to fusion of the viral and endosomal membranes. The low pH also 

triggers the flow of protons into the virus via the M2 ion channel, thus dissociating the vRNPs from M1 proteins, resulted in 

release of the RNPs into the cytoplasm. The vRNPs are transported into the nucleus where the viral polymerase initiates viral 

mRNA synthesis. Viral mRNAs are then transported to the cytoplasm for translation into viral proteins. The viral 

polymerase is also responsible for vRNA synthesis via two steps of replication: (−) vRNA → (+) cRNA → (−) vRNA. The 

nucleoprotein molecules are then deposited on the cRNA and vRNA during RNA synthesis to make vRNP complexes which 

are subsequently transported to the cytoplasm. New genes and proteins then come together at the cell membrane, where they 

are wrapped in a protein layer and encased in a lipid envelope as infectious virus particles and released into the extracellular 

environment to find new cells to invade. 
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One of the characteristics of the influenza virus life 

cycle that is unusual for an RNA virus is its 

dependence on nuclear functions. All influenza viral 

RNA (vRNA) synthesis occurs in the nucleus. In the 

nucleus, the incoming negative-sense vRNA is 

transcribed into mRNA by a primer-dependent 

mechanism. Viral mRNAs are capped and 

polyadenylated, unlike vRNA. The viral mRNAs are 

exported from the nucleus and translated to produce 

viral proteins. Some proteins are shuttled through the 

ER and Golgi to be glycosylated and inserted into the 

plasma membrane where viruses will eventually bud 

during maturation. Many proteins, including the 

polymerase subunits, are trafficked to the nucleus. 

Genomic replication then occurs by a two-step process. 

First, a full-length, positive-sense copy of the vRNA is 

made that is referred to as complementary RNA 

(cRNA). The cRNA is then used as a template to 

produce more vRNA. All of these reactions, 

vRNA→mRNA, vRNA→cRNA, and cRNA→vRNA 

are catalyzed by the same viral polymerase complex 

(PB1, PB2, and PA). 

Influenza virus mRNA synthesis requires a 5’ 

capped primer, which it steals from host pre-mRNA 

transcripts to initiate its own mRNA synthesis.37 The 

vRNA serves as a template for both mRNA and cRNA 

synthesis, and yet the means of initiation and 

termination for the generation of these two molecules 

are quite different. In contrast to mRNA synthesis, 

initiation of cRNA synthesis occurs without a capped 

primer. The cRNA molecules are full-length 

complementary copies of vRNA, and newly 

synthesized vRNAs are encapsidated with NP.37 It has 

been proposed that NP encapsidation controls the 

switch between mRNA and cRNA synthesis.37 In 

support of this hypothesis there are observations that 

viral replication depends on de novo protein synthesis, 

and that free NP has been shown to be required for 

production of full-length cRNA.37 A new model has 

recently been proposed that disputes the existence of a 

switch, instead suggesting a stabilization role for NP 

and the polymerase.
37

 In contrast to earlier reports, this 

study claims that the incoming polymerase is able to 

synthesize both mRNA and cRNA, but newly 

synthesized cRNAs get degraded. cRNA degradation is 

only inhibited when there is a sufficient pool of 

polymerase and NP to encapsidate the cRNA and 

protect it; therefore, at early times post infection there 

is a bias toward mRNA accumulation.37 Thus, exactly 

how the viral polymerases switch from transcription to 

replication is still under debate and the molecular 

details remain to be elucidated. The positive-sense 

cRNA serves as a template for the synthesis of 

negative-sense genomic vRNA. As with cRNA 

synthesis, this reaction also occurs via a primer-

independent mechanism and generates full-length 

products.37 

NEP/NS2 is responsible for recruiting the export 

machinery and directing export of the 

ribonucleoprotein (RNP) complex.
38

 Correct assembly 

and packaging of a full complement of RNA genome 

segments is a requirement for a fully infectious virion. 

The precise mechanism of packaging the eight vRNA 

segments is not well understood. Influenza viruses 

assemble and bud from the apical plasma membrane of 

polarized cells
39

 (e.g., lung epithelial cells of the 

infected host). Individual viral envelope proteins are 

seen to accumulate at the same polar surface where 

virus budding occurs, suggesting that they determine 

the maturation site. The enzymatic activity of the NA 

protein is required to remove the sialic acid and release 

the virus from its host cell
36

 to produce a mature, 

infectious virus. 

