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ABSTRACT 

 

Colorectal cancer (CRC) is the third most frequently diagnosed cancer and the second leading 

cause of cancer-related mortality globally. Emerging evidence identifies manganese as an important 

trigger for the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway, 

but prognostic signatures integrating manganese metabolism and immune pathways remain 

unexplored in CRC. 

Through analysis of transcriptomic and clinical data from TCGA-CRC and GSE17538 cohorts, 

we established and validated an eleven-gene manganese metabolism and immune-related signature 

that robustly stratified CRC patients into distinct risk groups with significant survival differences. 

High-risk patients exhibited suppressed immune microenvironments with enriched M2 

macrophages and Tregs and activation of oncogenic pathways. Quantitative real-time polymerase 

chain reaction (qRT-PCR) validation confirmed dysregulation of eight signature genes in clinical 

CRC samples, indicating the model’s potential for prognostic prediction and immunotherapeutic 

stratification. 

We established a novel MIRGs signature that accurately predicts CRC clinical outcome. 

Integration of manganese-based agents with immune checkpoint inhibitors (ICIs) represents a 

potential therapeutic strategy for immunotherapy-resistant CRC. 
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INTRODUCTION 

 

Colorectal cancer (CRC) is the third most frequently 

diagnosed cancer and the second leading cause of cancer 

mortality, representing a substantial health issue.1,2 

Despite advances in surgical techniques and systemic 
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therapies, including chemotherapy, targeted agents, and 

immunotherapy, outcomes for advanced disease remain 

suboptimal due to intrinsic and acquired resistance 

mechanisms.3,4 Immune checkpoint inhibitors (ICIs), 

especially those that target PD-1/PD-L1, have proven 

clinically effective in CRC patients with microsatellite 

instability-high (MSI-H).5,6 However, tumors that are 

microsatellite stable (MSS), which constitute the 

majority, have restricted response rates.7 This 

underscores the critical need to identify novel 

mechanisms to overcome immunotherapy resistance. 

Evidence from recent studies emphasizes the 

significant involvement of the cGAS-STING pathway in 

antitumor immunity through the detection of cytosolic 

DNA and the activation of type I interferon 

production.8,9 Manganese (Mn2+) functions as a potent 

cGAS-STING activator, enhancing STING 

palmitoylation and downstream TBK1-IRF3 

signaling.10,11 Preclinical studies demonstrate that Mn2+ 

augments dendritic cell maturation, promotes cytotoxic 

T lymphocyte infiltration, and synergizes with ICIs to 

suppress tumor growth across multiple cancer 

models.10,12 Furthermore, Mn2+ deficiency compromises 

antitumor immunity, while Mn2+ supplementation 

restores immune surveillance.13,14 This positions 

manganese metabolism as a critical modulator of the 

tumor immune microenvironment. 

Given this central role of manganese in immune 

regulation, we hypothesized that manganese 

metabolism-related genes (MRGs) may synergize with 

immune-related genes (IRGs) to influence tumor 

behavior and patient outcomes. While many prognostic 

signatures for CRC have focused on IRGs,15,16 the 

influence of essential micronutrient metabolism on 

immune function is often overlooked. The interplay 

between MRGs and IRGs remains unexplored in CRC 

prognostication. Integrating these dimensions could 

yield more comprehensive biomarkers reflecting both 

immune activation capacity and metabolic 

reprogramming within the tumor microenvironment. 

The purpose of this study was to identify 

differentially expressed MRGs and IRGs between 

colorectal tumor tissues and normal tissues and construct 

a manganese metabolism- and immune-related gene 

signature (MIRGs) for predicting prognosis. We further 

evaluated the association of MIRG subtypes with the 

tumor immune microenvironment, the response to 

immunotherapy, and validated the expression levels of 

key signature genes in colorectal clinical samples. Our 

integrated approach could provide novel insights into 

CRC biology and deliver a clinically applicable method 

for risk stratification and treatment personalization. 

