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ABSTRACT 

 

Sulfur mustard (SM) has been identified as an important chemical weapon. During the 

Iran-Iraq war of 1980-88, the extensive usage of SM against Iranian civilians and military 

forces was proven. This agent has been shown to cause severe damage mainly in the skin, 

eyes, lungs, and respiratory tract in Iranian veterans. The most common disease is 

bronchiolitis obliterans (BO)). SM increases the endogenous production of reactive oxygen 

species (ROS). Superoxide dismutases (SODs) are known as protective antioxidants against 

the harmful effects of ROS.  

Twenty exposed SM individuals (43.2±6.4 years), and 10 normal controls (41.3±2.5 years) 

were enrolled in this study. Evaluation of SODs was performed by semiquantitative RT-PCR 

and immunohistochemistry. 

Our results demonstrated that CuZnSOD and MnSOD mRNA were up-regulated 

2.79±1.09 and 2.49±1.11 folds, respectively in SM-injured patients in comparison with 

control levels. In contrast, Immunohistochemistry results showed downregulation of 

CuZnSOD protein expression in SM injured patients. 

Our results revealed that SODs may play an important role in cellular protection against 

oxidative stress due to mustard gas toxicity in airway wall of SM exposed patients. 
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INTRODUCTION 

 

Sulfur  mustard  (SM)  has  been  identified  as  an   
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important chemical weapon and is classified as a 

harmful warfare agent. During the Iran-Iraq war of 

1980-88, the extensive usage of SM by the Iraqi ex- 

regime against Iranian civilians and military forces was 

proven.1  

This agent has been shown to cause severe damage 

to exposed individuals, mainly in the skin, eyes, lungs, 
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and respiratory tract.2-5 

To date, there are over 40,000 people in Iran 

diagnosed with different degrees of respiratory 

complications due to mustard gas exposure. There is no 

general consensus regarding the pulmonary 

pathophysiology of the patient population exposed to 

SM, but SM has been shown to induce respiratory 

diseases over long periods of time. A main late 

pulmonary complication of SM is bronchiolitis 

obliterans (BOs).
3,6 

Despite extensive research, the 

mechanisms by which SM causes injury are still 

incompletely understood. SM is an alkylating agent that 

interacts with nucleophilic functional groups such as 

the amino, carboxylic, and hydroxyl groups in DNA 

and proteins.7,8 SM is an activator of proteases, 

resulting in proteolysis of several vital intracellular 

enzymes and structural proteins.9 In addition to the 

alkylation of DNA and protease activation, SM causes 

the depletion of intracellular glutathione (GSH), which 

has been shown to be an important antioxidant in the 

lung.10
 As another insult, disordered neutrophils and 

lymphocytes produce proteases, which in turn 

manufacture reactive oxygen species (ROS). Thus, free 

radicals recognized as inducers of oxidative injury in a 

number of molecules in the cell play a central role in 

the pathogenesis of lung diseases like bronchiolitis 

obliterans with oxidative stress.11,12 

Superoxide dismutases (SODs) are known as 

important protective antioxidants against the harmful 

effects of ROS.
7
 They serve as the primary defense of 

the human lung against free radicals (oxidative strees) 

produced as part of normal metabolism, and are also 

critical in protecting against the progression of oxidant-

related lung
 

damage.
13

 Exposure to mustard gas 

significantly inhibits the activity of SOD, glutathione 

peroxidase, and catalase.
14

 SODs are coded by different 

genes and their genetic variation plays a role in the 

pathogenesis of several free radical–associated 

disorders.15 

At present, 3 distinct isoforms of SOD have been 

identified in mammals, and their genetic structure, 

cDNA, and proteins have been described. Two 

isoforms of SOD have Cu++ and Zn++ in their 

catalytic center and are localized to either intracellular 

cytoplasmic compartments CuZnSOD (SOD-1) or to 

extracellular elements ECSOD (SOD-3).
16,17

 MnSOD 

(SOD-2), the third isoform, has Mn as a cofactor and 

has been shown to localize to the mitochondria of 

aerobic cells.18 

MnSOD, CuZnSOD, and ECSOD are adequately 

present in healthy human lung.
19

 MnSOD is moderately 

expressed in respiratory epithelium, alveolar type II 

epithelial cells, alveolar macrophages, and interstitial 

fibroblasts in hypoxia-exposed rats.20,21. In the airway 

epithelium, CuZnSOD is highly expressed in ciliated 

epithelial cells.22,23 The most important superoxide 

scavengers in the cell cytosol and in mitochondria are 

MnSOD and CuZnSOD. ECSOD is not present in a 

sufficient concentration to act as a bulk scavenger of 

superoxide throughout the entire extracellular space 24. 

