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ABSTRACT 

 

In this paper, the method of differentiating asthmatic and non-asthmatic patients using 

the frequency analysis of capnogram signals is presented. Previously, manual study on 

capnogram signal has been conducted by several researchers. All past researches showed 

significant correlation between capnogram signals and asthmatic patients. However all of 

them are just manual study conducted through the conventional time domain method. In 

this study, the power spectral density (PSD) of capnogram signals is estimated by using Fast 

Fourier Transform (FFT) and Autoregressive (AR) modelling.  

The results show the non-asthmatic capnograms have one component in their PSD 

estimation, in contrast to asthmatic capnograms that have two components. Furthermore, 

there is a significant difference between the magnitude of the first component for both 

asthmatic and non-asthmatic capnograms.  

The effectiveness and performance of manipulating the characteristics of the first 

frequency component, mainly its magnitude and bandwidth, to differentiate between 

asthmatic and non-asthmatic conditions by means of receiver operating characteristic (ROC) 

curve analysis and radial basis function (RBF) neural network were shown.  

The output of this network is an integer prognostic index from 1 to 10 (depends on the 

severity of asthma) with an average good detection rate of 95.65% and an error rate of 

4.34%. This developed algorithm is aspired to provide a fast and low-cost diagnostic system 

to help healthcare professional involved in respiratory care as it would be possible to 

monitor severity of asthma automatically and instantaneously. 
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INTRODUCTION 

 

Asthma is a chronic inflammatory disease of the 

bronchial tubes that occurs in about 3 to 5% of all 
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people and continues to be a significant cause of 

morbidity and mortality.1 Traditionally, peak flow 

meter and spirometer is used to monitor the asthmatic 

patients which have lots of limitation. Nowadays, 

capnography is a new method used to monitor the 

asthmatic condition.2 It uses the infrared technology

determine the concentration of carbon dioxide. 

Capnogram is the graphical display of instantaneous 

CO2 concentration (mmHg) versus time (second). 

able to show changes in respiration of the patients. It 

taken while the patient is breathing as comfortable as 

possible without requiring any instructions

Capnography can be used on subjects that are either 

sleeping or awake, and allows various new applications 

to be envisaged such as detection of nocturnal attacks, 

evaluation of the duration of action for bronchodilator 

drugs, intra- and postoperative monitoring of asthmatic 

patients, and dynamic bronchial provocation tests, 

especially in children.  

A normal capnogram has four phases and an end

tidal point, as shown in Fig.1. Each phase reflects the 

process of CO2 elimination. 

The flat phase I (A-B) represents early exhalation 

that is relatively CO2-free. As exhalation continues, 

alveoli containing CO2 are increasingly recruited and 

exhaled with non-CO2-containing gases. This creates a 

near-vertical rising phase II (B-C). Near the termination 

of normal exhalation is a plateau phase III (

the end of the plateau phase is D, the point that the 

measured alveolar CO2 levels best approximate PaCO

This sampled CO2 level is known as PetCO

inspiration occurs, a near-vertical rapidly falling phase 

IV (D-E) is observed.  
 

 

 

Figure 1. A normal capnogram.
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and postoperative monitoring of asthmatic 
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tidal point, as shown in Fig.1. Each phase reflects the 
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are increasingly recruited and 
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1. A normal capnogram. 

Figure 2. Comparing waveforms: (a) Normal and (b) 

Bronchospastic. 

 

When ventilation and perfusion are functioning 

normally, PetCO2 should read 2-5 mmHg higher as 

compared to PaCO2.
3
 A variety of clinical causes can 

lead to incomplete alveolar voiding.

Therefore, the true end tidal point was never 

reached. Figure 2 (b) shows the capnogram of an 

asthmatic patient with an obstruction i

other parts of the breathing circuit. It should be noticed 

that the ascending limb of the capnogram is prolonged 

and is not flat, as it should be in normal conditions

shown in Figure 2 (a). These changes give rise to the so 

called "shark's fin" morphology capnogram in patients 

with airway obstruction. However, there 

shape of abnormal capnogram that could be found 

depending on the patient’s condition in

These variations in capnogram of different disease

cause the researchers carry out analysis of this signal to 

differentiate between a range of 

especially for asthmatic and non-asthmatic conditions
9 However, all these previous stud

analysis of capnogram conducted through

techniques that is time-consuming and led to erroneous 

due to human factor such as tiredness and lack of 

proficiency.  