 

MATERIALS AND METHODS 

 

Data Sources and Processing 

Clinical data and RNA sequencing profiles for CRC 

were retrieved from the Gene Expression Omnibus 

(GEO) and The Cancer Genome Atlas (TCGA) 

databases. The TCGA-CRC database, obtained from 

UCSC XENA (https://xenabrowser.net/datapages/), was 

used as the training cohort, while the GSE17538 

database from GEO (http://www.ncbi.nlm.nih.gov/geo/) 

was employed as the validation cohort. Batch effects 

between databases were mitigated using the sva R 

package. Specifically, the ComBat algorithm (default 

parameters) was applied to harmonize the expression 

data from TCGA and GEO datasets. Principal 

component analysis (PCA) was performed before and 

after correction, confirming that the batch effect was 

markedly reduced after ComBat adjustment. Patients 

were excluded if they had missing survival or clinical 

information, or if their overall survival was less than 30 

days to avoid bias from perioperative mortality. After 

excluding samples lacking survival data or containing 

incomplete clinical information, the final cohorts 

comprised 315 TCGA-CRC samples and 298 

GSE17538 samples. The flowchart displaying the entire 

research was shown in Figure 1. 

 

Identification of Differentially Expressed Genes 

Associated with Manganese Metabolism and 

Immune Function 

A curated set of manganese metabolism-related 

genes was retrieved from GeneCards 

(https://www.genecards.org/). Immune-related genes 

were retrieved from the ImmPort database 

(https://www.immport.org/). Using the edgeR R 

package, differential expression analysis was carried out 

on colorectal tumor tissues and adjacent normal tissues 

from the TCGA-COAD dataset and GEO database. 

Differentially expressed genes (DEGs) were determined 

by an absolute log2 fold change (|log2FC|)> 1 and an 

adjusted p value<0.05. Subsequent screening focused on 

DEGs intersecting with the manganese metabolism- and 

immune-related gene lists. 
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Figure 1. The flowchart displaying the entire research. 

 
Functional Enrichment Analysis 

The clusterProfiler R package was used to analyze 

the identified DEGs related to manganese metabolism 

and immunity via Kyoto Encyclopedia of Genes and 

Genomes (KEGG) pathway enrichment analysis and 

Gene Ontology (GO) annotation, encompassing 

Biological Process (BP), Molecular Function (MF), and 

Cellular Component (CC) categories. 

 

Unsupervised Clustering Based on DEGs Associated 

with Immune and Manganese Metabolism 

Using the NMF R package, consensus clustering of 

the TCGA-CRC cohort was conducted based on the 

expression profiles of DEGs related to manganese 

metabolism and immunity using the NMF algorithm, 

which is particularly suitable for non-negative gene 

expression data and provides biologically interpretable 

clustering results. To determine the optimal cluster 

number, we evaluated cophenetic correlation 

coefficients and silhouette widths across k=2–6. Both 

metrics consistently indicated k=3 as the most stable 

solution. Kaplan-Meier survival curves and log-rank 

tests were used to evaluate differences in overall 

survival (OS) between subtypes. For each subtype, the 

ESTIMATE algorithm was used to calculate stromal, 

immune, and ESTIMATE scores, as well as tumor 

purity. The Wilcoxon rank-sum tests were used to 

compare the expression levels of immune checkpoint 

genes across different subtypes. Gene Set Variation 

Analysis (GSVA) interrogated enrichment pathway 

differences among subtypes. 

 

Construction and Verification of MIRGs 

The identification of OS-associated genes in the 

TCGA-CRC cohort was achieved through univariate 

Cox regression, with LASSO Cox regression refining 

the prognostic signature. A 10-fold cross-validation 

strategy was employed to determine the optimal penalty 

parameter (λ), which balances model complexity and 

predictive accuracy and minimizes overfitting. The risk 

score was determined by the formula: RiskScore = Σn
i 

coefficient × Expression (Xi) for each gene in the 

signature. Patients were classified into high- and low-

risk groups using the median risk score. Kaplan-Meier 

analysis and ROC curves were used to validate the 

prognostic performance. The signature was 

independently tested in the GSE17538 cohort. 