 

Autophagy Pathway  

Autophagy is an active physiological mechanism to 

maintain normal cellular function in different species.40 

Autophagy targets long-lived dysfunctional organelles 

and proteins, then directs them to lysosomes for final 

digestion.
41

 Autophagy is divided into three distinct 

forms: chaperone-mediated autophagy (CMA), 

microautophagy and macroautophagy.
40

 A variety of 

stress stimuli including long term starvation, exposure to 

cytotoxic compounds, or oxidative stress can lead to 

CMA activation which selectively degrades cytosolic 

proteins in lysosomes.
42

 The exact molecular mechanism 

that triggers microautophagy remains unknown. 

However, GTP hydrolysis and calcium ion are 

considered major initiators of this event in yeast.43 

Macroautophagy (referred to here as autophagy) 

degrades the bulk of damaged cytoplasmic organelles. 

Autophagy includes mitophagy (mitochondrial 

autophagy), ribophagy (ribosomal autophagy), 

pexophagy (peroxisome autophagy), ER-phagy 

(endoplasmic reticulum autophagy), aggrephagy (protein 

aggregate autophagy) and lipophagy (fat autophagy).
40
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Autophagosomes are the major particles that are 

formed and processed during the autophagy pathway. An 

autophagosome includes a double-membrane vesicle 

destined for protein and organelle (cargo) degradation 

which finally fuses to lysosomes to form 

autophagolysosomes.
44

 Autophagosome formation 

requires the activity of autophagy-related genes (ATG 

genes) which control Atg protein expression.
45

 It was 

shown that mTOR (mammalian target of rapamycin) 

inhibits autophagy by restraining the kinase activity of 

UNC-51-like kinase (ULK).46 mTOR complex1 

(mTORC1) contains mTOR catalytic subunit (raptor/ 

GβL/PRAS40/ deptor) and phosphorylates ULK1 in the 

absence of amino acid and growth factor signals [1]. 

ULK1 Ser/Thr protein kinase, Atg13, and FIP200 

(FIP200 is the mammalian homolog of the yeast Atg17) 

form the ULK1 complex48-50 and regulate autophagy 

through phosphorylation of Atg13 and FIP200.
51

  

The Beclin 1 complex can also trigger autophagy via 

c-JUN NH 2–terminal kinase 1 (JNK1), and death-

associated kinase (DAPK).52 Beclin 1 is a platform 

protein and its complex with class III 

phosphatidylinositol 3-kinase (PI3K) has a key 

regulatory role in nucleation and assembly of the initial 

phagophore membrane.53,54 Beclin1 interaction with 

Atg14, UVRAG (ultra-violet radiation resistant gene), 

and AMBRA (activating molecule in beclin 1-regulated 

autophagy) promotes autophagy,
55

 while Beclin 1 

interaction with UVRAG and RUBICON (RUN domain 

and cysteine rich domain containing) inhibits 

autophagy.53,56 Upon autophagy stimulation, LC3βII is 

conjugated to the polar head of 

phosphotidylethanolamine (PE) and initiates 

autophagosme formation.
40

 Atg9 is recruited by Atg1-

Atg13 signaling complex and plays an important role in 

expanding the autophagosome precursor.
57

 

Autophagosomes are labeled by different prominent 

markers and later are directed to lysosomes and 

recycled.52 A summary of the autophagy pathway is 

illustrated in Figure 2. 
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Figure 2. A schematic summary of the autophagy machinery. Autophagy pathway is tightly regulated because too little or too 

much activation can be harmful for the cell. The mTORC1 plays a central role in negative regulation of autophagy and is 

inhibited by the kinase activity of ULK1 complex. Thus, inhibition of mTORC1 strongly induces autophagy. In this pathway, 

growth factor depletion, essential amino acid deficiency, hypoxia, and low energy levels inactivate mTORC1, cleave ULK1 

complex, and trigger autophagy. During starvation, JNK1 is activated which can subsequently phosphorylate Bcl-2, leading 

to activation of VPS34-Beclin 1-class III PI3-kinase complex which regulates autophagy initiation. Furthermore, the Atg5-

Atg12-Atg16 and LC3 conjugation system participates in autophagosome membrane formation and elongation. The Atg5-