It is important to note that to date, there 

attempts made to analyze capnogram

domain. Therefore, in this paper, we present

investigation of the frequency properties of capnogram 

signals using Fast Fourier Transform

Autoregressive (AR) modelling. These methods were

used to identify the spectral components of capnogram, 

and subsequently to differentiate the

of capnogram for different conditions. 

Neural Networks in Asthma 
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Figure 2. Comparing waveforms: (a) Normal and (b) 

When ventilation and perfusion are functioning 

5 mmHg higher as 

A variety of clinical causes can 

lead to incomplete alveolar voiding.
4 

Therefore, the true end tidal point was never 

2 (b) shows the capnogram of an 

asthmatic patient with an obstruction in tubing and 

other parts of the breathing circuit. It should be noticed 

that the ascending limb of the capnogram is prolonged 

in normal conditions as 

2 (a). These changes give rise to the so 

fin" morphology capnogram in patients 

with airway obstruction. However, there exists more 

shape of abnormal capnogram that could be found 

depending on the patient’s condition in.
5
  

in capnogram of different diseases 

cause the researchers carry out analysis of this signal to 

between a range of airway illnesses; 

asthmatic conditions.
6-

all these previous studies are manual 

through time domain 

consuming and led to erroneous 

due to human factor such as tiredness and lack of 

to date, there had been no 

made to analyze capnogram in frequency 

this paper, we presented an 

frequency properties of capnogram 

signals using Fast Fourier Transform (FFT) and 

These methods were 

used to identify the spectral components of capnogram, 

the frequency content 

of capnogram for different conditions. Essentially, it 
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helps researchers to understand the nature of 

capnogram signals and their application to accurately 

distinguish different types of airway disease.  

In this paper, section 2 discusses the methods that 

consist of data acquisition, preprocessing, FFT 

analysis, and AR modeling of capnogram signals 

followed by results and discussion in section 3. Lastly, 

a conclusion is presented in section 4. 

 

MATERIALS AND METHODS 

 

In this section, 6 sub-steps are presented. The first 

step is data collection, followed by the pre-processing. 

In subsection 3, the FFT approach to analyze the 

frequency component of capnogram signals is 

presented. Then, the AR modelling method is presented 

in subsection 4 to estimate the power spectral density 

of capnogram signals. Lastly, the effectiveness of the 

extracted features is validated by using receiver 

operating characteristic (ROC) curve analysis, and 

radial basis function (RBF) neural networks. 

Data Acquisition  

The capnogram data were collected from patients 

with complaints of asthma and breathing difficulties at 

the Emergency Department of Penang Hospital. First, 

the capnography sensor was attached on the mouth or 

nose of the patients. Mainstream capnography method 

was used in the process of data collection because this 

method has higher accuracy.10 

After attaching the sensor on the patient’s nose or 

mouth, the continuous capnogram was recorded using 

the capnography patient monitor, Capnostream
TM

20 

Model CS08798. The capnogram data in the patient 

monitor was transferred to a personal computer for 

analysis. Throughout the study, a total of 23 non-

asthmatic capnogram, and 73 asthmatic capnogram 

were successfully collected. The capnogram for each 

patient was recorded around five minutes at a sampling 

frequency of 200Hz. Then, a part of recorded data with 

the length of five continuous and complete breathing 

cycles without any artefact (approximately 20 seconds;  

 

 
 

Figure 3. The block diagram of data collection in brief. 

Let the patient seat in comfort and be relaxed 

Attaching sensor on the patient’s nose or mouth 

Starting to record capnogram signal at least for five minutes 

Checking the recorded data to extract a continuous and complete part 

with the length of five breathing cycles and without any artifact 

Transferring the recorded data to the PC for further analysis 

Around 5 minutes recorded data 

Extracted part 
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Figure 4. The capnogram signal of CNP2 before filtering. 

