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ABSTRACT

Colorectal cancer (CRC) is the third most frequently diagnosed cancer and the second leading
cause of cancer-related mortality globally. Emerging evidence identifies manganese as an important
trigger for the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway,
but prognostic signatures integrating manganese metabolism and immune pathways remain
unexplored in CRC.

Through analysis of transcriptomic and clinical data from TCGA-CRC and GSE17538 cohotts,
we established and validated an eleven-gene manganese metabolism and immune-related signature
that robustly stratified CRC patients into distinct risk groups with significant survival differences.

High-risk patients exhibited suppressed immune microenvironments with enriched M2
macrophages and Tregs and activation of oncogenic pathways. Quantitative real-time polymerase
chain reaction (QRT-PCR) validation confirmed dysregulation of eight sighature genes in clinical
CRC samples, indicating the model’s potential for prognostic prediction and immunotherapeutic
stratification.

We established a novel MIRGs signature that accurately predicts CRC clinical outcome.
Integration of manganese-based agents with immune checkpoint inhibitors (ICIs) represents a
potential therapeutic strategy for immunotherapy-resistant CRC.
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INTRODUCTION

Colorectal cancer (CRC) is the third most frequently
diagnosed cancer and the second leading cause of cancer
mortality, tepresenting a substantial health issue.'?
Despite advances in surgical techniques and systemic
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therapies, including chemotherapy, targeted agents, and
immunotherapy, outcomes for advanced disease remain
suboptimal due to intrinsic and acquired resistance
mechanisms.>* Immune checkpoint inhibitors (ICIs),
especially those that target PD-1/PD-L1, have proven
clinically effective in CRC patients with microsatellite
instability-high (MSI-H).>® However, tumors that are
microsatellite stable (MSS), which constitute the
majority, have restricted response rates.” This
underscores the critical need to identify novel
mechanisms to overcome immunotherapy resistance.

Evidence from recent studies emphasizes the
significant involvement of the cGAS-STING pathway in
antitumor immunity through the detection of cytosolic
DNA and the activation of type I interferon
production.®® Manganese (Mn?") functions as a potent
cGAS-STING activator, enhancing STING
palmitoylation and  downstream  TBKI-IRF3
signaling.'®!! Preclinical studies demonstrate that Mn?"
augments dendritic cell maturation, promotes cytotoxic
T lymphocyte infiltration, and synergizes with ICIs to
suppress tumor growth across multiple cancer
models.'*!? Furthermore, Mn?* deficiency compromises
antitumor immunity, while Mn?*' supplementation
restores immune surveillance.'>'* This positions
manganese metabolism as a critical modulator of the
tumor immune microenvironment.

Given this central role of manganese in immune
regulation, we  hypothesized that manganese
metabolism-related genes (MRGs) may synergize with
immune-related genes (IRGs) to influence tumor
behavior and patient outcomes. While many prognostic
signatures for CRC have focused on IRGs,!>!¢ the
influence of essential micronutrient metabolism on
immune function is often overlooked. The interplay
between MRGs and IRGs remains unexplored in CRC
prognostication. Integrating these dimensions could
yield more comprehensive biomarkers reflecting both
immune  activation  capacity and  metabolic
reprogramming within the tumor microenvironment.

The purpose of this study was to identify
differentially expressed MRGs and IRGs between
colorectal tumor tissues and normal tissues and construct
a manganese metabolism- and immune-related gene
signature (MIRGs) for predicting prognosis. We further
evaluated the association of MIRG subtypes with the
tumor immune microenvironment, the response to
immunotherapy, and validated the expression levels of
key signature genes in colorectal clinical samples. Our

94/ Iran J Allergy Asthma Immunol

integrated approach could provide novel insights into
CRC biology and deliver a clinically applicable method
for risk stratification and treatment personalization.

