REVIEW ARTICLE

Iran J Allergy Asthma Immunol In press.

Metformin in Diabetes Management and Immune Modulation: A Comprehensive Review

Mehrangiz Ghafari¹, Javad Poursamimi², and Foroogh Asli³

¹ Department of Pathology, School of Medicine, Zabol University of Medical Sciences, Zabol, Iran ² Department of Immunology, School of Medicine, Zabol University of Medical Sciences, Zabol, Iran ³ Department of Internal Medicine, School of Medicine, Zabol University of Medical Sciences, Zabol, Iran

Received: 6 June 2025; Received in revised form: 9 July 2025; Accepted: 25 July 2025

ABSTRACT

Metformin is a primary treatment for type 2 diabetes (T2D), well-known for its ability to lower blood glucose levels through both AMP-activated protein kinase (AMPK)-dependent and independent pathways. Recent evidence suggests that metformin also possesses immunomodulatory properties, indicating its potential as a therapeutic agent that extends beyond metabolic regulation. This review summarizes the current understanding of metformin's dual roles in managing diabetes and modulating the immune system. It also explores the underlying mechanisms, clinical implications, and potential directions for future research.

Keywords: Clinical trials; Diabetes mellitus type 2; Innate immunity; Metformin; NLRP3 protein

INTRODUCTION

Type 2 diabetes (T2D) is the most common form of diabetes mellitus. It is primarily characterized by insulin resistance, beta cell dysfunction, and increased glucose production by the liver. Patients with T2D are generally more susceptible to infections than those without diabetes, likely due to a weakened immune system. Research has confirmed decreased innate immune responses, which are associated with factors such as cytokines, low levels of complement C4, and impaired functions of polymorphonuclear cells and monocytederived macrophages. These impairments include reduced chemotaxis, phagocytosis, and killing abilities.

However, no deficiencies in adaptive immunity have

Corresponding Author: Javad Poursamimi, PhD; Department of Immunology, School of Medicine, Zabol University of Medical Sciences, Postal Code: 9861663335, Zabol, Iran. Tel/Fax: (+98 54) 3222 5402, Email: javadpoursamimi@gmail.com, Poursj1357@zbmu.ac.ir been observed.^{2,3}

The pathogenicity of microorganisms tends to increase in high-glucose environments. This phenomenon is attributed to the enhanced adherence of microorganisms to diabetic cells by carbohydrate-receptor complexes. Evidence suggests that better disease management can improve these effects.³ Additionally, some studies have linked decreased C4 protein levels, resulting from high consumption in T2D, to renal or vascular complications.⁴

The inability to regulate blood sugar levels leads to increased serum levels of inflammatory cytokines, including tumor necrosis factor alpha (TNF-α), interleukin-6 (IL-6), and interleukin-8 (IL-8), which are produced by mononuclear cells and neutrophils.⁵ Additionally, elevated levels of glycosylated proteins and lipids contribute to the worsening of the disease.⁶ Reduction in plasma levels of zinc (Zn) impairs lymphocyte responses, decreases the secretion of inflammatory cytokines, and hinders cell chemotaxis.⁷

1

Patients also experience a decreased oxidative capacity to produce free radicals. High blood sugar levels and their consequent excretion in urine increase the risk of microbial infections. This risk may stem from the saturation of complement receptors (CR), such as CR3, by microbial secretory factors, which can prevent opsonization and phagocytosis. For these reasons, identifying a drug that effectively regulates the immune response and reduces the risk of microbial infections has become a primary objective in immune research.

Metformin (dimethyl biguanide) is identified as a first-line treatment for T2D; it reduces gluconeogenesis and enhancing insulin sensitivity.⁹

Metformin is a biguanide derivative from the plant *Galega officinalis*. About 50 years ago, it was established as highly effective in managing T2D. Historical reports indicate that some goats that consumed this plant died due to severe hypoglycemia. This effect was primarily attributed to guanidine, which originates from the plant and reduces insulin resistance.

Metformin effectively lowers both fasting and postmeal glucose levels by inhibiting glucose production in the liver, reducing glucose absorption in the intestines, and enhancing glucose uptake and utilization by peripheral tissues. However, the specific pharmacodynamic properties of metformin-such as the exact role of AMP-activated protein kinase (AMPK), its effects on gut microbiota, ¹⁰ anti-aging effects, ¹¹ anticancer effects, ¹² and cardioprotective effects ¹³-have remained unclear for many years and continue to be a subject of debate.

This medication also possesses immunomodulatory properties, and these diverse mechanisms could effectively contribute to the development of new antidiabetic medications. This study examines the immunological effects of metformin in both laboratory settings and clinical phases involving diabetic patients.

METHODS

This study explores the molecular mechanisms underlying the action of metformin, as identified in both in vivo and in vitro research. It also reviews relevant clinical trials. The information was collected from reputable sources such as Web of Science, PubMed, Medline, Google Scholar, and the Cochrane Library, using keywords including "Metformin and Type 2 Diabetes," "transcription factor, metformin," and "metformin cell signaling."

Mechanisms of Metformin Function

Metformin works through several mechanisms to help regulate blood sugar levels, including a decrease in glucose production in the liver, improved insulin sensitivity, enhanced uptake of glucose by muscle cells, and decreased absorption of glucose from the intestines. Together, these actions make metformin an effective treatment for managing T2D.

Metabolic Effects

The metabolic effects of metformin primarily occur through the activation of AMPK and the modulation of mitochondrial respiration.

Metformin inhibits complex I of the mitochondrial respiratory chain, specifically NADH: ubiquinone oxidoreductase. This action reduces ATP production and increases the AMP/ATP ratio (Figure 1).