 

 

according to the patient’s respiratory rate) was 

extracted for further analysis. Figure 3 shows the block 

diagram of data collection in brief In our database, each 

sample has a designated ID consisting of 3 alphabet 

letters and a number. The alphabet letter is either CAP 

(Capnogram of Asthmatic Patient) or CNP (Capnogram 

of Non-asthmatic Patient) and a number right after the 

letters which indicates the sample number, e.g. CAP2 

represents the second asthmatic sample and CNP6 

represents the sixth non-asthmatic sample.   

 

Pre-processing  

Data pre-processing was carried out to eliminate 

unnecessary noise in the recorded capnogram signals. 

Figure 4 shows a capnogram of non-asthmatic patient 

(CNP2) before pre-processing. 

In this paper, the moving average filtering method 

was used to smooth the curve due to its simplicity and 

efficiency, especially for eliminating the high 

frequency noises within the signals.
11

 This method 

smoothes data by replacing each data point with the 

average of neighbouring data points defined within a 

specific span. This process is equivalent to low pass 

filtering with the response of the smoothing given by 

the difference equation as follow:  

����� � �
�	
� ���� � � � ��� �  � 1� � ��

��� � ��       �1�  

where ����� is the smoothed value for the i
th

 data 

point, N is the number of neighbouring data points on 

either side of �����, and 2N+1 is the span. Indeed, the 

span defines a window that moves across the data set as 

the smoothed response value is calculated for each 

predictor value. A large span increases the smoothness 

but decreases the resolution of the smoothed data set, 

while a small span decreases the smoothness but 

increases the resolution of the smoothed data set.
12

 The 

optimal span value depends on the data set and usually 

requires some trial and error to determine.
13

 In this 

study, we used the span as 13, because it produced the 

best results for both smoothness and resolution. 

Furthermore, the correlation coefficients calculated for 

each signal after filtering justified this span width, e.g. 

the correlation coefficient for the CNP2 after filtering 

was 0.9924. Fig.5 shows the non-asthmatic capnogram 

(CNP2) after smoothing. 

 

FFT Analysis 

The discrete Fourier transform (DFT) of an N-point 

sequence x(n) is defined as: 

���� � � �
	��

���
���������� 	⁄               �2� 

Because x(n) may be either real or complex, 

evaluating X(k) requires on the order of N complex 

multiplications and N complex additions for each value  
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Figure 5. The capnogram signal of CNP2 after filtering. 

 

of k. Therefore, because there are N values of X(k), 

computing an N-point DFT requires N
2
 complex 

multiplications and additions.  

 

The fast Fourier transform (FFT) is a fast algorithm 

to compute the DFT which involves decomposing an 

N-point DFT into successively smaller DFTs.
14

 

One of the major applications of the FFT is in 

analyzing the frequency content of continuous- time 

signals. In many cases of practical interest, these 

waveforms are neither periodic nor aperiodic, but a 

segment of a much longer, and possibly infinite, time 

series, e.g. EEG, and ECG. Obviously, only a portion 

of such waveforms can be represented in the finite 

memory of the computer, and some attention must be 

paid to how the waveform is truncated, i.e. the need for 

multiplication of discrete-time signal (x[n]) by a 

window (w[n]), as a consequence of the finite-length 

requirement of the FFT. 

Some commonly used windows are Rectangular, 

Bartlett (triangular), Hanning, Hamming, and 

Blackman, and all of them have the property that 

 

"#�$ � %"#& � �$         0 ( � ( &
0                        )*+�,"�-�  .                         �3� 

 

In our process, Blackman window with M=256 is 

selected since the capnogram is biomedical signal 

related to the respiratory system. So, they are in the 

category of low frequency signals,
15

 and selecting this 

number as length of window does not affect the time-

resolution.  

A Blackman window is in the form of:  

     "#�$
� %0.42 � 0.5 cos�26� &⁄ � � 0.08 cos�46� &⁄ �   0 ( � ( &

0                                                                                   )*+�,"�-� . 

(4) 

One of the advantages of the Blackman window is 

that it greatly reduced the side-lobes besides a high 

side-lobe roll-off rate, although the main-lobe’s 

bandwidth has increased, however the extra width is 

usually worth the trade-off.16 Also, more information 

about engineering aspect of window selection could be 

found at.17,18 

 

AR Modeling 

Autoregressive (AR) models are widely used for 

power spectral density (PSD) estimation.19 The AR 

model of a time series is represented in the following 

form: 

���� � � � 8�9���� � 9�
:

;��
� ����                         �5� 

Where x(n) is the time series, a(m) are AR 

parameters, p is the model order, and e(n) is the 

prediction error. 