Atg12-Atg16 complex can conjugate LC3-I to the polar head of the phosphotidylethanolamine (PE) to produce LC3-II (LC3 

lipidation). The whole autophagy system is an active flux that directs the autophagosome to lysosomes and finally produces 

autophagolysosomes to remove unwanted or damaged organelles and cellular debris. 
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Role of Autophagy Pathway in Influenza Virus 

Infection 

In addition to its cellular homeostasis function, the 

autophagy pathway is implicated as a central 

component of antimicrobial host defense against 

diverse pathogenic infections and not surprisingly, to 

counteract this mechanism, many pathogens have 

evolved to evade, subvert, or use autophagy for their 

own benefit.
58-62

 Autophagy has also been shown to be 

involved in the replication of influenza virus.
59,63-65

 

However, the exact role of autophagy in IAV 

pathogeneses remains to be elucidated. Influenza virus 

is an enveloped virus that uses the low pH of 

endosomes and lysosomes to uncoat and release the 

RNPs.
66,67

 The lysosomal acidic pH is also required for 

optimal lysosomal enzyme activity as well as 

autophagosome and lysosome fusion for completion of 

the autophagy pathway.
41

 According to the Zhou          

et al.,
59

 infection by IAV causes an increase in the 

formation of autophagosomes in mammalian cells. 

Inhibition of autophagy with pharmacological 

inhibitors, or by LC3 and Beclin 1 silencing, reduced 

the titer of virus and autophagosome formation,
59

 

suggesting a regulatory role for autophagy in influenza 

virus replication. 

Autophagic degradation and recycling in 

mammalian cells requires autophagosome formation 

followed by autophagosomes-lysosome fusion. 

Gannage and colleagues experimentally demonstrated 

that infection of epithelial cells by IAV inhibits the 

fusion of autophagosomes with lysosomes, thereby 

preventing the degradation of autophagosome.
63

 In this 

study, the authors transfected the epithelial cells with 

different IAV proteins such as polymerase basic 2 

protein (PB2), nucleoprotein (NP), non-structural 

protein 1 (NS1), matrix protein 1 (M1), matrix protein 

2 (M2) and hemagglutinin (HA). Only the M2 protein 

transfection was able to induce autophagosome 

formation and block its fusion with lysosomes,
63

 

indicating that M2 protein alone is sufficient to inhibit 

the process of autophagy. In line with these results, 

silencing of M2 protein expression during viral 

infection, or infecting the cells with viruses that lack 

M2, revert the autophagosome accumulation and allow 

vesicle degradation.
63

 These results suggest that IAV 

M2 protein is essential for regulating host cell 

autophagy. 

Law and colleagues
65

 also showed that infection of 

human blood macrophages with avian influenza virus 

H9N2/G1 and H1N1 swine-origin influenza virus (S-

OIV) leads to autophagy activation. In this study, 

H9N2/G1 virus was shown to be the most potent 

inducer and S-OIV was the weakest inducer of 

autophagy when compared to other viruses. This 

observation may suggest that different IAV strains 

differentially affect the autophagy pathway. 

Furthermore, the authors showed that autophagy 

induced by these influenza viruses helped increase the 

production of C-X-C motif chemokine 10 (CXCL-10) 

cytokine and interferon alpha (IFN-α),
65

 providing new 

evidence that virus-induced autophagy can regulate 

cytokine production. 

Virus-induced autophagy by avian IAV H5N1 in 

mouse embryonic fibroblasts (MEF) cells was shown to 

be due to the suppression of mammalian target of 

rapamycin (mTOR) pathway,
68

 while autophagy in the 

human epithelial cells was through pathways involving 

AKT, tumor suppressor protein TSC2 and Mtor.
69

 In 

the latter study, Sun and co-workers experimentally 

showed that H5N1 HA was primarily responsible for 

stimulating autophagy.
69

 Additionally, they found that 

treatment of influenza-infected mice with drugs that 

inhibit autophagy pathway significantly increased the 

survival rate of mice and ameliorated the acute lung 

injury and mortality caused by H5N1 infection.
69

 

Reflecting on the research done so far on influenza 

viruses, it clearly provides evidence that these viruses 

induce autophagy upon infection in human cells. 

However, more evidence is needed in order to 

understand their mechanism of action in relation to 

autophagy. 