The activation of AMPK leads to a cascade of metabolic effects that promote energy conservation and, in some contexts, inhibit anabolic processes. These are summarized as below:

1. Improved Uptake of Glucose in Muscle and Fat

AMPK plays a crucial role in enhancing the transport of the Glucose Transporter type 4 (GLUT4) protein to the cell membrane in muscle and fat tissues. This process increases glucose uptake from the bloodstream. When AMPK is activated, it helps reduce insulin resistance in these tissues, allowing glucose to enter cells more easily and lowering blood sugar levels. This mechanism is especially important for individuals with insulin resistance, such as those who are obese and diabetic. Notably, metformin works by enhancing glucose uptake without requiring additional insulin secretion.¹⁴

2. Reduced Hepatic Gluconeogenesis

Metformin helps lower glucose production in the liver by inhibiting key enzymes involved in the gluconeogenesis pathway, especially phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6Pase). PEPCK plays a crucial role in converting oxaloacetate into phosphoenolpyruvate, which is a rate-limiting step in gluconeogenesis. When metformin activates AMPK, it represses transcription factors like Forkhead Box Protein O1 (FoxO1) and cAMP responsive element-

binding protein (CREB) that typically promote the expression of the *PEPCK* gene. As a result, reduced levels of PEPCK limit the liver's ability to synthesize glucose from non-carbohydrate sources, such as lactate, glycerol, and amino acids. ^{15,16}

Glucose-6-phosphatase plays a crucial role in converting glucose-6-phosphate (G6P) into free glucose during the final step of gluconeogenesis and glycogenolysis. When metformin activates AMPK, it leads to the suppression of hepatocyte nuclear factor 4α (HNF4 α), which is a transcription factor that regulates the expression of the *glucose-6-phosphatase* gene. This reduction in glucose-6-phosphatase activity causes G6P to be trapped within hepatocytes, preventing its release into the bloodstream. ¹⁶

3. Increase Glycolysis

Metformin enhances glycolysis in the liver through mechanisms involving phosphofructokinase-2 (PFK-2). When activated, AMPK phosphorylates and activates PFK-2. This enzyme acts as a potent allosteric activator for phosphofructokinase-1 (PFK-1), leading to a significant increase in the rate of glycolysis. The product fructose-2,6-bisphosphate (F2,6BP) not only promotes but also inhibits gluconeogenesis. glycolysis Hexokinase 2 (HK2), which is responsible for converting glucose to glucose-6-phosphate, is primarily expressed in tissues such as skeletal muscle and adipose tissue. However, the effect of metformin on HK2 is indirect and is mediated by AMPK.¹⁷

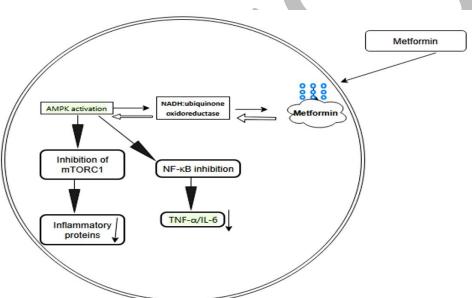


Figure 1. Metformin reduces the production of cytokines (TNF-α and IL-6) and inflammatory mediators (NF-κB: Nuclear factor kappa B) by enhancing cellular metabolism and activating the respiratory chain enzyme complex pathway. (NADH: nicotinamide adenine dinucleotide hydrogenase, mTOR: mammalian target of rapamycin complex 1, and AMPK: Adenosine 5'-monophosphate-activated protein kinase).

4. Enhanced Fatty Acid Oxidation and Reduced Lipid Synthesis

Metformin not only enhances insulin sensitivity but also decreases fat accumulation in skeletal muscle. It promotes the oxidation of fatty acids while reducing the synthesis of triglycerides. In the presence of metformin, several genes associated with acyl-CoA synthesis and fatty acid oxidation are upregulated, while genes related to lipolysis are downregulated. This combination of effects contributes to weight loss.¹⁸

5. Increase Mitochondriogenesis

Mitochondrogenesis is the process of producing new mitochondria, which is crucial for maintaining cellular function, especially in energy-demanding cells such as those found in the liver, muscles, and nerves. Factors like diabetes and aging can impair the effectiveness of this process. Research has shown that metformin can enhance mitochondrogenesis by activating AMPK and triggering intracellular signaling pathways mediated by silent mating-type information regulation 1 (SIRT1) and mammalian target of rapamycin complex 1 (mTOR).

The effects of metformin on mitochondrogenesis are dose-dependent and can vary based on the duration of use and the specific type of cells involved. This process involves the activation of various nuclear and mitochondrial genes, including the transcription factor peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1 α), which is activated by metformin. Additionally, regular physical activity and a balanced diet play significant roles in promoting mitochondrogenesis. ¹⁹

6. Regulation of Autophagy

Mitophagy, or selective mitochondrial autophagy, is a crucial mechanism for maintaining mitochondrial quality control, which removes dysfunctional mitochondria under normal physiological conditions. However, factors such as aging, diabetes, and certain liver diseases can impair mitophagy. One important pathway for mitophagy involves AMPK and its downstream target, Unc-like autophagy 51 (ULK1). This pathway has emerged as a vital factor in promoting mitophagy in response to mitochondrial and energy stresses.²⁰ In an in vivo study, researchers investigated the combined effects of exercise and metformin in treating T2D by targeting the AMPK/ULK1 autophagy pathway. The findings indicated that both exercise and metformin improved insulin sensitivity. Additionally,

the ubiquitin-proteasome system was activated, leading to protein degradation and muscle atrophy through the AMPK/ULK1 autophagy degradation pathway.²¹

AMPK-independent Effects Impact on Neuropeptides

Metformin alters gut microbiota composition of the and increases the production of metabolites, especially short-chain fatty acids (SCFAs) such as butyrate, acetate, and valerate. The rise in SCFAs is associated with reduction in fasting insulin levels. These metabolites stimulate the secretion of GLP-1 and PYY in individuals with T2D. Enhanced GLP-1 and PYY signaling activates afferent vagal pathways, conveying satiety signals to the brain and improving energy intake regulation. 22

Immune Modulation Pathways Anti-inflammatory Functions

Nuclear factor kappa B (NF-κB)