In any case, CuZnSODs are the dominant lung 

SODs.13,25 

Considering the production of ROS in lung injury 

induced by SM and the reduction of SOD in bronchial 

epithelium of respiratory lung diseases such as asthma, 

we investigated the effects of mustard gas at the mRNA 

and protein levels on CuZnSOD and MnSOD in the 

pathophysiological cytoprotection of airway walls in 

bronchial biopsies of patients who were exposed to SM 

in comparison to unexposed patients. These findings 

should be useful in developing a new treatment 

protocol with antioxidant medicine for chemical 

exposed patients.  

 

MATERIALS AND METHODS 

 

Study Design 

In this study, 20 patients affected by SM and 

suffering from long term pulmonary complications 

were randomly enrolled, and 10 non-chemical 

participants were included as a control group. The 

chemical injured patient population comprised of 

individuals who had documented encounters to SM 

during 1980-1988 Iran-Iraq war. The exposure to SM 

in the SM-affected group was confirmed by documents 

in the Iranian military health services at the time          

of exposure and the beginning of pulmonary symptoms 

immediately after the contact without any symptom-

free period. This study was approved by the 

Baqiyatallah University of Medical Sciences Ethics 

Committee. After the protocol of the experiment        

had been entirely explained to them, all the participants 

signed a written informed consent. The demographic 

data are shown in Table 1. Cases with positive    

histories of the other chronic pulmonary diseases, such 

as asthma, autoimmune diseases, lung cancer, diabetes  

mellitus, acute infective bronchitis, and pneumonia
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Table 1. Subjects’ demographic characteristics 

Subjects n 
Sex 

 (M/F) 

Age  

Range 

Age  

(mean± SD) 

p 

 

SM-exposed  20 20/0 36-58 43.2±6.4 0.6 

Control  10 10/0 39-44 41.3±2.5  

 

 

Table 2. Sequences and characteristics of PCR primers 

Gene (Accession ID) Primer sequence (5' to 3') Annealing Tm Product size 

CuZnSOD (NM_000454) Forward AGGGCATCATCAATTTCGAGC 57 ºC 217 bp 

Reverse ACATTGCCCAAGTCTCCAAC 

MnSOD (NM_000636) Forward GGAAGCCATCAAACGTGACT 57 ºC 162 bp 

Reverse CCTTGCAGTGGATCCTGATT 

β-actin (NM_001101) Forward TTCTACAATGAGCTGCGTGTGG 57 ºC 119 bp 

 

were excluded. Likewise, addicts, elders, smokers, 

organ transplant recipients, and patients with histories 

of occupational pulmonary contact with toxicants were 

also excluded from our study. 

After inhalation of 2% aerosolized lidocaine and 

intravascular midazolam, bronchoscopy was performed 

with a flexible fiberoptic bronchoscope BF1T 

(Olympus, Japan) that passed through the airway to 

reach the segmental and sub-segmental carinae. 

Endobronchial biopsy samples were taken with a 

bronchoscopic forceps (Olympus, Japan). Throughout 

the bronchoscopy, supplementary oxygen was 

provided, and the oxygen saturation was checked 

constantly by the pulse oxymeter until the end of the 

procedure. Two biopsies were taken from each patient 

and separately placed in Tripure Isolation Reagent 

(Roche, Germany) and 4% formalin (Merck, Germany) 

instantaneously, followed by transfer to 30% sucrose. 

Specimens in Tripure were kept in -80°C until RNA 

extraction. Formalin samples were stored at 4°C for 

immunohistochemistry study. 