Univariate or multivariate Cox regression evaluated 

clinical independence. 

 

Establishment of a Nomogram 

To estimate 12-, 24-, and 36-month survival, a 

clinical nomogram was formulated by integrating risk 

scores and clinicopathological variables using the rms 

package. Calibration curves and ROC analysis assessed 

predictive accuracy. 
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Evaluation of the Tumor Microenvironment 

CIBERSORT was used to measure the infiltration of 

immune cells, while ssGSEA (GSVA, GSEABase) was 

used to assess the enrichment of immunological 

functions. Wilcoxon tests were used to compare immune 

characteristics between different risk groups. 

 

Performing Gene Set Variation Analysis on MIRGs 

Hallmark gene sets were employed by the GSVA 

package to assess pathway activity differences between 

risk subgroups. 

 

Tumor Mutation Burden Analysis 

TMB was defined as mutations per megabase. 

Somatic mutations were visualized using waterfall plots. 

Mutation type distributions were compared between risk 

groups. 

 

Clinical Tissue Samples 

Fifty paired CRC and adjacent non-tumor tissues 

were collected from retrospective surgical specimens. 

Tissues were pathologically confirmed, paraffin-

embedded, or cryopreserved at −80 °C. Written 

informed consent was obtained under Institutional 

Ethics Committee approval. This study obtained 

approval from the independent Ethics Committee of 

Nanjing Hospital of Chinese Medicine, affiliated with 

Nanjing University of Chinese Medicine (KY2024010). 

 

RNA Isolation and Quantitative Real-time PCR 

(qRT-PCR) 

TRIzol reagent (Invitrogen) was used to extract total 

RNA. cDNA was generated from 1 μg of RNA using the 

PrimeScript RT kit (Takara). SYBR Green assays 

(Takara) were employed for RT-qPCR on a CFX-96 

system (Bio-Rad), and relative expression was 

determined using the 2−ΔΔCt method normalized to 

GAPDH. The experiment included three independent 

biological replicates, each with technical triplicates. 

 

Statistical Analysis 

Analyses used R v4.3.0 and GraphPad Prism v8.0.2. 

Continuous variables were compared by Student’s t-test 

(normal distribution) or Wilcoxon test (non-normal). 

Multiple groups were assessed via the Kruskal-Wallis 

test. The Spearman method was used for correlations, 

and data are presented as mean ± SD. Statistical 

significance was indicated by p<0.05. 

 

RESULTS 

 

Identification of Differentially Expressed Genes 

Associated with Manganese Metabolism and 

Immune Function 

To ensure comparability across datasets, batch 

effects between TCGA and GEO were removed using 

the ComBat algorithm. PCA confirmed that, after 

ComBat correction, the distributions of samples were 

primarily driven by biological features rather than 

dataset origin, indicating successful batch-effect 

removal. A total of 2861 genes showed differential 

expression between CRC and normal tissues according 

to the initial screening of the TCGA database (Figure 

2A). We concentrated our study on 492 genes that are 

functionally associated with manganese metabolism and 

immune functions (Figure 2B). Significant enrichment 

in immune activation pathways, including cytokine-

cytokine receptor interaction, chemokine signaling 

pathway, viral protein interaction with cytokine and 

cytokine receptor, hormone signaling, and the IL-17 

signaling pathway, was demonstrated by KEGG 

functional annotation (Figure 2C). The enrichment of 

pathways such as IL-17 signaling and cytokine-cytokine 

receptor interaction is consistent with the established 

role of chronic inflammation and immune cell crosstalk 

in colorectal carcinogenesis and progression. Further 

insights from GO functional annotation analysis showed 

that genes involved in manganese metabolism and 

immune response are mainly active in certain biological 

processes. These processes encompass leukocyte 

migration and leukocyte chemotaxis. For molecular 

functions, they participate in cytokine activity and 

cytokine receptor binding. Regarding cellular 

components, they localize to secretory granule lumen. 