 

Apoptosis Cell Death 

Programmed cell death (PCD) is an essential 

physiological process involved in development, aging 

and tissue homeostasis which maintains normal cellular 

fate in different organisms.
70

 Apoptosis (PCD I) 

includes unique biochemical and morphological 

features such as plasma membrane blebbing, pyknosis, 

shrinkage and decreased cell volume.
71,72

 Apoptosis, in 

contrast to necrosis, does not induce inflammation 

since apoptotic cells do not release their cellular 

contents into the surrounding interstitial tissue and are 

quickly engulfed by macrophages or adjacent normal 

cells.
73,74

 The regulatory mechanisms of apoptosis are 

highly controlled at different levels including by death 
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receptors, caspases, mitochondria and Bcl-2 family 

proteins.
75

 External and internal signals can induce 

apoptosis (extrinsic and intrinsic pathways) in many 

cell types.
76

 

Caspases, (or Cysteine-Aspartic Protease enzymes), 

and their activation is considered one of the 

fundamental components of the mammalian apoptotic 

pathway.
76

 Caspases exist as inactive pro-enzymes 

(zymogens) that undergo proteolytic processing and are 

cleaved to an active form during apoptosis.
77

 Caspases 

are classified into two groups based on their order of 

activation: 1) the initiator caspases (i.e. caspase-2, -8, -

9, and -10), and 2) the effector (executioner) caspases 

(i.e. caspase-3, -6, and -7). Initiator caspases are 

activated upon extrinsic (cell death receptors) or 

intrinsic (mitochodrial) stimuli that lead to activation of 

executioner caspases.78,79 

Extrinsic or death receptor-dependent apoptosis 

pathway can be initiated through the ligation of death 

receptors (Fas, DR4, DR5, TNF-R1) by their specific 

ligands (e.g., FasL, APO-2L, TRAIL, and TNF).76 

Once a death ligand binds to its corresponding receptor, 

endogenous adaptor proteins such as FADD or 

TRADD are recruited and apoptotic signals can 

conscript adaptor molecules to their death domains 

which will trigger the activation of apical initiator 

caspases (e.g., caspase-8). Active caspase-8 affects 

mitochondria via truncated BID and causes 

mitochondrial initiator caspase (caspase-9) 

activation.
80,81

 All of these events lead to effector 

caspase activation (caspase-3, -7, -6) [2], that can 

cleave different substrates such as cytokeratins, PARP, 

plasma membrane cytoskeletal protein (alpha fodrin) 

and subsequently provoke morphological and 

biochemical aspects of apoptosis. 

The mitochondria-dependent pathway is triggered 

following exposure to stresses such as cytotoxic drugs, 

ultraviolet (UV) radiation, and free radicals which lead 

to DNA damage.72,82-84 Later stress can activate pro-

apoptotic Bcl-2 family (Bax/Bak) and ultimately lead 

to caspase-dependent or -independent apoptosis.76,85 

Anti-apoptotic Bcl-2 proteins (Bcl-2 and Bcl-XL) 

counteract pro-apoptotic proteins and can delay or 

inhibit apoptosis.
86

 A summary of apoptosis pathways 

is shown in Figure 3.  

 

Role of Apoptosis Pathway in Influenza Virus 

Infection 

Apoptosis is a key player in many viral infectious 

diseases, including influenza virus infection.87 

However, the exact role of apoptosis in viral infections 

is not fully understood yet. Two controversial and 

opposed hypotheses concerning the role of apoptosis in 

viral infections have been proposed; one considers 

apoptosis as a host cell defense mechanism against 

viral infection88 whereas the other one proposes that 

viruses hijack host cell apoptosis machinery and use it 

for its own replication process.89-93 Several in-vivo and 

in-vitro studies highlight the importance of influenza 

virus-induced apoptosis mechanisms in different 

models.
93-95

 Different influenza virus strains contain a 

variety of proteins including M1, NS1, and PB1-F2 

proteins, which are shown to be involved in apoptosis 

induction or inhibition.96  

Microtubules are an important component of the 

cellular cytoskeleton structure within the cell's 

cytoplasm.
97

 The Influenza virus NS1 protein was 

shown to interact with tubulin and affects its 

polymerization.
98

 This could arrest the infected cells in 

G2/M phase and further affect Bcl-2 phosphorylation 

which triggers apoptosis cascade in infected cells.
98

 

Moreover, it has been recently shown that agents that 

interfere with tubulin polymerization can also induce 

apoptosis.99 Several studies investigated the role of pro- 

and anti-apoptotic Bcl-2 family proteins including Bcl-

2, Bax, Bak and BAD in influenza virus infection. 