 

RT-PCR of CuZnSOD & MnSOD Genes 

RT-PCR was conducted as previously described in 

detail 
6
. In brief, total RNA was extracted with using 

Tripure Isolation Reagent (Roche, Germany) in 

accordance with the manufacturer’s recommendations 

and stored in −80°C for the following procedures. The 

isolated RNAs were eluted in RNase-free water, and 

their quantity and quality were evaluated by Nano Drop 

electrophoresis (ND-1000, DE) and in 1% agarose gel 

(Cinnagen, Iran), respectively.  A 500 ng aliquot of 

total RNA was reverse transcribed to create first-strand 

complementary DNA by SuperScript III reverse 

transcriptase (Invitrogen, CA) according to the 

manufacturer’s protocol and was treated by DNaseI 

(Invitrogen, Carlsbad, CA) and heat inactivation to 

remove any contamination with chromosomal DNA. 

Semiquatitative RT-PCRs of the CuZnSOD and 

MnSOD genes were accomplished by using equivalent 

amounts of synthesized cDNAs in a final reaction 

volume of 25 µl. Recombinant Taq DNA polymerase 

and all other PCR reagents were purchased from 

Cinnagen (Tehran-Iran), and the reactions were run in a 

master cycler thermal cycler (Eppendorf, Germany). 

Specific primer sets for the CuZnSOD and MnSOD 

genes and β-actin, as a housekeeping gene, were 

designed with the aid of primer3 software 

(http://frodo.wi.mit.edu/) and obtained from Bioneer 

Company (South Korea). Characteristics of all primer 

sets were shown in Table 2. 

The RT-PCR was carried out under the following 

conditions for all genes: primary denaturation at 94°C 

for 5 min followed by 30 PCR cycles consisting of 

denaturation at 94°C for 30 sec, annealing at 57°C for 

30 sec, extension at 72°C for 60 sec, and 5 min 

terminal extension at 72°C. PCR products were 

electrophoretically separated in a 2% agarose gel 

(Cinnagen, Iran) and stained with ethidium bromide 

(Cinnagen, Iran). Lastly, bands were visualized under 

UV light in a gel documentation device (Bio-Rad 

Laboratories, CA). 

Following semiquantitative RT-PCR, quantitative 

real-time RT-PCR was performed in a Rotor-Gene RG 

3000 (Corbett Research, Australia). Amplification was 

done in triplicate for each sample using SYBR Green 
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Premix (Takara, Japan) according to the manufacturer’s 

protocol. The PCR conditions were as follows: initial 

heat hold at 94°C for 1 min followed by 40 

amplification cycles including denaturation at 94°C for 

20 sec, annealing at 57°C for 30 sec, and extension at 

72°C for 30 sec. β-actin expression was used to 

normalize cycle threshold (Ct) values and gave a 

control for relative quantitative evaluation of the 

transcripts abundance. 

 

Immunohistochemistry 

We have already described the immune-

histochemistry procedure in detail elsewhere.26 Briefly, 

8 airway biopsy samples from SM-exposed patients 

and 8 specimens from unexposed control subjects were 

checked. All samples were fixed in 4% formalin 

(Merck, Germany) and then placed in phosphate 

buffered saline (PBS) (Takara, Japan) containing 30% 

sucrose (Wako, Japan). After 15 µm thick, water- 

embedded sections were prepared with a cryostat 

(Histo-line, Italy), they were incubated for 12 hours at 

4°C with primary antibody at a dilution of 1:200 in 

PBS. This primary antibody was a rabbit monoclonal 

antibody raised against human CuZnSOD (Abcam, 

UK). For immunostaining after the incubation, sections 

were incubated with 1:200 diluted biotinylated anti-

rabbit secondary antibody (Santa Cruz Biotechnology, 

CA). The prepared sections were finally visualized with 

the aid of rabbit ABC Staining System (Santa Cruz 

Biotechnology, CA) using 3, 3’-Diaminobenzidine 

(DAB) as the color substrate. 

 

Statistics 

Data are shown as mean± SD of fold-changes of 

CuZnSOD and MnSOD gene expressions. SPSS 

software version 15.0 (SPSS, IL) was utilized for 

statistical analyses. For assessment of differences in the 

expression of the mentioned genes between the SM-

injured group and unexposed controls, student’s t-test 

was used, and P<0.05 was considered as statistically 

significant.  

 

RESULTS 

 

Thirty subjects participated in the current study. 