The bar plot in Figure 2D illustrates the eight most 

significant terms within the categories of Biological 

Process (BP), Molecular Function (MF), and Cellular 

Component (CC). 
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Figure 2. Gene screening and functional enrichment analysis. A. The Cancer Genome Atlas (TCGA) dataset-derived volcano 

plot illustrating differentially expressed denes (DEGs) in colorectal cancer. B. Venn diagram identifying 492 co-differentially 

expressed metabolism-related genes (MRGs) and immuno-related genes (IRGs). C, D. Bar graph presenting Kyoto 

Encyclopedia of Genes and Genomes (KEGG) pathway enrichment (C) and Gene Ontology (GO) functional enrichment (D) 

results for these 492 genes. 

 
Establishment of Three Subtypes Through 

Unsupervised Clustering 

The entire cohort was segmented into three subtypes 

(clusters 1–3) using NMF-based consensus clustering. 

This method was chosen due to its suitability for gene 

expression data and interpretability of non-negative 

factors. Evaluation of clustering stability using cophenetic 

correlation and silhouette width confirmed that the three-

cluster solution was the most robust and biologically 

meaningful (Figure 3A). In addition, our investigation 

into the prognostic differences among these three 

subtypes demonstrated a statistically significant disparity 

in overall survival outcomes (p=0.033, Figure 3B). 

Compared to the other clusters, Cluster 2 showed longer 

overall survival times than the other clusters, indicating a 

better prognosis for Cluster 2. Examination of tumor 

microenvironment heterogeneity across subtypes is 

presented in Figures 3C-F. The immunological and 

ESTIMATE scores in cluster 2 were significantly lower 

than those in the other clusters, and its tumor purity was 

higher. Furthermore, we analyzed the different gene 

expression of immunological checkpoints in different 

cluster groups. There was a significant reduction in the 

expression levels of most immune checkpoints in patients 

from cluster 2 compared to those in other subgroups 

(Figure 3G). 
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Figure 3. Molecular subtypes based on differentially expressed metabolism-related genes (MRGs) and immune-related genes 

(IRGs). This figure presents the consensus clustering matrix heatmap (k = 3) defining three metabolism–immune-related gene 

(MIRG) clusters, along with Kaplan–Meier survival curves showing significant overall survival differences across phenotypes 

(p = 0.033). Violin plots display the estimation of stromal and immune cells in malignant tumors using expression data 

(ESTIMATE) score, immune score, stromal score, and tumor purity for each phenotype, while box plots illustrate variations 

in immune checkpoint expression among clusters (*p < 0.05, **p < 0.01, ***p < 0.001). 
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Establishment and Validation of MIRGs 

The development of a prognosis model based on 

manganese metabolism and immune response involved 

using univariate Cox regression analysis to find potential 

prognostic genes associated with overall survival in 

CRC patients from the TCGA cohort. Subsequently, 

eleven crucial genes were selected after refining the 

gene signature through LASSO regression analysis 

(Figures 4A-B). Based on the expression levels of these 

genes and their respective coefficients, a prognostic risk 

score for each CRC patient was calculated using the 

formula: RiskScore = (0.208 × MPP2) + (0.247 × 

MC1R) + (0.128 × MAP2) + (0.068 × CALB2) + (0.200 

× ALPP) + (0.253 × TERT) + (-0.015 × NAT2) + (0.048 

× INHBB) + (0.122 × AQP7) + (0.284 × SEMA3E) + 

(0.044 × UCN). The LASSO model was optimized using 

10-fold cross-validation, which ensured model stability 

and reduced the risk of overfitting. Robustness of the 

prognostic signature was further confirmed in the 

independent GSE17538 cohort. 