The nuclear factor kappa B (NF-κB) pathway plays a central role in the expression of inflammation-related genes, including cytokines, chemokines, and inflammatory enzymes, is significant. Metformin exerts an inhibitory effect on the AMPK-mediated NF-κB pathway, thereby reducing inflammation (Figure 2).²³

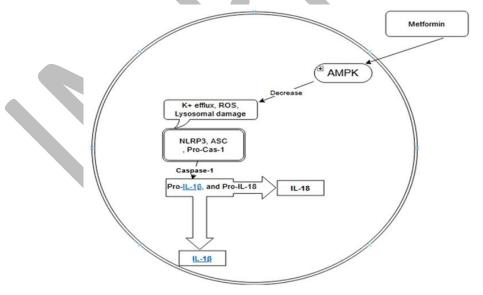


Figure 2. This illustrates the effect of Metformin on the expression of NF-κB genes through the AMPK pathway. (AMPK: AMP-activated protein kinase, ROS: Reactive Oxygen Species, NLRP3: NLR family pyrin domain containing 3, ASC: apoptosis-associated speck-like protein).

Additionally, metformin may suppress this pathway by inhibiting mitochondrial reactive oxygen species (ROS), which are known activators of NF-κB.²³

NLRP3

The NLRP3 inflammasome is responsible for producing pro-inflammatory cytokines, including IL-1β and IL-18, in response to factors such as uric acid crystals, ROS, and infections. Metformin has been shown to inhibit this inflammasome, which may be relevantfor managing metabolic diseases, (e.g., type 2 diabetes) as well as inflammatory diseases (e.g., arthritis) (Figure 3).^{24,25} Under stress conditions, factors such as mtDNA leakage into the cytosol, cathepsin release, and extracellular potassium contribute to NLRP3 activation, and metformin can attenuate these pathways.. Additionally, metformin accelerates the ubiquitination process of NLRP3,26 which leads to a reduction in the synthesis of inflammatory mediators such as TNF-α, IL-6, IL-1β, IL-18, and monocyte chemoattractant protein-1 (MCP-1).²⁷ (Considering these findings, metformin is emerging as a potential treatment not only for metabolic diseases such as diabetes but also for autoimmune diseases. Further documentation is provided below,

Regulation of Immune Cells

Innate Immunity

Metformin can shift macrophage polarization from a pro-inflammatory state (M1) to an anti-inflammatory state (M2).²⁶ This transition helps reduce tissue inflammation and promotes healing. Furthermore, metformin inhibits neutrophil activity and enhances the secretion of IL-10 from M2 macrophages. It also decreases the accumulation and activity of neutrophils and DCs by inhibiting mTORC1 during acute inflammatory responses, such as sepsis or ischemia-reperfusion injury (Figure 4).²⁸

Acquired immunity

Modulation of T cell differentiation

Research has demonstrated that inhibiting glycolysis suppresses the development of T_H1 and T_H17 cells while promoting the production of regulatory T cells (Tregs). In diabetic patients, metformin enhances Treg production and inhibits T_H1 and T_H17 cells by activating AMPK. Additionally, by inhibiting mTOR, metformin not only prevents differentiation into T_H17 cells but also favors differentiation into Treg cells. The oxidative stress commonly found in T2D creates a favorable environment for the differentiation of T lymphocytes into T_H1 and T_H17 cells, and this environment can be modulated by metformin (Figure 5).

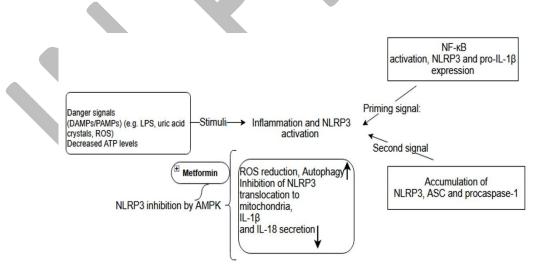


Figure 3. This schematic diagram shows the effects of metformin on immune cells, which lead to increased autophagy and inhibition of the NLRP3 pathway. (DAMPs: Damage-Associated Molecular Patterns; PAMPs: Pathogen-Associated Molecular Patterns; LPS: Lipopolysaccharide)

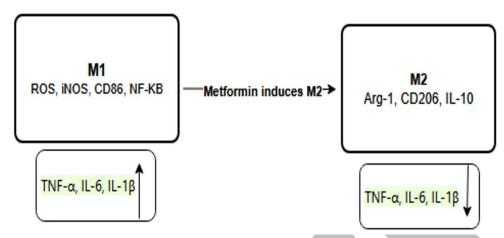


Figure 4. The inhibitory effect of metformin on pro-inflammatory macrophages is demonstrated. (M1 and M2 macrophages; iNOS: Inducible Nitric Oxide Synthase; Arg 1: the enzyme arginase 1)

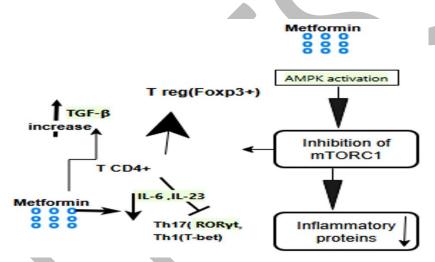


Figure 5. The mechanism by which metformin influences T cell differentiation is illustrated. (TGF-β: Transforming Growth Factor beta; RORγt: Retinoic Acid Receptor-related Orphan Receptor gamma t; Foxp3; Forkhead box protein P3; T-bet: T-box transcription factor)

The impact on B cell function

Metformin influences B-cell- dependent immune responses through several mechanisms. It activates the enzyme AMPK, which inhibits the mTOR pathway-essential for cell growth and proliferation. This inhibition leads to a decrease in metabolic activity, particularly glycolysis, which is crucial for B-cell activation and proliferation. Additionally, metformin hinders the differentiation of B cells into plasma cells and reduces antibody production, highlighting its significance in managing autoimmune diseases like lupus. 32

Moreover, metformin inhibits the transcription factor NF-κB and decreases inflammatory cytokines levels. This reduction lowers the expression of co-

stimulatory molecules such as CD80 and CD86 on the surface of B lymphocytes. Consequently, this process disrupts the ability of B lymphocytes to function as antigen presenters to T lymphocytes, preventing excessive activation of immune responses in autoimmune diseases.³³

There is evidence that metformin impacts mucosal immunity by affecting B lymphocytes, in part through changing the gut microbiome composition. Studies indicated that this effect of metformin is associated with reduced antibody production, especially in autoimmune diseases such as rheumatoid arthritis (RA) Diagram.³⁴

Several clinical trials utilizing metformin for metabolic and immunological purposes in diabetic patients are summarized in Table 1.