MATERIALS AND METHODS

Data Sources and Processing

Clinical data and RNA sequencing profiles for CRC
were retrieved from the Gene Expression Omnibus
(GEO) and The Cancer Genome Atlas (TCGA)
databases. The TCGA-CRC database, obtained from
UCSC XENA (https://xenabrowser.net/datapages/), was
used as the training cohort, while the GSE17538
database from GEO (http://www.ncbi.nlm.nih.gov/geo/)
was employed as the validation cohort. Batch effects
between databases were mitigated using the sva R
package. Specifically, the ComBat algorithm (default
parameters) was applied to harmonize the expression
data from TCGA and GEO datasets. Principal
component analysis (PCA) was performed before and
after correction, confirming that the batch effect was
markedly reduced after ComBat adjustment. Patients
were excluded if they had missing survival or clinical
information, or if their overall survival was less than 30
days to avoid bias from perioperative mortality. After
excluding samples lacking survival data or containing
incomplete clinical information, the final cohorts
comprised 315 TCGA-CRC samples and 298
GSE17538 samples. The flowchart displaying the entire
research was shown in Figure 1.

Identification of Differentially Expressed Genes
Associated with Manganese Metabolism and
Immune Function

A curated set of manganese metabolism-related
genes was retrieved from GeneCards
(https://www.genecards.org/). Immune-related genes
were retrieved from the ImmPort database
(https://www.immport.org/). Using the edgeR R
package, differential expression analysis was carried out
on colorectal tumor tissues and adjacent normal tissues
from the TCGA-COAD dataset and GEO database.
Differentially expressed genes (DEGs) were determined
by an absolute log2 fold change (Jlog2FC|)> 1 and an
adjusted p value<0.05. Subsequent screening focused on
DEGs intersecting with the manganese metabolism- and
immune-related gene lists.
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Figure 1. The flowchart displaying the entire research.

Functional Enrichment Analysis

The clusterProfiler R package was used to analyze
the identified DEGs related to manganese metabolism
and immunity via Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway enrichment analysis and
Gene Ontology (GO) annotation, encompassing
Biological Process (BP), Molecular Function (MF), and
Cellular Component (CC) categories.

Unsupervised Clustering Based on DEGs Associated
with Immune and Manganese Metabolism

Using the NMF R package, consensus clustering of
the TCGA-CRC cohort was conducted based on the
expression profiles of DEGs related to manganese
metabolism and immunity using the NMF algorithm,
which is particularly suitable for non-negative gene
expression data and provides biologically interpretable
clustering results. To determine the optimal cluster
number, cophenetic
coefficients and silhouette widths across k=2—6. Both
metrics consistently indicated k=3 as the most stable
solution. Kaplan-Meier survival curves and log-rank
tests were used to evaluate differences in overall
survival (OS) between subtypes. For each subtype, the
ESTIMATE algorithm was used to calculate stromal,
immune, and ESTIMATE scores, as well as tumor
purity. The Wilcoxon rank-sum tests were used to
compare the expression levels of immune checkpoint

we  evaluated correlation
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genes across different subtypes. Gene Set Variation
Analysis (GSVA) interrogated enrichment pathway
differences among subtypes.

Construction and Verification of MIRGs

The identification of OS-associated genes in the
TCGA-CRC cohort was achieved through univariate
Cox regression, with LASSO Cox regression refining
the prognostic signature. A 10-fold cross-validation
strategy was employed to determine the optimal penalty
parameter (A), which balances model complexity and
predictive accuracy and minimizes overfitting. The risk
score was determined by the formula: RiskScore = X%
coefficient x Expression (Xj) for each gene in the
signature. Patients were classified into high- and low-
risk groups using the median risk score. Kaplan-Meier
analysis and ROC curves were used to validate the
prognostic  performance. The  signature  was
independently tested the GSE17538 cohort.
Univariate or multivariate Cox regression evaluated
clinical independence.

in

Establishment of a Nomogram

To estimate 12-, 24-, and 36-month survival, a
clinical nomogram was formulated by integrating risk
scores and clinicopathological variables using the rms
package. Calibration curves and ROC analysis assessed
predictive accuracy.
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Evaluation of the Tumor Microenvironment
CIBERSORT was used to measure the infiltration of
immune cells, while ssGSEA (GSVA, GSEABase) was
used to assess the enrichment of immunological
functions. Wilcoxon tests were used to compare immune
characteristics between different risk groups.