Recently, because of the good performance of AR 

spectral estimation methods over traditional 

approaches, these methods have been successfully 

applied to analyze biomedical signals.
20

 A signal 

spectrum shows how the power is distributed as a 

function of frequency, and AR spectral analysis can 

provide the number, centre frequency, and associated 

power of oscillatory components in a time series. 

A variety of AR models are currently used to 

estimate the PSD of biomedical signals. The Burg 

method was selected because it estimates the reflection 

coefficients instead of the prediction coefficients. In 

comparison with other approaches such as 

autocorrelation, covariance, modified covariance, and 

recursive least squares (RLS), this method does not 

require run-off of the data sequence by zero padding 

and has minimal phase characteristic with high 

accuracy.
21

 Further mathematical equations behind this 

method are available at.22  

One of the crucial parts for the AR method is the 

selection appropriate value for the model order P. In 

spectral estimation, the accuracy of the estimated 

spectrum is critically dependent on the model order that 

is chosen. It means that a too low model order can 

generate an over smoothed spectrum, whereas too high 
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a value of order may introduce spurious details such as 

false peaks into spectrum.
23

 

The model order can be estimated using the Akaike 

information criterion (AIC) which is one of the most 

popular approaches to determine an optimum model 

order and minimize the information entropy of the 

signal identified as follows: 

<=>�?� �  ln�BC� � 2?                      �6� 
where EP, P, and N individually represent the 

estimation of mean-squared error, the order of the filter, 

and the number of input signal samples. 

In this study, the AIC for different model orders 

were calculated. As shown by the results in Fig.6, at 

P=10 the AIC value was smallest compared to the 

other number of P. So, the model order 10 was selected 

since the minimum of error variance was observed at 

this value of P. 

 

Performance Measure  

The effectiveness of extracted coefficients is 

assessed by Receiver Operating Characteristic (ROC) 

curve analysis and two indices included sensitivity and 

specificity that are often employed in medical 

applications.
24

 The results of a particular test are 

considered in two categories; one population with a 

disease, and the other population without the disease. 

There will be some cases with the disease correctly 

classified as positive (TP = True Positive fraction), and 

some cases with the disease will be classified negative 

(FN = False Negative fraction). On the other hand, 

some cases without the disease will be correctly 

classified as negative (TN = True Negative fraction), 

but some cases without the disease will be classified as 

positive (FP = False Positive fraction). According to 

this classification, sensitivity and specificity that 

estimate the classifier’s performance in different 

classes,25 define as follow: 

E��-�*�F�*� � G?
G? � H     �7� 

EJ�K�L�K�*� � G
G � H?      �8� 

So, Sensitivity is probability that a test result will be 

positive when the disease is present, and Specificity is 

probability that a test result will be negative when the 

disease is not present. 

Furthermore, with ROC curves, when the variable 

under study cannot distinguish between the two groups, 

i.e. where there is no difference between the two 

distributions, the area under the ROC curve (AUC) will 

be equal to 0.5, whereas when there is a perfect 

separation of the values of the two groups, i.e. there is 

no overlapping of the distributions, the AUC equals 1. 

Also the P-value is the probability that the sample AUC 

is found when the true population area under the ROC 

curve is 0.5 (null hypothesis: Area = 0.5). If P is low 

(P<0.05) then it can be concluded that the area under

 

Figure 6. AIC values for different model orders. 
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the ROC curve is significantly different from 0.5 and 

that therefore there is evidence that the capnogram test 

does have an ability to distinguish between the two 

groups.
26

 

 

RBF Neural Networks 

A radial basis function (RBF) neural network is 

designed to automatically cluster and classify the 

patients with different asthmatic severity. A radial basis 

network is a feed-forward neural network using the 

radial basis activation function. The RBF network 

generally consists of two weight layers; the hidden 

layer and the output layer, which can be described as 

follows:
27

 

� � "� ��"ML�Nx � KPN�
�Q

M��
       �9� 

where f are the radial basis functions, wi are the 

output layer weights, w0 is the output offset, x are 

inputs to the network, ci are the centres associated with 

the basis functions, and nh is the number of basis 

functions in the network. Furthermore, the || . || denotes 

the Euclidean norm that measures the size of the vector 

in a general sense. 