The Effects of Metformin on Diabetes and the Immune System

Table 1. Clinical trials showing the effects of metformin on diabetes.

Table 1. Clinical trials showing the effects of metformin on diabetes.				
Author,	Clinical trial	Result		
year, Ref				
Hyer et al.	Women with gestational	Metformin is a viable for preventing fetal macrosomia in women with gestational		
$(2025)^{35}$	diabetes	diabetes.		
He et al.	Patients newly diagnosed with	As compared with insulin injection, early treatment with sitagliptin + metformin		
$(2021)^{36}$	T2DM	in T2DM produced non-inferior outcomes.		
Saha et al. $(2020)^{37}$	Newly diagnosed with T2DM	HbA1c, FBS, and blood sugar 2 hours highly decreased in sitagliptin+metformin group.		
He et al	Newly diagnosed with T2DM	Sitagliptin-metformin in T2DM with severe hyperglycaemia showed better		
(2021) ³⁸	TODM	outcomes in glycaemic remission compared with glimepiride.		
Nguyen et al (2021) ³⁹	T2DM	The metformin effect on Glucose level reduction was lower compared with sulfonylurea and sitagliptin,		
Song et al	T2DM	Metformin + Sitagliptin is effective in the treatment of T2DM complicated with		
$(2014)^{40}$		NAFLD.		
Skandalis et	T2DM with Bullous	Blood Pressure was an adverse event of the metformin + gliptin combination		
al (2012) ⁴¹	pemphigoid (BP)	therapy in T2DM.		
Soliman et al $(2012)^{42}$	T2DM with kidney transplant	Insulin+glargine resulted in a weight gain (0.8 kg).		
Memon et al	T2DM	Metformin monotherapy compared with sitagliptin achieved more complications		
$(2022)^{43}$		such as nausea, vomiting, diarrhea, and headache.		
Ke et al	T2DM	Insulin combined with metformin could help to reduce insulin daily doses during		
$(2014)^{44}$		Continuous Subcutaneous Insulin Infusion (CSII).		
Billings et al	Maturity-Onset Diabetes of	After one year of taking metformin, improved beta-cell function was more closely		
$(2017)^{45}$	the Young (MODY)	associated with the frequency of the rs3212185 allele (hepatocyte nuclear factor 4 alpha (HNF- 4α)).		
Sam et al	Obese children with insulin	A Solute Carrier Family 22 Member 1 (SLC22A1) genotype did not significantly		
$(2017)^{46}$	resistance	affect metformin pharmacokinetics.		
Jack et al	T2DM	Novel evidence for associations of common and rare variants in Pre-MRNA		
$(2018)^{47}$		Processing Factor 31 (PRPF31), Carboxypeptidase A6 (CPA6), and signal		
D		transducer and activator of transcription 3 (STAT3) with metformin response.		
Pearson et al	Diabetes caused by	HNF-1α diabetes had a 5.2-fold greater response to gliclazide than to metformin		
$(2003)^{48}$	Hepatocyte Nuclear Factor 1	and 3.9-fold greater response to gliclazide than those with T2DM. They had a		
	Alpha (HNF-1α) mutations or	strong insulin secretory response to tolbutamide, and more insulin sensitive than		
D. 1	T2DM	those with T2DM.		
Pedersen et	12DM	Circulating Fibroblast Activation Protein (FAP) activity decreased and gene and		
al (2024) ⁴⁹		protein expression of β -klotho, Fibroblast growth factor receptor 1c (FGFR-1c), and pFGFR1c in adipose tissue after metformin.		
Konopka et	T2DM	Metformin attenuated whole-body insulin sensitivity and VO2max after Aerobic		
al (2019) ⁵⁰		Exercise Training (AET).		
Ciaraldi et al	T2DM	Insulin-stimulated whole-body glucose disposal rates (20%) increased, weight-		
$(2002)^{51}$		stable, leptin unchanged, adipocyte size decreased, and GLUT1 and GLUT4 in		
		adipocytes unaltered after Metformin take.		

AET: Aerobic Exercise Training; CPA6: Carboxypeptidase A6; CSII: Continuous Subcutaneous Insulin Infusion; FAP: Fibroblast Activation Protein; FBS: Fasting Blood Sugar; FGFR-1c: Fibroblast growth factor receptor 1c; GLUT1: Glucose Transporter type 1; GLUT4: Glucose Transporter type 4; HbA1c: Hemoglobin A1c; HNF-1α: Hepatocyte Nuclear Factor 1 Alpha; HNF-4α: Hepatocyte nuclear factor 4 alpha; MODY: Maturity-Onset Diabetes of the Young; NAFLD: Non-alcoholic fatty liver disease; PRPF31: Pre-MRNA Processing Factor 31; SLC22A1: Solute Carrier Family 22 Member 1; STAT3: Signal transducer and activator of transcription 3; T2DM: Type 2 Diabetes Mellitus.

 $Metformin \rightarrow AMPK \ activation \rightarrow [Glycolysis \downarrow | \ Fatty \ acid \ oxidation \ (FAO \uparrow)] \rightarrow mTOR \ inhibition \rightarrow B \ cell \ hypoactivation$

Metformin → Regulatory B cells (Breg) ↑ + Cytokines ↓ → Immune tolerance

Metformin → Glycemic control + Microbiota → Reduced inflammation → B cell stabilization

Diagram. Metformin can decrease inflammatory cytokines, increase anti-inflammatory cytokines, and improve B cell function for mucosal immunity.