The TCGA-CRC database was used to stratify 

patients in the training set into high- and low-risk 

categories, using the median risk score as the threshold. 

According to Kaplan-Meier analysis, patients at high 

risk experienced notably shorter overall survival and 

increased mortality rates than those at low risk (p<0.001; 

Figure 4C). Figures 4D and 4E illustrate the distribution 

of survival status and risk scores within the cohort. 

Similarly, deceased individuals had elevated risk scores 

compared to survivors in the TCGA cohort. Figure 4F 

displays differential expression of the 11 signature genes 

between risk subgroups. ROC analysis was used to 

evaluate the prognostic effectiveness of this 11-gene 

signature, which produced an AUC of 0.685 for 

predicting overall survival (Figure 4G). 
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Figure 4. Construction and verification of metabolism–immune-related genes (MIRGs). This figure illustrates the development 

and validation of the MIRG signature, beginning with least absolute shrinkage and selection operator (LASSO) regression 

analysis (A–B), which identified 11 MIRG signature genes. The Kaplan–Meier survival curves (C) demonstrate significant 

survival stratification between high- and low-risk subgroups in The Cancer Genome Atlas (TCGA) cohort. Survival status 

distribution (D) and risk score distribution (E) further depict prognostic separation across patients. Heatmaps (F) show the 

expression patterns of the 11 MIRG genes within the TCGA cohort, and receiver operating characteristic (ROC) curves (G) 

evaluate the predictive performance of the MIRG signature for patient outcomes. 

 
To validate the prognostic signature obtained from the 

TCGA dataset, the same risk score formula and median 

cutoff were applied to the independent GSE17538 CRC 

cohort. In this validation cohort, patients were also 

categorized into high-risk and low-risk subgroups. 

Aligning with the training set findings, those in the high-

risk category had worse survival outcomes compared to 

the low-risk group (p=0.032). According to the Kaplan-

Meier survival analysis, risk scores in the GSE17538 

cohort were higher in deceased patients compared to the 

survival group. Moreover, the AUC of this 11-gene 

signature for overall survival prediction in the validation 

set was 0.616. To enhance clinical utility, we constructed 

nomograms incorporating the risk score and other 

prognostic factors (Figures 5A-B). Total nomogram 

scores inversely correlated with predicted survival 

probabilities at 12, 24, and 36 months. 

 

Immunological Features of MIRGs 

Immune landscape analysis revealed significant 

enrichment of macrophages, TGF-β signaling, and Treg 

cells in high-risk individuals in TCGA database (Figure 

5C). Further immune profiling demonstrated increased 

activity of angiogenesis, apoptosis, EMT, M0/M2 

macrophages, Notch signaling, and TGF-β signaling in 

the high-risk subgroup (Figure5D), indicating distinct 

immunological characteristics between risk groups. 

 

Exploring MIRGs' Biological Functions 

We examined the differences in biological functions 

associated with prognosis between high-risk and low-risk 

groups by performing a functional enrichment analysis. 

GSEA with GO gene sets demonstrated that low-risk 

patients were significantly enriched in metabolism and 

detoxification pathways, including HALLMARK 

OXIDATIVE PHOSPHORYLATION, HALLMARK 

MYC TARGETS V1, HALLMARK MYOGENESIS, 

HALLMARK FATTY ACID METABOLISM, and 

HALLMARK PEROXISOME (Figure 6A-B). 

Alternatively, high-risk patients revealed substantial 

enrichment in pathways linked to cancer, such as 

HALLMARK KRAS SIGNALING. Furthermore, 

through GSVA based on Hallmark gene sets, we 

confirmed that the high-risk group exhibited stronger 

activation in pathways associated with HALLMARK 

APICAL SURFACE, HALLMARK APICAL 

JUNCTION, HALLMARK EPITHELIAL 

MESENCHYMAL TRANSITION, and HALLMARK 

ANGIOGENESIS. In contrast, the low-risk group 

showed significantly activity in pathways such as 

HALLMARK SPERMATOGENESIS (Figure 6C). Risk 

scores significantly correlated with hallmark pathway 

activities (Figure 6D), suggesting biological relevance. 