Performing Gene Set Variation Analysis on MIRGs

Hallmark gene sets were employed by the GSVA
package to assess pathway activity differences between
risk subgroups.

Tumor Mutation Burden Analysis

TMB was defined as mutations per megabase.
Somatic mutations were visualized using waterfall plots.
Mutation type distributions were compared between risk
groups.

Clinical Tissue Samples

Fifty paired CRC and adjacent non-tumor tissues
were collected from retrospective surgical specimens.
Tissues were pathologically confirmed, paraffin-
embedded, or cryopreserved at —80 °C. Written
informed consent was obtained under Institutional
Ethics Committee approval. This study obtained
approval from the independent Ethics Committee of
Nanjing Hospital of Chinese Medicine, affiliated with
Nanjing University of Chinese Medicine (KY2024010).

RNA Isolation and Quantitative Real-time PCR
(qQRT-PCR)

TRIzol reagent (Invitrogen) was used to extract total
RNA. cDNA was generated from 1 pg of RNA using the
PrimeScript RT kit (Takara). SYBR Green assays
(Takara) were employed for RT-qPCR on a CFX-96
system (Bio-Rad), and relative expression was
determined using the 2722 method normalized to
GAPDH. The experiment included three independent
biological replicates, each with technical triplicates.

Statistical Analysis

Analyses used R v4.3.0 and GraphPad Prism v8.0.2.
Continuous variables were compared by Student’s t-test
(normal distribution) or Wilcoxon test (non-normal).
Multiple groups were assessed via the Kruskal-Wallis
test. The Spearman method was used for correlations,
and data are presented as mean=+ SD. Statistical
significance was indicated by p<0.05.
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RESULTS

Identification of Differentially Expressed Genes
Associated with Manganese Metabolism and
Immune Function

To ensure comparability across datasets, batch
effects between TCGA and GEO were removed using
the ComBat algorithm. PCA confirmed that, after
ComBat correction, the distributions of samples were
primarily driven by biological features rather than
dataset origin, indicating successful batch-effect
removal. A total of 2861 genes showed differential
expression between CRC and normal tissues according
to the initial screening of the TCGA database (Figure
2A). We concentrated our study on 492 genes that are
functionally associated with manganese metabolism and
immune functions (Figure 2B). Significant enrichment
in immune activation pathways, including cytokine-
cytokine receptor interaction, chemokine signaling
pathway, viral protein interaction with cytokine and
cytokine receptor, hormone signaling, and the IL-17
signaling pathway, was demonstrated by KEGG
functional annotation (Figure 2C). The enrichment of
pathways such as IL-17 signaling and cytokine-cytokine
receptor interaction is consistent with the established
role of chronic inflammation and immune cell crosstalk
in colorectal carcinogenesis and progression. Further
insights from GO functional annotation analysis showed
that genes involved in manganese metabolism and
immune response are mainly active in certain biological
processes. These processes encompass leukocyte
migration and leukocyte chemotaxis. For molecular
functions, they participate in cytokine activity and
cytokine receptor binding. Regarding cellular
components, they localize to secretory granule lumen.
The bar plot in Figure 2D illustrates the eight most
significant terms within the categories of Biological
Process (BP), Molecular Function (MF), and Cellular
Component (CC).
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Figure 2. Gene screening and functional enrichment analysis. A. The Cancer Genome Atlas (TCGA) dataset-derived volcano

plot illustrating differentially expressed denes (DEGs) in colorectal cancer. B. Venn diagram identifying 492 co-differentially

expressed metabolism-related genes (MRGs) and immuno-related genes (IRGs). C, D. Bar graph presenting Kyoto

Encyclopedia of Genes and Genomes (KEGG) pathway enrichment (C) and Gene Ontology (GO) functional enrichment (D)

results for these 492 genes.