Evidence From Clinical Studies Linking Metformin to Safety Outcomes

1. Related to Diabetes

Reducing the risk of infections, particularly in the urinary and respiratory tracts of patients with T2D, can be achieved indirectly by managing and controlling blood sugar levels. Scientific evidence indicates that chronic hyperglycemia hampers the function of white blood cells, such as neutrophils and macrophages, leading to an increased likelihood of infections. Therefore, administering metformin, which helps improve HbA1c levels, can enhance the function of these white blood cells and subsequently reduce the incidence of infections. ^{52,53}

Some studies have shown that metformin regulates the activity of macrophages and T lymphocytes by activating the AMPK enzyme. This regulation may help prevent the severity of bacterial or viral infections, including COVID-19, in patients with diabetes.⁵⁴ Furthermore, these studies confirm that metformin usage in individuals with T2D reduces the risk of cardiovascular diseases. These findings highlight metformin's anti-inflammatory properties, its ability to reduce neutrophil counts, its role in increasing intracellular pH to combat viral infections, and its interference with the endocytotic cycle.⁵⁴

Lactic Acidosis

Although evidence is limited, some clinical trials involving patients with T2D who also had cardiovascular and renal disorders indicated that metformin is safe and has minimal side effects. 55 Additionally, there have been case reports and epidemiological studies suggesting a risk of lactic acidosis in patients with impaired renal function, liver failure, or severe hypoxia after taking metformin. For patients with T2D who experience renal failure, impaired renal function can lead to the accumulation of metformin, which is associated with lactic acidosis. 56 In these studies, the primary outcomes-mortality and the

progression of kidney disease-were significantly reduced in users of metformin. However, the risk of lactic acidosis, a secondary outcome related to metformin use, remained unchanged.⁵⁷ In line with this, Biradar et al (2010) examined the incidence of lactic acidosis in patients aged 65 and older who were hospitalized in the intensive care unit and had impaired renal function. They found that gastrointestinal symptoms, known as metformin-associated lactic acidosis (MALA), were predominant in these patients and significantly correlated with increased morbidity and mortality.⁵⁸ Some studies have indicated that 20% to 30% of diabetic patients taking metformin experience gastrointestinal effects such as nausea, diarrhea, abdominal pain, and anorexia. In these patients, there is a significant increase in bile salt circulation, while the absorption of these salts is reduced. Metformin appears to decrease bile salt reabsorption in the ileum, which leads to higher bile salt concentrations in the colon and the development of digestive disorders. 59,60

Vitamin B12 Deficiency

There is evidence that the use of metformin is associated with reduced absorption of vitamin B12, which may increase the risk of neuropathy or megaloblastic anemia. A 2019 study involving 1 111 patients with T2D found that serum vitamin B12 levels decreased significantly in those taking metformin at doses greater than 1 500 mg daily for more than six months. Specifically, for every 1 mg increase in the daily metformin dose, there was a corresponding decrease of 0.142 pg/mL in vitamin B12 levels. This suggests that metformin may inhibit the intestinal absorption of vitamin B12.61

Additionally, serum homocysteine levels in these patients were negatively correlated with vitamin B12 levels, which could represent a risk factor for cardiovascular disease. The amino acid homocysteine plays an essential role in DNA methylation and various intracellular reactions involving vitamin B12.

Consequently, elevated homocysteine levels are associated with an increased risk of cardiovascular disease, cognitive impairment, cancers such as breast cancer, and chronic kidney disease. ^{62,63}

Immunity During Pregnancy

Increased blood sugar levels during pregnancy can lead to complications such as macrosomia (high fetal weight greater than 4000 grams) and neonatal hypoglycemia. The use of metformin to manage gestational diabetes helps to maintain fetal health and reduce pregnancy-related complications. Metformin works by improving insulin sensitivity and decreasing glucose production in the liver, which helps regulate maternal blood sugar levels.⁶⁴

Fluctuations in maternal blood sugar can result in neonatal hypoglycemia after birth. However, maintaining stable glucose levels with metformin can significantly reduce this risk. Additionally, metformin may enhance the immunity of newborns. Research involving women with polycystic ovary syndrome (PCOS) found that metformin use did not lead to an increase in congenital abnormalities or other fetal complications.⁶⁵ There is also evidence suggesting that a daily dose of 2 000 mg of metformin can effectively prevent weight gain in pregnant women with diabetes who have PCOS.66

2. Exploring Conditions Beyond Diabetes: Autoimmune and Inflammatory Diseases

Obesity and metabolic syndrome, which can be linked to hyperglycemia, dyslipidemia, and inflammation, are significant risk factors for osteoarthritis (OA). Treatment of these conditions may influence the progression of OA.⁶⁷ Recent research emphasizes the role of metformin as a modulator of inflammatory and metabolic factors. This medication may be beneficial in managing synovitis, preventing joint destruction, and reducing cartilage degradation in patients with RA and OA.⁶⁸

Metformin, known for its anti-inflammatory and antioxidant properties, shows potential as a therapeutic agent for autoimmune diseases. However, clinical trials investigating its effectiveness are limited. For instance, in the case of multiple sclerosis, metformin is currently undergoing phase II trials, with the outcomes of these studies yet to be determined. Recent findings indicate promising results when metformin is combined with

IFNβ-1a for treating multiple sclerosis, as it appears to positively affect the oxidative stress marker MDA.⁶⁹ Additionally, some clinical trials have explored the use of metformin for immunological purposes in non-diabetic patients with arthritis, as referenced in Table 2.