Survival analysis linked favorable prognosis to 

HALLMARK_BILE_ACID_METABOLISM and 

HALLMARK_PEROXISOME (Figures 6E-F), while 

HALLMARK_KRAS_SIGNALING and 

HALLMARK_MYOGENESIS associated with poor 

outcomes. 
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Figure 5. Development of nomograms based on clinical features and risk scores. This figure presents nomograms predicting 

12-, 24-, and 36-month survival probabilities for colorectal cancer (CRC) patients in The Cancer Genome Atlas (TCGA) cohort 

(A) and the Gene Expression Omnibus (GEO) cohort (B). Comparative analyses illustrate differences in immune cell 

infiltration (C) and immune function (D) between high- and low-risk strata, highlighting immunological divergence associated 

with the risk model. 
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Figure 6. Transcriptomic characteristics of metabolism–immune-related gene (MIRG)–stratified colorectal cancer (CRC) 

patients. This figure depicts differences in pathway activity between risk groups using Gene Set Variation Analysis (GSVA), 

with panels A–B showing hallmark pathway activity disparities and panel C presenting a heatmap of GSVA-scored hallmark 

pathways across risk strata. Panel D displays correlations between MIRG-derived risk scores and GSVA-quantified pathway 

activities. Kaplan–Meier analyses in panels E–F illustrate overall survival (OS) associations with GSVA scores for the 

HALLMARK BILE ACID METABOLISM and HALLMARK PEROXISOME pathways, highlighting biologically meaningful 

metabolic variations between patient groups. 

 
Somatic Mutation Analysis 

TMB analysis revealed differential mutation patterns 

between risk groups. The distributions of variant 

classifications, types, and SNV classes for high-risk and 

low-risk patients are depicted in Figures 7A-F. Patients 

at high risk demonstrated higher TMB and unique 

mutation patterns, as illustrated by the top 10 mutated 

genes (Figures 7G-H) and the waterfall plots of the top 

30 most frequently mutated genes (Figures 7I-J). 

Patients classified as high-risk demonstrate a 

significantly higher mutation burden (p<0.001), as 

revealed by mutation feature analysis. 

 

The mRNA Expression of Eleven Genes from MIRGs 

in Colorectal Tissues 

Figure 8A demonstrates significant expression 

differences for eleven genes from MIRGs between 

tumor and normal tissues in the TCGA-CRC cohort. 

Comparative analysis of mRNA expression revealed 

dysregulation of most MIRGs in 50 CRC tissues relative 

to adjacent normal tissues, consistent with TCGA data. 

Specifically, tumor tissues exhibited significantly 

elevated expression of MC1R, INHBB, and UCN (Figure 

8B). Conversely, MPP2, CALB2, NAT2, AQP7, and 

SEMA3E showed marked downregulation in CRC 

specimens (Figure 8B). These findings implicate these 

MIRGs in colorectal carcinogenesis. Interestingly, 

MAP2, ALPP, and TERT did not show significant 

differences in expression between tumor and 

corresponding normal tissues in our study, which 

contrasts with TCGA findings.  
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Figure 7. Evaluation of tumor mutational burden (TMB) between MIRG-defined risk subgroups. This figure characterizes 

genomic alterations across risk groups, beginning with the distribution of variant classifications in the high-risk subgroup (A) 

and the composition of genomic alteration types within this group (B), followed by the spectrum of single-nucleotide 

substitution patterns (C). Panels D–F depict the corresponding variant classifications, alteration type composition, and 

substitution spectrum in the low-risk subgroup. Panels G–H highlight the top ten most frequently mutated genes in the high-

risk and low-risk groups, respectively. Waterfall plots in panels I–J illustrate the detailed mutation landscapes of individual 

patients in each subgroup, underscoring mutational heterogeneity associated with metabolism–immune-related gene–based 

risk stratification. 
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Figure 8. Expression of the 11 metabolism–immune-related gene (MIRG) signature genes in human colorectal tissues. This 

figure illustrates gene expression patterns using data from The Cancer Genome Atlas (TCGA) (A) and from in-house clinical 

colorectal cancer (CRC) specimens (B), showing differential expression across tumor and normal tissues with significance levels 

indicated (*p < 0.05, **p < 0.01, ***p < 0.001). 