Establishment of Three
Unsupervised Clustering
The entire cohort was segmented into three subtypes
(clusters 1-3) using NMF-based consensus clustering.
This method was chosen due to its suitability for gene
expression data and interpretability of non-negative
factors. Evaluation of clustering stability using cophenetic
correlation and silhouette width confirmed that the three-
cluster solution was the most robust and biologically
meaningful (Figure 3A). In addition, our investigation
into the prognostic differences among these three
subtypes demonstrated a statistically significant disparity
in overall survival outcomes (p=0.033, Figure 3B).

Subtypes Through

Vol. 25, No. 1, February 2026

Compared to the other clusters, Cluster 2 showed longer
overall survival times than the other clusters, indicating a
better prognosis for Cluster 2. Examination of tumor
microenvironment heterogeneity across subtypes is
presented in Figures 3C-F. The immunological and
ESTIMATE scores in cluster 2 were significantly lower
than those in the other clusters, and its tumor purity was
higher. Furthermore, we analyzed the different gene
expression of immunological checkpoints in different
cluster groups. There was a significant reduction in the
expression levels of most immune checkpoints in patients
from cluster 2 compared to those in other subgroups
(Figure 3G).
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(MIRG) clusters, along with Kaplan—Meier survival curves showing significant overall survival differences across phenotypes
(p = 0.033). Violin plots display the estimation of stromal and immune cells in malignant tumors using expression data
(ESTIMATE) score, immune score, stromal score, and tumor purity for each phenotype, while box plots illustrate variations

ImmuneScore

consensus marix k=3

3000

gop B 1 E9 2B 3

Kiusigi-Welis, p <2.2e-16

100

Survival probability
&
g

L. He, et al.

Siats < groupel =~ grope2 ==~ growed

s
gmmp—z

-1000

==

group

goup B 1 ES 2 A 3
Kruskal-Wallis, p <2.2¢-16 .
[
2500
-4
5
p=0.033 &
@
=
=
£
g 0
o 100 200 300 400
Time
Number at risk
112 20 6 1 0
343 &7 18 7 0 2500
106 19 3 1 0
[] 100 200 300 400 i 2 3
Time group
F
goup B 1 E 2 B 3
group N 1 B4 2 BE 3
2000 Krushal-Walls, p <2 2e-16
3 1o Kruskal-alks, p < 2.2e-15
1000
08
g
z
‘.‘g 0 =
z
2
o § 06 .
=1000
04
2000 :
1 ] 3 .

group

Immune Checkpoint Expression in Three Clusters (ANQVA: "P<0.05, *P<0.01, *~P<0.001)

Cluster B+ B9 2 Bl 3

1 2
group

3

EEE EEE ek kRE AR ewe

e

ERE REE RRE RAE RRR KRR REE RAR  EEE RRE SRS EAE

*

-

EEE RRE ERE ERE RE ERE RER ERE RER

T

e

- E -
'y e‘\r LU"SH L,q”‘} & & &

PR I N S A
acpéﬁopbpo(-f

> L
u“y&}a“ & g

Immune Checkpoint Genes

\d“\*éﬁ\ & ij & & ,péi;é?\"ﬂ-

in immune checkpoint expression among clusters (*p < 0.05, **p <0.01, ***p < 0.001).

98/ Iran J Allergy Asthma Immunol

Vol. 25, No. 1, February 2026

Published by Tehran University of Medical Sciences (http://ijaai.tums.ac.ir)

& & & Vos A
F LIPS LS LS
F I LFEEES



http://ijaai.tums.ac.ir/

Manganese-immune Signature in CRC Prognosis

Establishment and Validation of MIRGs

The development of a prognosis model based on
manganese metabolism and immune response involved
using univariate Cox regression analysis to find potential
prognostic genes associated with overall survival in
CRC patients from the TCGA cohort. Subsequently,
eleven crucial genes were selected after refining the
gene signature through LASSO regression analysis
(Figures 4A-B). Based on the expression levels of these
genes and their respective coefficients, a prognostic risk
score for each CRC patient was calculated using the
formula: RiskScore = (0.208 x MPP2) + (0.247 x
MCIR) + (0.128 x MAP2) + (0.068 x CALB2) + (0.200
x ALPP) + (0.253 x TERT) + (-0.015 x NAT2) + (0.048
x INHBB) + (0.122 x AQP7) + (0.284 x SEMA3E) +
(0.044 x UCN). The LASSO model was optimized using
10-fold cross-validation, which ensured model stability
and reduced the risk of overfitting. Robustness of the

prognostic signature was further confirmed in the
independent GSE17538 cohort.