3. Effects of Metformin in Diabetic Patients with COVID-19

Evidence suggests that the combination of metformin, insulin, and corticosteroids may effectively prevent severe COVID-19 in patients with T2D.⁸¹ However, some cohort studies examining the relationship between metformin use and susceptibility to COVID-19 have not found a significant link. In fact, the severity of symptoms in type 2 diabetic patients taking metformin was similar to that in individuals not using the medication.⁸²

Studies involving diabetic patients with COVID-19 have explored the protective role of metformin. These studies highlighted several beneficial effects, including the regulation of the immune system, the reninangiotensin system, and the function of dipeptidyl peptidase 4 (DPP4).⁸³ Metformin was found to activate ACE2, which is the primary receptor for COVID-19, in respiratory epithelial cells via AMPK signaling, thereby reducing viral adhesion.⁸³ Additionally, it decreased the attachment of COVID-19 to DPP4 on T cells and helped modulate the immune response.⁸⁴

Metformin's immunometabolic effects, specifically through glycolysis and mitochondrial oxidation in inflammatory cells, contributed to a diminished severity of the immune response against the virus. Furthermore, it reduced platelet aggregation and the risk of thrombosis. 54,83 Among type 2 diabetic patients with COVID-19 who were treated with metformin, hematological indicators such as C-reactive protein (CRP) showed a significant decrease compared to those not using metformin, highlighting its anti-inflammatory effects in this population. 85

Several studies focusing on T2D and COVID-19 are summarized in Table 3.

M. Ghafari, et al.

Table 2. Clinical trials examining the effects of metformin on arthritis.

Author, year, Ref	Clinical trial	Result
Abdalla et al	Rheumatoid arthritis	The levels of TNF-α, IL-1β, IL-6, IL-17A, NF-κB, TGF-β1, MDA, Anti-CCP and IGF-
$(2021)^{70}$	(RA)	IR expression by metformin decreased compared with that of healthy individuals.
Zhang et al	RA	The serum HMGB1 and cytokine levels declined with the metformin take.
$(2023)^{71}$		
Pan et al (2025) ⁷²	OA with overweight or	The use of metformin for the treatment of symptomatic knee OA is supported in
	obesity.	overweight or obese individuals.
Halabitska et al	OA and impaired glucose	Metformin led to improvements in inflammatory markers and lipid profiles.
$(2025)^{73}$	tolerance (IGT)	However, BMI increased.
Alimoradi et al	OA	Metformin increased miR-451 expression levels simultaneously with pain
$(2025)^{74}$		reduction. Additionally, BCL-2 and CXCL16 decreased.
Karim et al	OA with diabetes	Metformin improves hand-grip strength (HGS), physical performance, and gut
$(2024)^{75}$		permeability in OA patients.
Aiad et al	OA	Metformin reduced serum levels of Cartilage Oligomeric Matrix Protein (COMP),
$(2024)^{76}$		C-terminal cross-linked telopeptide of type I collagen (CTX-1), and IL-1 β .
Dong et al	OA (grade 3)	Metformin inhibited microRNA-34a while promoting SIRT1 expression in OA
$(2023)^{77}$		chondrocytes.
Alimoradi et al	OA	Metformin attenuated symptoms of OA with a high-risk genotype of wild
$(2023)^{78}$		genotype (CC) of Bcl-2, and wild allele (G) of CXCL16.
Guangfeng et al	OA	Metformin may slow the knee cartilage volume loss in OA patients.
$(2022)^{79}$		
Lu et al (2018)80	OA with diabetes	Metformin take decreased the joint replacement candidate of OA patients.

Anti-CCP, anti-cyclic citrullinated peptide; BCL-2, B-cell lymphoma 2; BMI, body mass index; COMP, Cartilage Oligomeric Matrix Protein; CTX-1, C-terminal cross-linked telopeptide of type I collagen; CXCL16, C-X-C motif chemokine ligand 16; HGS, hand-grip strength; HMGB1, high mobility group box 1; IGT, impaired glucose tolerance; IGF-IR, insulin-like growth factor I receptor; IL-1β, interleukin-1 beta; IL-6, interleukin-6; IL-17A, interleukin-17A; MDA, malondialdehyde; miR-451, microRNA-451; NF-κB, nuclear factor kappa B; OA, osteoarthritis; RA, rheumatoid arthritis; SIRT1, sirtuin 1; TGF-β1, transforming growth factor beta 1; TNF-α, tumor necrosis factor alpha.

The Effects of Metformin on Diabetes and the Immune System

Table 3. Studies examining both type 2 diabetes (T2D) and COVID-19.

Author, year,	Method (sample)	Result
Ref		
Almengló et	Epicardial and subcutaneous fat biopsies were	The highest ACE2 levels were found in patients with diabetes
al (2021) ⁸⁶	used for RNA expression analysis by real-time	and obesity. ACE1 and ACE2 levels were not upregulated by
	PCR of ACE1, ACE2, and ADAM17	antidiabetic treatment (metformin).
Ghany et al	A retrospective cohort study conducted on elderly	Metformin (1000 mg/day) decreased the mortality rate of
$(2021)^{87}$	COVID-19 patients	elderly COVID-19 patients.
Hardin et al	A 78-year-old male with T2DM and a mild	An FBS and hemoglobin A1C (HbA1C) were recorded as
$(2022)^{88}$	COVID-19	403 mg/dL and 11% respectively. The link between viral
		symptoms and exacerbation of T2DM was shown.
Heald et al	Cross-sectional study of T1DM or T2DM with	There was a protective effect of metformin in individuals
$(2022)^{89}$	COVID-19 infection.	with T2DM.
Ouchi et al	Cohort study of diabetic patients with COVID-19	Users of insulin, combined with metformin or dipeptidyl
$(2022)^{90}$	who used metformin.	peptidase-4 inhibitor (IDPP4) alone had higher risk.
Vordoni et al	A diabetic patient with acute kidney injury,	Lactic acidosis is a relatively rare complication of metformin
$(2021)^{91}$	metformin-associated lactic acidosis, and COVID-	use.
	19	

ACE1, angiotensin-converting enzyme 1; ACE2, angiotensin-converting enzyme 2; ADAM17, ADAM metallopeptidase domain 17; HbA1C, hemoglobin A1c; IDPP4, dipeptidyl peptidase-4 inhibitor; PCR, polymerase chain reaction; RNA, ribonucleic acid; T1DM, type 1 diabetes mellitus; T2DM, type 2 diabetes mellitus.