 
DISCUSSION 

 

Globally, CRC is a primary cause of cancer-related 

deaths, marked by considerable genetic variability and 

common late-stage detection.17 Despite the promise of 

immunotherapy, its success is limited to a small number 

of tumors with high microsatellite instability, resulting 

in about 95% of metastatic CRC (mCRC) patients with 

proficient mismatch repair or non-MSI-H being 

unresponsive to current immunotherapy treatments.18 

Recent advances highlight the cGAS-STING pathway as 

pivotal in anti-tumor immunity, with manganese serving 

as a key activator that enhances cGAS-STING signaling 

and synergizes with ICIs.19 This synergy was 

exemplified by manganese galvanic cells, which 

modulate tumor metabolism to boost cGAS-STING 

activation and improve hydrogen-immunotherapy 

efficacy in preclinical CRC models.20 These findings 

underscore the clinical potential of integrating 

manganese metabolism and immunity to overcome 

immunotherapy resistance in CRC. 

Bioinformatics advances have enabled prognostic 

models based on immune signatures, yet few integrate 

biological factors like manganese metabolism. Our 

study bridges this gap by combining MIRGs to refine 

prognostic stratification. Functional enrichment 

revealed MIRGs are involved in immune activation 

pathways, including cytokine-cytokine receptor 

interactions, IL-17 signaling, and leukocyte 

migration.21,22 Through unsupervised clustering, we 

identified three molecular subtypes with distinct 

survival outcomes, where Cluster 2 exhibited a superior 

prognosis despite lower immune scores and higher 

tumor purity. These results suggest favorable outcomes 

may stem from attenuated pro-tumor 

immunosuppression rather than enhanced anti-tumor 

immunity which was corroborated by suppressed 

immune checkpoint expression in Cluster 2.23,24 
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Additional examination discovered distinct immune 

checkpoint and enrichment pathway patterns in these 

subtypes, underscoring their prognostic impact. The 

analysis resulted in the creation of a novel prognostic 

signature, MIRGs, which incorporates eleven genes: 

MPP2, MC1R, MAP2, CALB2, ALPP, TERT, NAT2, 

INHBB, AQP7, SEMA3E, and UCN. MIRGs were 

effective in classifying CRC patients into high-risk and 

low-risk categories. Patients at high risk showed notably 

reduced overall survival and lower survival rates. 

Additionally, MIRGs served as an independent 

prognostic marker for CRC patient outcomes. The 

construction of nomograms that incorporate the risk 

score alongside multiple clinical variables allows for a 

comprehensive evaluation of the prognostic utility of 

MIRGs. This work presents an innovative integration of 

MRGs with IRGs, providing a distinct prognostic model 

and suggesting potential therapeutic strategies for CRC. 

We delved deeper into the molecular mechanisms 

underlying the significant prognostic differences among 

diverse risk subgroups in CRC. Investigations into 

immune cell infiltration uncovered a considerable 

percentage of M0/M2 macrophages, as well as Notch 

and TGF-β signaling, within the high-risk subgroup.25 

Macrophages, derived from monocytes, are categorized 

into M1 and M2 subtypes.26 Prior research has shown 

that M2 macrophages play a crucial role in the 

development and progression of CRC.27 Increasing 

consensus suggests that M2 macrophage infiltration is 

strongly linked to the immune evasion 

microenvironment in CRC. 