The TCGA-CRC database was used to stratify
patients in the training set into high- and low-risk
categories, using the median risk score as the threshold.
According to Kaplan-Meier analysis, patients at high
risk experienced notably shorter overall survival and
increased mortality rates than those at low risk (p<0.001;
Figure 4C). Figures 4D and 4E illustrate the distribution
of survival status and risk scores within the cohort.
Similarly, deceased individuals had elevated risk scores
compared to survivors in the TCGA cohort. Figure 4F
displays differential expression of the 11 signature genes
between risk subgroups. ROC analysis was used to
evaluate the prognostic effectiveness of this 11-gene
signature, which produced an AUC of 0.685 for
predicting overall survival (Figure 4G).
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Figure 4. Construction and verification of metabolism—immune-related genes (MIRGS). This figure illustrates the development

and validation of the MIRG signature, beginning with least absolute shrinkage and selection operator (LASSO) regression

analysis (A-B), which identified 11 MIRG signature genes. The Kaplan—Meier survival curves (C) demonstrate significant

survival stratification between high- and low-risk subgroups in The Cancer Genome Atlas (TCGA) cohort. Survival status

distribution (D) and risk score distribution (E) further depict prognostic separation across patients. Heatmaps (F) show the

expression patterns of the 11 MIRG genes within the TCGA cohort, and receiver operating characteristic (ROC) curves (G)

evaluate the predictive performance of the MIRG signature for patient outcomes.

To validate the prognostic signature obtained from the
TCGA dataset, the same risk score formula and median
cutoff were applied to the independent GSE17538 CRC
cohort. In this validation cohort, patients were also
categorized into high-risk and low-risk subgroups.
Aligning with the training set findings, those in the high-
risk category had worse survival outcomes compared to
the low-risk group (p=0.032). According to the Kaplan-
Meier survival analysis, risk scores in the GSE17538
cohort were higher in deceased patients compared to the
survival group. Moreover, the AUC of this 11-gene
signature for overall survival prediction in the validation
set was 0.616. To enhance clinical utility, we constructed
nomograms incorporating the risk score and other
prognostic factors (Figures SA-B). Total nomogram
scores inversely correlated with predicted survival
probabilities at 12, 24, and 36 months.

Immunological Features of MIRGs

Immune landscape analysis revealed significant
enrichment of macrophages, TGF-p signaling, and Treg
cells in high-risk individuals in TCGA database (Figure
5C). Further immune profiling demonstrated increased
activity of angiogenesis, apoptosis, EMT, M0/M2
macrophages, Notch signaling, and TGF-f signaling in
the high-risk subgroup (Figure5D), indicating distinct
immunological characteristics between risk groups.

Exploring MIRGs' Biological Functions
We examined the differences in biological functions

100/ Iran J Allergy Asthma Immunol

associated with prognosis between high-risk and low-risk
groups by performing a functional enrichment analysis.
GSEA with GO gene sets demonstrated that low-risk
patients were significantly enriched in metabolism and
detoxification pathways, including HALLMARK
OXIDATIVE PHOSPHORYLATION, HALLMARK
MYC TARGETS V1, HALLMARK MYOGENESIS,
HALLMARK FATTY ACID METABOLISM, and
HALLMARK PEROXISOME (Figure  6A-B).
Alternatively, high-risk patients revealed substantial
enrichment in pathways linked to cancer, such as
HALLMARK KRAS SIGNALING. Furthermore,
through GSVA based on Hallmark gene sets, we
confirmed that the high-risk group exhibited stronger
activation in pathways associated with HALLMARK
APICAL SURFACE, HALLMARK  APICAL
JUNCTION, HALLMARK EPITHELIAL
MESENCHYMAL TRANSITION, and HALLMARK
ANGIOGENESIS. In contrast, the low-risk group
showed significantly activity in pathways such as
HALLMARK SPERMATOGENESIS (Figure 6C). Risk
scores significantly correlated with hallmark pathway
activities (Figure 6D), suggesting biological relevance.
Survival analysis linked favorable prognosis to