The RBF networks have benefits such as easy 

design, good generalization, strong tolerance to input 

noise, and online learning ability.
28

 Artificial neural 

networks have been successfully applied to hosts of 

pattern recognition and classification tasks, time series 

prediction, data mining, function approximation, data 

clustering and filtering, and data compression. It can be 

used to solve a wide variety of problems while being 

robust to error in training data.  Hence, the developed 

RBF network will help the medical practitioners and 

physicians to monitor severity of asthmatic patients.   

 

RESULTS 

 

In this section, the results of applying FFT on 

capnogram signals and the estimated PSD using AR 

modeling-Burg method are thoroughly presented and 

discussed.  

 

FFT Analysis Results 

After selecting the appropriate window, the classic 

FFT algorithm was applied on the capnograms of 

asthmatic and non-asthmatic patients. Figure 7 and 

Fig.8 show the FFT of the capnogram of a non-

asthmatic patient (CNP2) and the capnogram of an 

asthmatic patient (CAP9), respectively. 

Based on Figure 7 and Fig.8, and the results for all 

data, there was a significant difference between the 

number of component and their magnitudes in the FFT 

of CAPs and CNPs. The number of main-lobe in the 

asthmatic capnogram was equal to 2 in contrast to non-

asthmatic capnogram, which had only 1 main-lobe. 

Also, the frequency of this components and their 

related bandwidth were also different in both asthmatic 

and non-asthmatic samples. For asthmatic patients, the 

frequency and bandwidth of the first main-lobe were 

around 0.078 Hz and 0.23 Hz, respectively. Whereas, 

for non-asthmatic patients these values for only 

component were around 0.04 Hz and 0.08 Hz, 

respectively.  

Table 1 shows the performance indices of the 

magnitude, frequency, and bandwidth of the dominant 

component in the FFT of CNPs, and CAPs.  

 

 

Figure 7. The FFT of a non-asthmatic capnogram 

(CNP2). 

 

 

Figure 8. The FFT of an asthmatic capnogram (CAP9). 
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Based on the Table 1, all features have AUC > 0.8 

and p <0.0001. This shows that all features of the 

dominant peak in the FFT of CAPs and CNPs are 

feasible to be applied in the differentiation of the 

asthmatic and non-asthmatic conditions. However, 

compared to all the features, it can be seen that the 

bandwidth of the main-lobe and its magnitude have 

noticeable AUC (with p-value < 0.0001), sensitivity 

(96.77 and 97.54, respectively) and specificity (94.74 

and 94.63, respectively) which is considerably more 

efficient to classify the capnogram data in two groups, 

and further differentiate the asthmatic conditions. 

 

AR Modeling-Burg Method Results 

Figure 9 and Figure 10 show the PSD estimation of a 

non-asthmatic capnogram (CNP2) and an asthmatic 

capnogram (CAP9) by using Burg method of AR 

modeling 

As Figure 9 and Figure 10 show, and according to 

the results for all data, the PSD estimation of the non-

asthmatic capnogram signals (CNPs) consists of one 

component, while for asthmatic capnogram signals 

(CAPs), this estimation produced two components. 

Hence by using the second component in PSD 

estimation using Burg method, asthmatic and non-

asthmatic conditions can be differentiated without 

errors. The frequency of the first component, and the 

total power of the PSD estimation for asthmatic 

capnogram were around 0.02 Hz and 0.195, 

respectively, whereas, these values for non-asthmatic 

capnogram were around 0.011 Hz and 0.354, 

respectively.  

 

 

Figure 9. Power spectral density of a non-asthmatic 

capnogram (CNP2). 

 
Figure 10. Power spectral density of an asthmatic 

capnogram (CAP9). 

 

Table 2 shows performance indices for the 

frequency of the first component and the total power in 

the PSD estimation of the CAPs and CNPs. 