They included 20 SM-exposed patients and 10 

unexposed persons as a control group. The average 

ages of SM-injured patients and unexposed controls 

were 43.2±6.4 and 41.3±2.5, respectively, which was 

not significantly different (0.6) (Table 1). 

First, semiquantitative RT-PCR was performed to 

clarify whether there were any differences in 

CuZnSOD and MnSOD gene expressions within the 

control group subjects. Our results showed that no 

significant differences existed among the control cases 

in terms of SOD gene expression (Data not shown).  

The next step was to study the CuZnSOD and MnSOD 

gene expressions in the SM-exposed patients. Our 

results demonstrated that CuZnSOD and MnSOD 

mRNA were up-regulated in SM-injured patients 

(Figure 1). 

The expression of SOD genes were also 

quantitatively assessed by real-time RT-PCR. In 

harmony with the semiquantitative RT-PCR results, the 

expression of CuZnSOD at the mRNA level increased 

2.79±1.09 fold in SM-exposed patients in comparison 

with control cases; moreover, the mRNA level of 

MnSOD in SM-exposed patients also increased 

2.49±1.11 fold in comparison with control levels 

(Table 3). 

 

 
Figure 1. Up-regulation of SOD1 (CuZnSOD) and SOD2 (MnSOD) gene expression in airways of SM-injured patients. 

CuZnSOD & MnSOD gene expressions were measured by semiquantitative RT-PCR. This panel shows gel bands in order as 

PCR amplification products of CuZnSOD (217bp), MnSOD (162bp) and β-actin (119 bp) transcripts.  (A) A marked increase 

in the CuZnSOD gene expression levels of SM-exposed patients (lanes, 4-13 ) was recognized in comparison with the 

expression levels of unexposed ones (lanes, 2 and 3). (B) A noticeable increase in the MnSOD gene expression levels of SM-

exposed patients (lanes, 4-13) was recognized in comparison with the expression levels of unexposed ones (lanes, 2 and 3). (C) 

Β-actin was used as internal control. 1st line is as , 100 bp DNA ladder. 
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Figure 2. Immunohistochemical localization of CuZnSOD in the bronchial epithelium of human airway. (A) A section from 

nonexposed human airway wall immunostained for CuZnSOD. CuZnSOD protein is strongly expressed in the luminal 

border and basal epithelial cells. (C) Higher magnification corresponding to (A) showed strong immunoreaction for 

CuZnSOD in the airway epithelial cells (Arrows). (B and D) Very weak immunoreactivity is seen in the human airway 

epithelium exposed to SM. (D) Very weak expression was seen in luminal border (arrow). Note the thickness of SM exposed 

bronchial epithelium, which is significantly increased in comparison to unexposed tissue. (Bm=Basement membrane). A, B = 

X400 , C, D =X1000 

 

For localization and evaluation of CuZnSOD 

protein expression in bronchial biopsy samples of the 

two groups, an immunohistochemistry study was 

carried out. It was immediately observed that the 

thicknesses of the bronchial epithelium layer in SM-

injured patients was approximately two times that of 

control samples (Figure 2: C, D). A strong CuZnSOD 

immunoreactivity was seen in normal control airway  

 

epithelium cells, especially in the basal layer and brush 

border cells of the epithelium (Figure 3 A, C). In 

contrast, in SM-injured ones, a weak expression of 

CuZnSOD protein was seen in the bronchial epithelial 

cells of luminal side of brush border cells, indicating a 

very weak CuZnSOD protein expression in these 

samples (Figure-2 B, D). 

 

Table 3. CuZnSOD & MnSOD expression Fold-changes in SM-exposed patients in comparison with 

controls (* Statistical significance: p< 0.05) 

Gene 
Range 

(SM-exposed/ Control) 

Fold-change of gene expression 

(Mean ± SD) 
P 

CuZnSOD 1.5-5.5 2.79±1.09 0.006* 

MnSOD 1.5-6.0 2.49±1.11 0.018* 
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DISCUSSION 

 

Increased oxidative stress is a significant part of the 

pathogenesis of obstructive lung diseases such as 

asthma, chronic obstructive pulmonary disease and 

lung diseases induced by SM. Normal lung tissue is 

protected against oxidant challenges by a variety of 

antioxidant mechanisms.
27

 Superoxide dismutases 

(SODs) are antioxidant enzymes that convert 

superoxide radicals to hydrogen peroxide and provide a 

defense mechanism against oxidative stress. Iran has 

been the victim of chemical warfare use against its 

population and thousands of Iranians are still suffering 

from long-term complications of SM gas exposure.
28

 

There have been no reports of the expression 

changes in SOD and their interaction with SM-induced 

pulmonary complications of the delayed form. 