HALLMARK_BILE_ACID METABOLISM and
HALLMARK_PEROXISOME (Figures 6E-F), while
HALLMARK_KRAS_SIGNALING and

HALLMARK MYOGENESIS associated with poor
outcomes.
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infiltration (C) and immune function (D) between high- and low-risk strata, highlighting immunological divergence associated

with the risk model.

Iran J Allergy Asthma Immunol/ 101
Published by Tehran University of Medical Sciences (http://ijaai.tums.ac.ir)

Vol. 25, No. 1, February 2026


http://ijaai.tums.ac.ir/

L. He, et al.

A s oxmanve prosmervAToN B o masersn

HALLMARK_FATTY_ACID_METABOLISM HALLMARK MYOGENESIS HALLMARK_PEROKISOME

T Repmpezzens

A%T-0ispe22e-18

Re040.0% 2000

s Soorw
A Score
G scow

m seorm : T
HALLMARK_KRAS_SIGNALING_DN

R= 04 pe2ze16

G5V o
GEvA e

G5vA Scae

HALLMARK_MTORC1_SIGNALING

c (O e —

B i e s

-‘ H \ |

«,y' I ”h

Figure 6. Transcriptomic characteristics of metabolism—-immune-related gene (MIRG)-stratified colorectal cancer (CRC)

patients. This figure depicts differences in pathway activity between risk groups using Gene Set Variation Analysis (GSVA),

with panels A—B showing hallmark pathway activity disparities and panel C presenting a heatmap of GSVA-scored hallmark

pathways across risk strata. Panel D displays correlations between MIRG-derived risk scores and GSVA-quantified pathway

activities. Kaplan—-Meier analyses in panels E-F illustrate overall survival (OS) associations with GSVA scores for the
HALLMARK BILE ACID METABOLISM and HALLMARK PEROXISOME pathways, highlighting biologically meaningful

metabolic variations between patient groups.

Somatic Mutation Analysis

TMB analysis revealed differential mutation patterns
between risk groups. The distributions of variant
classifications, types, and SNV classes for high-risk and
low-risk patients are depicted in Figures 7A-F. Patients
at high risk demonstrated higher TMB and unique
mutation patterns, as illustrated by the top 10 mutated
genes (Figures 7G-H) and the waterfall plots of the top
30 most frequently mutated genes (Figures 7I-J).
Patients classified as high-risk demonstrate a
significantly higher mutation burden (p<0.001), as
revealed by mutation feature analysis.

The mRNA Expression of Eleven Genes from MIRGs
in Colorectal Tissues

Figure 8A demonstrates significant expression
differences for eleven genes from MIRGs between
tumor and normal tissues in the TCGA-CRC cohort.
Comparative analysis of mRNA expression revealed
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dysregulation of most MIRGs in 50 CRC tissues relative
to adjacent normal tissues, consistent with TCGA data.
Specifically, tumor tissues exhibited significantly
elevated expression of MCIR, INHBB, and UCN (Figure
8B). Conversely, MPP2, CALB2, NAT2, AQP7, and
SEMA3E showed marked downregulation in CRC
specimens (Figure 8B). These findings implicate these
MIRGs in colorectal carcinogenesis. Interestingly,
MAP2, ALPP, and TERT did not show significant
differences in expression between tumor and
corresponding normal tissues in our study, which
contrasts with TCGA findings.
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Figure 7. Evaluation of tumor mutational burden (TMB) between MIRG-defined risk subgroups. This figure characterizes
genomic alterations across risk groups, beginning with the distribution of variant classifications in the high-risk subgroup (A)
and the composition of genomic alteration types within this group (B), followed by the spectrum of single-nucleotide
substitution patterns (C). Panels D—F depict the corresponding variant classifications, alteration type composition, and
substitution spectrum in the low-risk subgroup. Panels G—H highlight the top ten most frequently mutated genes in the high-
risk and low-risk groups, respectively. Waterfall plots in panels I-J illustrate the detailed mutation landscapes of individual
patients in each subgroup, underscoring mutational heterogeneity associated with metabolism—immune-related gene—based