CONCLUSIONS

Metformin, once considered the first-line treatment for T2D, is now prescribed with caution due to concerns about its potential cytotoxicity in diabetic patients with kidney complications. Many of the drug's effects—such as regulating energy balance, reducing glucose production in the liver, enhancing insulin sensitivity, and modulating inflammation—are particularly relevant in the context of viral infections like COVID-19, as they are linked to the AMPK pathway. The various effects of metformin connect metabolic balance and immune response, indicating its therapeutic potential extends beyond merely controlling blood glucose levels.

CONFLICT OF INTEREST

The authors declare no conflicts of interest.

ACKNOWLEDGMENTS

Not applicable.

DATA AVAILABILITY

Not applicable.

AI ASSISTANCE DISCLOSURE

Not applicable.

REFERENCES

- Pearson-Stuttard J, Blundell S, Harris T, Cook DG, Critchley J. Diabetes and infection: assessing the association with glycaemic control in population-based studies. lancet Diabetes Endocrinol. 2016;4(2):148-58.
- Poursamimi J. A Review of the Prospective Effects of Methadone on Peripheral. Sci World J. 2025; 2025(1):8483881.
- 3. Geerlings SE HA. Immune dysfunction in patients with diabetes mellitus (DM). FEMS Immunol Med Microbiol. 1999;26(3-4):259-65.
- Duan S, Sun L, Nie G, et al. Association of glomerular complement C4c deposition with the progression of diabetic kidney disease in patients with type 2 diabetes. Front Immunol. 2020;11(2073):1-13. doi:https://doi.org/ 10.3389/fimmu.2020.02073
- Dabirzadeh M, Ghoryani M, Poursamimi J, Fouladi B. Association of Toxoplasmosis with Serum TGF-β, IL-17, and IL-6 Levels in Individuals with Diabetes. Iran J Allergy, Asthma Immunol. 2024;23(6):753-58.
- 6. Huseynova GR, Azizova GI, Efendiyev AM. Quantitative

- changes in serum IL-8, TNF- α and TGF- β 1 levels depending on compensation stage in type 2 diabetic patients. Int J Diabetes Metab. 2009;17(2):59-62.
- Bonaventura P, Benedetti G, Albarède F, Miossec P. Zinc and its role in immunity and inflammation. Autoimmun Rev. 2015;14(4):277-85. doi:10.1016/j.autrev.2014.11.008
- Lecube A, Pachón G, Petriz J, Hernández C, Simó R. Phagocytic activity is impaired in type 2 diabetes mellitus and increases after metabolic improvement. PLoS One. 2011;6(8):e23366. doi:10.1371/journal.pone.0023366
- Zhou T, Xu X, Du M, Zhao T, Wang J. A preclinical overview of metformin for the treatment of type 2 diabetes.
 Biomed Pharmacother. 2018;106:1227-35. doi:10.1016/j.biopha.2018.07.085
- Mueller NT, Differding MK, Zhang M, et al. Metformin Affects Gut Microbiome Composition and Function and Circulating Short- Chain Fatty Acids: A Randomized Trial. Diabetes Care. 2021;44(7):1462-71.
- 11. Soukas AA, Hao H WL. Metformin as anti-aging therapy: is it for everyone? Trends Endocrinol Metab. 2019;30(10):745-55.
- Kheirandish M, Mahboobi H, Yazdanparast M, Kamal W KM. Anti-Cancer Effects of Metformin: Recent Evidences for its Role in Prevention and Treatment of Cancer. Curr Drug Metab. 2018;19(9):793-7.
- Driver C, Bamitale KD, Kazi A, Olla M, Nyane NA OP. Cardioprotective effects of metformin. J Cardiovasc Pharmacol. 2018;72(2):121-7. doi:10.1097/FJC.00000000000000599
- 14. Mohammadi Y RFA. Effect of metformin on the expression of SNARE proteins in the skeletal muscle of rats with type 2 diabetes. J Sci Res Med Sci. 2021;28(3):270-8.
- Song S, Andrikopoulos S, Filippis C, Thorburn AW, Khan D, Proietto J. Mechanism of fat-induced hepatic gluconeogenesis: effect of metformin. Am J Physiol Metab. 2001;281(2):E275-82.
- 16. Kim YD, Park KG, Lee YS, et al. Metformin inhibits hepatic gluconeogenesis through AMP-activated protein kinase-dependent regulation of the orphan nuclear receptor SHP. Diabetes. 2008;57(2):306-14.
- Salani B, Del Rio A, Marini C, Sambuceti G, Cordera R, Maggi D. Metformin, cancer and glucose metabolism. Endocr Relat Cancer. 2014;21(6):R461-71.
- 18. Wang C, Liu F, Yuan Y, et al. Metformin Suppresses Lipid Accumulation in Skeletal Muscle by Promoting Fatty Acid Oxidation. Clin Lab. 2014;60(6):887-96.
- 19. Aatsinki SM, Buler M, Salomäki H, Koulu M, Pavek P,