Therefore, the goal of our study was to examine the 

expression pattern of SODs in SM-induced lung 

biopsies of the exposed patients. Expressions of SODs 

in the endobronchial biopsies of patients and controls 

were analyzed by semiquantitative RT-PCR and 

immunohistochemistry. Our results demonstrated the 

mRNA expressions of MnSOD and CuZnSOD were 

significantly upregulated. 2.49±1.11 and 2.79±1.09 

fold, respectively, in the lungs of SM-exposed patients 

compared to the levels in the unexposed control group. 

In a recent study, 2-chloroethyl ethyl sulfide 

(CEES, Cl-CH2CH2-SCH2CH3) was administered 

intratracheally to guinea pigs and it was reported that 

an upregulation (3.5-fold) in CuZnSOD gene 

expression was evident from the northern blot 

analysis.
29

 This is in line with another observation that 

exposure of rats to hyperoxia leads to a transient 

increase in the mRNA of MnSOD in lung 

homogenates.
30,31

 

Our immunohistochemistry results revealed that, in 

contrast to the up-regulation of CuZnSOD mRNA 

expression in airway biopsy samples of SM-injured 

patients, the protein level was lower than that in the 

control subjects. Several immunoreactive cells were 

found in the bronchial epithelium of our control cases, 

and immunoreactivity was more present in luminal 

border (LB) and basal cells (BC). Another recent study 

has demonstrated that mustard gas exposure does not 

result in any significant differences in the level of 

SOD-1 and SOD-2 proteins, but decreases the overall 

activity of SOD.
29

 This finding is in agreement with our 

data showing lower expression of CuZnSOD in SM-

injured patients in comparison to a control group.  

In most human studies, SOD activity decreases in 

the bronchial epithelium (50%), in the cells of 

bronchoalveolar lavage (25%), and in bronchial 

brushings (nearly 50%) in patients with asthma 

compared with control subjects.
25

 

Airway wall immunohistochemical staining of 

CuZnSOD in the bronchial epithelium pulmonary 

vasculature of ozone-exposed rats has also shown 

lower reactivity than alveolar macrophages from 

control lungs.32 

In contrast to our study, Kinnula et al evaluated the 

expression of CuZnSOD in human normal lung and 

observed positively stained pleural endothelial cells and 

basal cells from the bronchial epithelium. We found 

only very weak expression of CuZnSOD in the luminal 

side of the bronchial epithelium.19 

We have also already shown an inconsistency 

between the mRNA and protein expressions of NGAL, 

heme oxygenases and methalothionin  in the bronchial 

epithelium of SM-exposed patients in comparison with 

unexposed cases.
3,6,36

 Taken together, these reports lead 

us to hypothesize that this discrepancy between the 

mRNA and protein expressions of CuZnSOD may be 

caused by translational efficiency and/or post-

translational regulation.
33

 Therefore, the lack of 

CuZnSOD protein is one important reason for the 

increase in oxidative stress and progression of disease 

in SM-exposed patients. 

We suggest a new hypothesis that
 

therapeutic 

antioxidants such as SOD mimetics might provide new 

approaches to attenuating oxidant-associated lung 

injury in patients. 

In support of this notion, we have previously 

observed that a 4-month administration of N-

acetylcysteine in patients exposed to SM could 

significantly improve FEV1/FVC over placebo.34 

Additionally, it was shown that treatment with 

scavengers of hydroxyl radicals such as DMSO could 

prevent acute lung injury in an experimental animal 

model of thermal injury.35 Based on the studies 

presented here, we suggest that administration of SODs 

may ameliorate the injuries induced by SM and the 

oxidative stresses in these patients.  However, further 

and complementary studies are required to clarify the 

reasons for the discrepancy between mRNA and 

protein level of CuZnSOD in SM-exposed patients. Our 

results highlight the importance of SOD action for 

relief of stress challenges in this diseas. 
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