risk stratification.
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Figure 8. Expression of the 11 metabolism—immune-related gene (MIRG) signature genes in human colorectal tissues. This

figure illustrates gene expression patterns using data from The Cancer Genome Atlas (TCGA) (A) and from in-house clinical

colorectal cancer (CRC) specimens (B), showing differential expression across tumor and normal tissues with significance levels

indicated (*p < 0.05, **p < 0.01, ***p < 0.001).

DISCUSSION

Globally, CRC is a primary cause of cancer-related
deaths, marked by considerable genetic variability and
common late-stage detection.!” Despite the promise of
immunotherapy, its success is limited to a small number
of tumors with high microsatellite instability, resulting
in about 95% of metastatic CRC (mCRC) patients with
proficient mismatch repair or non-MSI-H being
unresponsive to current immunotherapy treatments.'®
Recent advances highlight the cGAS-STING pathway as
pivotal in anti-tumor immunity, with manganese serving
as a key activator that enhances cGAS-STING signaling
and synergizes with ICIs.!” This synergy was
exemplified by manganese galvanic cells, which
modulate tumor metabolism to boost cGAS-STING
activation and improve hydrogen-immunotherapy
efficacy in preclinical CRC models.?’ These findings
underscore the clinical potential of integrating
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manganese metabolism and immunity to overcome
immunotherapy resistance in CRC.

Bioinformatics advances have enabled prognostic
models based on immune signatures, yet few integrate
biological factors like manganese metabolism. Our
study bridges this gap by combining MIRGs to refine
prognostic  stratification.  Functional enrichment
revealed MIRGs are involved in immune activation
pathways, including cytokine-cytokine receptor
interactions, IL-17  signaling, leukocyte
migration.?’?? Through unsupervised clustering, we
identified three molecular subtypes with distinct
survival outcomes, where Cluster 2 exhibited a superior
prognosis despite lower immune scores and higher
tumor purity. These results suggest favorable outcomes
may stem from attenuated pro-tumor
immunosuppression rather than enhanced anti-tumor
immunity which was corroborated by suppressed
immune checkpoint expression in Cluster 2.2%*

and
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Additional examination discovered distinct immune
checkpoint and enrichment pathway patterns in these
subtypes, underscoring their prognostic impact. The
analysis resulted in the creation of a novel prognostic
signature, MIRGs, which incorporates eleven genes:
MPP2, MCIR, MAP2, CALB2, ALPP, TERT, NAT?2,
INHBB, AQP7, SEMA3E, and UCN. MIRGs were
effective in classifying CRC patients into high-risk and
low-risk categories. Patients at high risk showed notably
reduced overall survival and lower survival rates.
Additionally, MIRGs served as an independent
prognostic marker for CRC patient outcomes. The
construction of nomograms that incorporate the risk
score alongside multiple clinical variables allows for a
comprehensive evaluation of the prognostic utility of
MIRGs. This work presents an innovative integration of
MRGs with IRGs, providing a distinct prognostic model
and suggesting potential therapeutic strategies for CRC.

We delved deeper into the molecular mechanisms
underlying the significant prognostic differences among
diverse risk subgroups in CRC. Investigations into
immune cell infiltration uncovered a considerable
percentage of M0/M2 macrophages, as well as Notch
and TGF-B signaling, within the high-risk subgroup.?
Macrophages, derived from monocytes, are categorized
into M1 and M2 subtypes.?® Prior research has shown
that M2 macrophages play a crucial role in the
development and progression of CRC.?’ Increasing
consensus suggests that M2 macrophage infiltration is
strongly  linked to the immune evasion
microenvironment in CRC.