Over-expression of anti-apoptotic protein, Bcl-2 

decreased influenza virus virulence100 while Bax and 

BAD activation are necessary for successive viral 

replication.93,100 In a recent study conducted by our 

group, we found that influenza virus infection induces 

phosphorylation of BAD at residues S112 and S136 in 

a temporal manner and that virus-induced 

cytopathology and cell death are considerably inhibited 

in BAD knockdown cells.
93

 In contrast, the pro-

apoptotic protein Bak has anti-viral effects and is 

significantly down-regulated during IAV infection.
100

 

Bax expression was also shown to be negatively 

regulated via PI3K/Akt/JNK pathway in virus infected 

cells,101 which further affects influenza virus infection 

in the host cells. These studies indicate the importance 

of Bcl-2 family members in influenza virus infection 

and demonstrate that further study is necessary to 

address the exact mechanisms involved in these 

processes. 

Initiator and effector caspases are involved in 

apoptosis and their activation is one of the          

essential hallmarks of apoptosis.76,102 It has been shown  
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Figure 3. Schematic representation of extrinsic and intrinsic apoptotic pathways. Cell death ligands (e.g., FasL, APO-2L, 

TRAIL, TNF) bind to their respective death-receptors (e.g., Fas, DR4, DR5, TNF-R1) and initiate pro-caspase-8 activation by 

recruiting FADD. Once caspase-8 is activated, it can directly initiate the cleavage of effector caspases, such as caspase-3, -6, 

and -7, which are involved in the core apoptosis pathway. Moreover, caspase-8 truncates Bid, which later induces the 

intrinsic (mitochondrial) pathway. The mitochondria pathway can be directly initiated by a variety of stress signals. Stress 

signals initiates DNA damage and p53 phosphorylation, which subsequently triggers many apoptotic events and finally causes 

mitochondrial damage and cytochrome c release. Cytosolic cytochrome c participates in apoptosome formation (in the 

presence of dATP, and Apaf1) and activates caspase-9 which later activates caspase-3. Caspase-3 selectively cleaves CAD that 

causes nuclear fragmentation and also chromatin condensation. Damaged mitochondria may also release other pro-apoptotic 

proteins such as Smac/Diablo, Omi/HtrA2 (caspase dependent), AIF, and Endo G (caspase independent) that separately can 

participate in apoptosis propagations. 

 

that influenza virus NS1 protein activates NF-κB and 

induces INF-α and INF-β, which afterward activate the 

caspase cascade and induce apoptosis in infected 

cells.
103,104

 Using the human alveolar epithelial cell line 

A549, Yan et al.
105

 demonstrated that the 2009 

pandemic H1N1 A/Beijing/501/2009 can induce 

caspase-3-dependent apoptosis.
106

 Avian H5N1 

influenza virus has also been shown to promote TNF-

related apoptosis-inducing ligand (TRAIL) in human 

monocyte-derived macrophages (MDMs). In the later 

events, TRAIL caused caspase-10 activation with 

subsequent BID truncation and apoptosis inducing 

factor (AIF) release form mitochondria which 

ultimately leads to apoptosis in these cells. Z-VAD-fmk 

(pan caspase inhibitor) inhibits all of these events in 

H5N1 infected MDM cells.
105

 Yang et al. showed that 

caspase-dependent apoptosis is involved in influenza 

A/chicken/Hubei/489/2004 virus infected MDCK cells 

and that virus infection is also regulated by apoptosis in 

these cells.
107

 As was mentioned in previous sections, 

activated caspases have several targets. It has been 

shown that activated caspase-3 can cleave histone 

deacetylase 6 (HDAC6) in IAV-infected MDCK cells 

and cause further damage in these cells.
108

 