According to the Table 2, both frequency of the first 

component and the total power in the PSD estimation 

had AUC>0.7 and p<0.003. This indicated that all 

features in the PSD distribution of CAPs and CNPs 

were functional in differentiating the asthmatic and 

non-asthmatic conditions. However, it is obvious that 

the first component frequency has noticeable AUC and 

p<0.0001, accompanied by high sensitivity and 

specificity, which is efficient to classify the capnogram 

signals in two groups. As a result, this parameter and 

the frequency of the second component (that only exist 

in PSD of asthmatic patients) can significantly 

differentiate the asthmatic conditions. 

 

Features Effectiveness using RBF Neural Network  

According to results obtained, our feature vector 

consists of four elements. These are the number of 

frequency components, magnitude and frequency of the 

first component, and frequency of the second 

component in PSD estimation.  

First of all, two different databases were created in 

which one of them was used for training process and 

the other one was used as the test data. The bottom line 

is that, the training database had one additional element 

in feature vector which was medical practitioner 

diagnosis of asthmatic severity. It is represented by a 

number from one to ten for a non-asthmatic patient to a 

patient, who suffers from very severe asthma, 

respectively, that is the main goal of this research. 
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Figure 11. The performance of designed RBF neural network. 

 

 

Table 1. AUC and p-value of the magnitude, frequency, and bandwidth of the main-lobe in the 

FFT of CNPs, and CAPs. 

Performance 

index 

Magnitude of the main-

lobe (Normalized) 

Frequency of the main-

lobe (Hz) 

Bandwidth of the 

main-lobe (Hz) 

Sensitivity 97.54 80.65 96.77 

Specificity 94.63 82.11 94.74 

AUC 0.937 0.847 0.975 

P-Value <0.0001 <0.0001 <0.0001 

 

 

 

Table 2. AUC and p-value for the frequency of the first component and total power in the PSD 

estimation of CNPs, and CAPs. 

Performance index 
Frequency of the First Component 

(Hz) 
Total Power 

Sensitivity 98.23 83.87 

Specificity 95.08 84.21 

AUC 0.996 0.722 

                   P-Value                         <0.0001                 0.0023 

 

 

The process of training will be stopped when the 

number of RBF units is equal to thirty, or the program 

will reach the mean squared error (MSE). This limit for 

RBF units was selected in order to get the best and 

most accurate results from the designed RBF neural 

network for this study. Figure 11 shows the 

performance of neural networks in each training epoch. 

As shown in Figure 11, after thirty training epochs, 

the RBF network reached the desire MSE. After 

training the RBF network, the test database was loaded 

0 5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

3

3.5

4
RBF Network Performance in each Epoch of Training

Epochs (Number of RBF Units)

P
e

rf
o

rm
a

n
c

e
 (

M
S

E
)



Frequency Analysis of Capnogram Signals and Neural Networks in Asthma 

Vol. 12, No. 3, September 2013                                                                                                                         Iran J Allergy Asthma Immunol, Autumn 2013 /245 
Published by Tehran University of Medical Sciences (http://ijaai.tums.ac.ir) 

into the RBF networks. According to the results, the 

output of this network is an integer prognostic index 

from 1 to 10 (depends on the severity of asthma; 1 is 

stand for healthy people, and 10 is for too severe 

asthma) with an average good detection rate of 95.65% 

and an error rate of 4.34%. Consequently, the defined 

index could be used in capnography to detect the 

severity of asthma in patient with respiratory 

difficulties with good accuracy and also as an online 

system. 

 

DISCUSSION 

 

Capnogram is a vital representation of the 

respiratory system. Therefore, the analysis of this 

physiological signal could lead to the development of a 

computerized method to differentiate airway disorders, 

which could benefit the heathcare professional involved 

in respiratory care. Previous studies conducted for 

capnogram signal analysis used only conventional time 

domain methods. In this paper, for the first time, 

frequency contents of capnogram signals have been 

investigated. The results showed that by using these 

properties, asthmatic and non-asthmatic conditions can 

be perfectly differentiated. Also, by the incorporation 

of a RBF neural network, the severity of asthma in 

patient could be automatically assessed as an index in 

capnographs. This method is an innovative idea that 

could further assists the healthcare professionals and 

medical practitioners involved in respiratory care as it 

would be possible to monitor severity of asthma 

automatically and instantaneously with minimum 

human errors.  
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