The secretion of pro-angiogenic molecules such as 

transforming growth factor-α, transforming growth 

factor-β, and vascular endothelial growth factor by M2 

macrophages promotes angiogenesis in CRC. Through 

the induction of EMT, M2 macrophages support the 

migration and infiltration of tumor cells in CRC.28,29 

Moreover, by secreting CHI3L1, M2 macrophages 

trigger CRC metastasis and contribute to the 

advancement of CRC by influencing metabolism, 

particularly in relation to fatty acids, arginine, proline, 

and methionine metabolism. The presence of a high 

density of M2 macrophages is known to predict poor 

outcomes in CRC.30 Our study also found a significant 

abundance of M2 macrophages in patients at high risk 

with tumor progression and negative prognoses. In 

addition to M2 macrophages, the high-risk 

microenvironment was also characterized by an 

enrichment of Tregs and a relative deficiency in 

cytotoxic CD8+ T cells, fostering an overall 

immunosuppressive state. 

According to GSVA, the high-risk group 

demonstrated enrichment in pathways associated with 

cancer, including EMT, angiogenesis, KRAS, apical 

surface, and apical junction. Previous studies 

demonstrated the EMT pathway facilitates CRC 

metastasis by downregulating epithelial markers such as 

E-cadherin while upregulating mesenchymal proteins 

including Vimentin.31 This process enhances tumor cell 

detachment from primary sites and promotes invasive 

potential particularly within microsatellite unstable 

subtypes. Dysregulated angiogenesis driven by DDX21-

mediated acetylation modifications stabilizes pro-

angiogenic transcripts like VEGF and induces abnormal 

vascular networks that accelerate hepatic metastasis and 

peritoneal dissemination in CRC.32 Additionally, KRAS 

signaling activation, specifically the G13D mutation 

variant, recruits immunosuppressive Treg cells at tumor 

invasive fronts through JNK pathway activation, thereby 

establishing immunotherapy resistance in metastatic 

CRC.33 Apical surface and junction integrity disruption 

occurs through lipid raft-localized Src kinase activation 

which subverts epithelial extrusion mechanisms and 

initiates early stromal invasion in colorectal 

carcinogenesis.34 These particular molecular processes 

may shed light on the unfavorable prognosis seen in 

high-risk CRC patients. 

Notably, previous studies have observed 

dysregulation of MIRGs underscores their potential 

involvement in the pathogenesis of several cancer, 

including gastric cancer35 and kidney cancer.36 In this 

study, we analyzed the mRNA expression of eleven 

MIRGs genes using qRT-PCR on fifty pairs of CRC and 

nearby non-tumor tissues. Our research identified the 

dysregulation of most MIRGs in CRC tissues relative to 

adjacent normal tissues, consistent with TCGA data. As a 

result, MIRGs are highly promising as a therapeutic and 

prognostic indicator in CRC. Collectively, our tissue-

level validation confirms the consistent dysregulation of 

these MIRGs in CRC pathogenesis and positions them as 

promising candidates for diagnostic and therapeutic 

targeting across gastrointestinal malignancies. 

In summary, this research developed a new 

prognostic model for CRC that includes eleven genes 

related to manganese metabolism and the immune 

system. The model showed strong predictive accuracy 

for patient outcomes, improving clinical risk 

assessment. A promising strategy for overcoming 
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resistance to immunotherapy in advanced diseases is the 

integration of manganese-based agents with immune 

checkpoint inhibitors. However, their clinical translation 

will depend on future studies assessing the safety and 

efficacy of such combinations in patients. Due to the 

limited sample size of MSI-H cases in this cohort, a 

stratified analysis by MSI status was not statistically 

feasible. In addition, several limitations warrant 

consideration, including reliance on public databases 

and in-house qRT-PCR validation. The generalizability 

of our findings is constrained by the relatively small 

sample size and single-center design of our validation 

cohort, necessitating further confirmation in larger, 

multi-center studies. Preclinical validation in cellular 

and animal systems remains essential prior to clinical 

implementation. 
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