Regulation of apoptosis in many ways has been 

shown to effect virus replication in the host cells. For 

instance, microRNAs (miRs) have been shown to 

control apoptotic signaling through numerous signaling 

pathways including Bcl-2 family proteins,
109-110

 small 

Rho GTPase
111

 and ATF1 gene expression.
112

 Virus 

infection also has been shown to alter the expression of 

cellular miRs,
113,114

 which could affect virus replication 
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in the host cells. In a recent study, it was shown that 

influenza virus infection affects miR-29c and down-

regulates Bcl2-L2 expression, which leads to apoptosis 

promotion in A549 cells.
115

 Antioxidant compounds are 

also known to increase the strength of the cellular 

defense against multiple apoptotic stimuli and augment 

cell survival mechanisms.116-118 A study conducted by 

Mata and colleagues showed that infection of host cells 

with IAV and simultaneous anti-oxidant agent 

treatment decreased influenza virus replication and 

apoptosis induction.119 

Natural Killer (NK) cells are a major part of the 

host innate immune system against pathogens including 

viruses.
120

 It has been reported that influenza virus 

could directly induce apoptosis in NK cells and 

probably facilitate viral transmission which could 

smooth the progress of viral pathogenesis.120 Influenza 

virus could also induce apoptosis in neutrophils of the 

host via an increase in Fas protein expression in these 

cells.
121

 In a more recent study, virus-induced apoptosis 

in neutrophils has been shown to induce innate 

immunity dysregulation in the host cell and increase the 

pathogenesis of influenza virus.122 As evident from the 

literature review of the researches done so far on 

influenza viruses and apoptosis, there appears to be a 

complex in virus-infected host cell responses in relation 

to apoptosis pathway. This is very logic that influenza 

viruses evolve to use an economic way to control 

efficient replication, thus virus-induced apoptosis at 

some point during the virus life cycle may act as a 

proviral signaling pathway. Additional studies are 

warranted to shed further light on the role of apoptosis 

in influenza virus infection. 

 

Endoplasmic Reticulum Stress and Unfolded 

Protein Response 

The endoplasmic reticulum (ER) serves as a 

protein-folding machinery and plays critical functions 

in maintaining normal cellular activities.123 Imbalance 

between the ER protein folding capacity and cellular 

protein demand, resulting in accumulation of mis-

folded protein in the ER, leads to the unfolded protein 

response (UPR).124,125 Several stimuli can induce ER 

stress, such as disruption of Ca
2+

 homeostasis, various 

metabolic abnormalities, toxins, inhibition of proteins 

glycosylation, spontaneous errors during transcription 

and translation, genetic mutations, virus or bacterial 

infection, and hypoxia.
126,127

 ER stress transmembrane 

receptors, pancreatic ER kinase (PKR)-like ER kinase 

(PERK), activating transcription factor 6 (ATF6) and 

inositol-requiring enzyme 1 alpha (IRE1α) detect the 

aggregation of unfolded proteins and then induce UPR 

to maintain normal ER function.
123,128

 UPR arms are 

docked and kept inactive by immunoglobulin heavy 

chain binding protein (BiP).
123

 However, in stressed 

conditions, BiP can bind to lumenal misfolded proteins, 

which leads to PERK, IRE1α and ATF6 activation.
124

 

Upon activation, PERK phosphorylates eukaryotic 

initiation factor 2 alpha (eIF2α), thereby shutting off 

protein translation.123 However, under ER stress-related 

conditions, ATF4 expression is up-regulated and 

affects cellular redox status and regulates apoptosis 

mechanisms.
124

 In addition to eIF2α, PERK also 

phosphorylates Nrf2, an antioxidant response 

transcription factor, and increases its stability.
129,130

 

IRE1α induces X-box binding protein-1 (XBP-1) 

mRNA splicing,
131,132

 which is also essential for 

efficient protein folding, maturation, and degradation in 

the ER.
133,134

 Prolonged activation of IRE1α triggers 

Jun N terminal kinases (JNKs) signaling pathway 

which is linked to many forms of stress-regulating gene 

expression.135 IRE1α can also recruit the adaptor 

molecule TNF-receptor-associated factor 2 (TRAF2) as 

well as the apoptosis signal-regulating kinase (ASK1), 

which leads to caspase activation and cell death.
136

 

Caspases-12 also is implicated in ER stress-induced 

death signals and promotes activation of effector 

caspases.137 

ATF6 is the third arm of the UPR which is 

processed by serine protease S1P and the 

metalloprotease S2P after translocation to the Golgi 

apparatus.123 Cleaved ATF6 subsequently moves to the 

nucleus, where it can induce expression of genes with 

an ER stress response element (ERSE) in their 

promoter region.
138

 ATF6-targeted genes include ER 

chaperone proteins CHOP, XBP-1, ERp72, and PDI.139 

A summary of ER-stress and UPR pathways is 

illustrated in Figure 4.  