The secretion of pro-angiogenic molecules such as
transforming growth factor-o, transforming growth
factor-B, and vascular endothelial growth factor by M2
macrophages promotes angiogenesis in CRC. Through
the induction of EMT, M2 macrophages support the
migration and infiltration of tumor cells in CRC.%%
Moreover, by secreting CHI3LI, M2 macrophages
trigger CRC metastasis and contribute to the
advancement of CRC by influencing metabolism,
particularly in relation to fatty acids, arginine, proline,
and methionine metabolism. The presence of a high
density of M2 macrophages is known to predict poor
outcomes in CRC.*° Our study also found a significant
abundance of M2 macrophages in patients at high risk
with tumor progression and negative prognoses. In
addition to M2 macrophages, the high-risk
microenvironment was also characterized by an
enrichment of Tregs and a relative deficiency in
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cytotoxic CD8" T cells, fostering an overall
immunosuppressive state.

According to GSVA, the high-risk group
demonstrated enrichment in pathways associated with
cancer, including EMT, angiogenesis, KRAS, apical
surface, and apical junction. Previous studies
demonstrated the EMT pathway facilitates CRC
metastasis by downregulating epithelial markers such as
E-cadherin while upregulating mesenchymal proteins
including Vimentin.3! This process enhances tumor cell
detachment from primary sites and promotes invasive
potential particularly within microsatellite unstable
subtypes. Dysregulated angiogenesis driven by DDX21-
mediated acetylation modifications stabilizes pro-
angiogenic transcripts like VEGF and induces abnormal
vascular networks that accelerate hepatic metastasis and
peritoneal dissemination in CRC.3? Additionally, KRAS
signaling activation, specifically the G13D mutation
variant, recruits immunosuppressive Treg cells at tumor
invasive fronts through JNK pathway activation, thereby
establishing immunotherapy resistance in metastatic
CRC.* Apical surface and junction integrity disruption
occurs through lipid raft-localized Src kinase activation
which subverts epithelial extrusion mechanisms and
initiates early stromal invasion in colorectal
carcinogenesis.> These particular molecular processes
may shed light on the unfavorable prognosis seen in
high-risk CRC patients.

Notably, previous studies have observed
dysregulation of MIRGs underscores their potential
involvement in the pathogenesis of several cancer,
including gastric cancer® and kidney cancer.® In this
study, we analyzed the mRNA expression of eleven
MIRGs genes using qRT-PCR on fifty pairs of CRC and
nearby non-tumor tissues. Our research identified the
dysregulation of most MIRGs in CRC tissues relative to
adjacent normal tissues, consistent with TCGA data. As a
result, MIRGs are highly promising as a therapeutic and
prognostic indicator in CRC. Collectively, our tissue-
level validation confirms the consistent dysregulation of
these MIRGs in CRC pathogenesis and positions them as
promising candidates for diagnostic and therapeutic
targeting across gastrointestinal malignancies.

In summary, this research developed a new
prognostic model for CRC that includes eleven genes
related to manganese metabolism and the immune
system. The model showed strong predictive accuracy
for patient outcomes, improving clinical risk
assessment. A promising strategy for overcoming
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resistance to immunotherapy in advanced diseases is the
integration of manganese-based agents with immune
checkpoint inhibitors. However, their clinical translation
will depend on future studies assessing the safety and
efficacy of such combinations in patients. Due to the
limited sample size of MSI-H cases in this cohort, a
stratified analysis by MSI status was not statistically
feasible. In addition, several limitations warrant
consideration, including reliance on public databases
and in-house qRT-PCR validation. The generalizability
of our findings is constrained by the relatively small
sample size and single-center design of our validation
cohort, necessitating further confirmation in larger,
multi-center studies. Preclinical validation in cellular
and animal systems remains essential prior to clinical
implementation.
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