 

UPR and Influenza Virus Infection 

In the past decade, many researchers have 

addressed different aspects of UPR in various 

pathological conditions including cancer, inflammation 

and metabolic disorders.140-143 UPR and ER-stress are 

also involved in many virus infections including 

hepatitis B virus, hepatitis C virus, Japanese 

encephalitis virus, Enterovirus 71, and               

Moloney murine leukemia virus (MoMuLV)-ts1.144-146   
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Figure 4. The molecular events of ER stress. In stressed cells, the ER chaperone BiP (GRP78) releases from UPR proteins 

(e.g. PERK, ATF6, and IRE1) and facilitates their activation. Upon activation of PERK, eIF2αααα is phosphorylated and block 

protein synthesis. However, selected mRNAs like ATF4 are translated in the presence of phosphorylated eIF2α and activate 

genes encoding ATF3, CHOP, and GADD34 expression, which also participate in translational inhibition. IRE1 activation 

results in the splicing of XBP-1 mRNA in the cytoplasm, leading to its nuclear translocation and transcription of UPR target 

genes. TRAF2 and ASK1 are also recruited by IRE1 and activate JNK and NFkB. The third UPR sensor (ATF6) translocates 

to the Golgi apparatus where it is cleaved by S1P and S2P proteases. After being cleaved, ATF6 moves to the nucleus and 

targets ER chaperone genes (CHOP, XBP-1, ERp72, and PDI). 

 

In many cases, UPR is involved in viral pathogenesis 

events in the host cells. For instance, Japanese 

encephalitis virus, bovine diarrhea virus, tula virus, 

severe acute respiratory syndrome coronavirus (SARS-

CoV), and West Nile virus have been demonstrated to 

induce their apoptotic effect via UPR induction in their 

host cells.147-150 

It has been recently reported that IAV infection 

activates certain arms of UPR in the lung epithelial 

cells.
151

 Hassan et al. reported that IAV infection 

induced IRE1 activation with subsequent XBP-1 

splicing while it did not affect PERK activation in the 

lung epithelial cells.151 This observation was further 

confirmed using specific IRE1 inhibitors which 

inhibited IAV replication in these cells.151 In another 

study conducted by Ruberson et al.,
152

 the authors 

reported that IAV infection induces ER-stress in 

murine primary tracheal epithelial cells (MTECS) via 

ATF6 and endoplasmic reticulum protein 57-kD 

(ERp57) activation, but not C/EBP homologous protein 

(CHOP). They also reported that IAV mediated-

apoptosis in these cells is caspase-12 dependent, which 

is another hallmark of ER-stress in the infected cells.152 

Human myxovirus resistance gene A (MxA), which 

is responsible for the antiviral activity against a variety 

of RNA viruses, including influenza virus, has been 

shown to be responsible for ER stress-induced events, 

such as BiP mRNA expression and XBP-1 mRNA 

processing in IAV infected cells.153 Furthermore, IAV 

mRNA translation may also need the enrollment of 

P58IPK, the cellular inhibitor of PKR, an interferon-

induced kinase that regulates the eukaryotic translation 

initiation factor eIF2α [3]. It has been previously 

shown that P58
IPK

 regulates influenza virus mRNA 

translation and infection through a PKR-mediated 

mechanism, which is independent of PERK.
154
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Closing Remarks 

Reducing asthma rates, and controlling its 

symptoms in patients, are one of the most important 

aims for many respiratory-field scientists. One of the 

factors that might be involved in both etiology and 

recurrence of asthma is respiratory tract infectious 

diseases, including influenza. The present review paper 

addresses the involvement of apoptosis, autophagy, and 

UPR in influenza virus replication and cell cycle. Most 

of the findings are controversial but careful 

consideration highlights an important point; that these 

pathways could positively or negatively regulate viral 

replication. However, the time points at which 

measurements are taken, or when interventions are 

introduced, are the most critical aspects that should to 

be considered. Apoptosis, autophagy, and UPR are 

major host cell responses to viral infection. Therefore, 

it is crucial that these events be studied in both early 

and late time points post infection. Several chemical 

modulators of these pathways have been invented and 

are currently in use for different diseases. Thus, these 

pathways and their modulators could potentially be a 

future target in modern and novel influenza virus 

infection therapeutic strategies for controlling the rate 

and symptoms of asthma disease.  
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