- Hakkola J. Metformin induces PGC-1 α expression and selectively affects hepatic PGC-1 α functions. Br J Pharmacol. 2014;171(9):2351-63. doi:10.1111/bph.12585
- Iorio R, Celenza G PS. Mitophagy: Molecular Mechanisms, New Concepts on Parkin Activation and the Emerging Role of AMPK/ULK1 Axis. Cells. 2021;11(1):30-55.
- 21. Xiang M, Yuan X, Zhang N, et al. Effects of exercise, metformin, and combination treatments on type 2 diabetic mellitus-induced muscle atrophy in db/db mice: Crosstalk between autophagy and the proteasome. J Physiol Biochem. 2024;80(1):235-47.
- 22. Longo S, Rizza S, Federici M. Microbiota-gut-brain axis: relationships among the vagus nerve, gut microbiota, obesity, and diabetes. Acta Diabetol. 2023;60(8):1007-17. doi:10.1007/s00592-023-02088-x
- 23. Foretz M, Guigas B, Bertrand L, Pollak M, Viollet B. Metformin: From Mechanisms of Action to Therapies. Cell Metab. 2014;20(6):953-66.
- Foretz M, Guigas B, Viollet B. Metformin: update on mechanisms of action and repurposing potential. Nat Rev Endocrinol. 2023;19(8):460-76.
- Zafar-Mohammadi K, Poursamimi J, Atabaki M. NLRP3 inflammasome activation and its inhibitory drugs in connection with COVID-19 infection. Eur J Inflamm. 2022;20:1721727X221130984.
- 26. Yang F, Qin Y, Wang Y, et al. Metformin Inhibits the NLRP3 Inflammasome via AMPK/mTOR-dependent Effects in Diabetic Cardiomyopathy. Int J Biol Sci. 2019;15(5):1010-9.
- 27. Cameron AR, Morrison VL, Levin D, et al. Antiinflammatory effects of metformin irrespective of diabetes status. Circ Res. 2016;119(5):652-65.
- Kalender A, Selvaraj A, Kim SY, et al. Metformin, independent of AMPK, inhibits mTORC1 in a rag GTPasedependent manner. Cell Metab. 2010;11(5):390-401.
- 29. Duan W, Ding Y, Yu X, et al. Metformin mitigates autoimmune insulitis by inhibiting Th1 and Th17 responses while promoting Treg production. Am J Transl Res. 2019;11(4):2393-402.
- 30. Zhao M, Li XW, Chen DZ, et al. Neuro-Protective role of metformin in patients with acute stroke and type 2 diabetes mellitus via ampk/mammalian target of rapamycin (mTOR) signaling pathway and oxidative stress. Med Sci Monit. 2019;25:2186-94. doi:10.12659/MSM.911250
- 31. Xiao N, Wang J, Wang T, Xiong X, Zhou J, Su X. Metformin abrogates pathological TNF-α-producing B cells through mTOR-dependent metabolic reprogramming in polycystic ovary syndrome. Elife. 2022;11(e74713):1-

- 19. doi:10.7554/eLife.74713
- 32. Lee SY, Moon SJ, Kim EK, et al. Metformin suppresses systemic autoimmunity in Roquinsan/san mice through inhibiting B cell differentiation into plasma cells via regulation of AMPK/mTOR/STAT3. J Immunol. 2017;198(7):2661-70.
- 33. Chen X, Ma J, Yao Y, et al. Metformin prevents BAFF activation of Erk1/2 from B-cell proliferation and survival by impeding mTOR-PTEN/Akt signaling pathway. Int Immunopharmacol. 2021;96(107771):1-10.
- 34. Kang KY, Kim YK, Yi H, et al. Metformin downregulates Th17 cells differentiation and attenuates murine autoimmune arthritis. Int Immunopharmacol. 2013;16(1):85-92. doi:10.1016/j.intimp.2013.03.020
- Hyer SL. Metformin is not significantly different from insulin for preventing fetal macrosomia in women with gestational diabetes. BMJ Evidence-Based Med. 2012;17(3):88-9.
- 36. He M, Deng M, Wang J, et al. Efficacy and tolerability of sitagliptin and metformin compared with insulin as an initial therapy for newly diagnosed diabetic patients with severe hyperglycaemia. Exp Ther Med. 2021;21(3). doi:10.3892/etm.2021.9649
- Saha MR, Ara S, Rahman AS, Rahman S, Hossain MI, Badhon NM. Glycemic Control by Combination Therapy of Sitagliptin-Metformin Versus Metformin Alone. KYAMC J. 2020;11(3):50-153. doi:10.3329/kyamcj. v11i3.49874
- 38. He M, Wang J, Deng M, Shi B, Sui J. Sitagliptin compared with glimepiride combined with metformin as an initial therapy in newly diagnosed diabetes patients with severe hyperglycaemia: A randomized controlled non-inferiority study. J Xi'an Jiaotong Univ (Medical Sci. 2021;42(1):86-92. doi:10.7652/jdyxb202101016
- 39. Nguyen N. C., Pham H. T., Pham D. T., et al. Comparison of 3 medicine groups used to control glycemic and glycated hemoglobin levels in newly diagnosed type 2 diabetes patients. Open Access Maced J Med Sci. 2021;9(B):101-106. doi:10.3889/oamjms.2021.4672
- 40. Song XX, Jiang T, Kang K, Wen Z. Efficacy of sitagliptin combined with metformin in the initial treatment of type 2 diabetes with non-alcoholic fatty liver. Chinese J New Drugs. 2014;23(2):215-8.
- 41. Skandalis K, Spirova M, Gaitanis G, Tsartsarakis A, Bassukas ID. Drug-induced bullous pemphigoid in diabetes mellitus patients receiving dipeptidyl peptidase-IV inhibitors plus metformin. J Eur Acad Dermatology Venereol. 2012;26(2):249-53. doi:10.1111/j.1468-3083.2011.04062.x

- 42. Soliman AR, Fathy A, Khashab S, Shaheen N, Soliman MA. Sitagliptin might be a favorable antiobesity drug for new onset diabetes after a renal transplant. Exp Clin Transpl. 2013;11(6):494-498. doi:10.6002/ect.2013.0018
- 43. Memon A, Shaikh KR, Ata MA, Soomro UA, Shaikh S, Siddiqui SS. Comparative study of Sitagliptin versus Metformin as an Initial Monotherapy in newly diagnosed Type 2 Diabetic subjects. Rawal Med J. 2022;47(3):532-5.
- 44. Ke W, Liu J, Li H, Liu L, Wan X, Li, Y. The insulin daily doses changing and the effect of antihyperglycemic agents during continuous insulin infusion. Diabetes. 2014;63(1701):A598.
- 45. Billings LK, Jablonski KA, Warner AS, et al. Variation in Maturity-Onset Diabetes of the Young genes influence response to interventions for diabetes prevention. J Clin Endocrinol Metab. 2017;102(8):2678-89.
- 46. Sam WJ, Roza O, Hon YY, et al. Effects of SLC22A1 Polymorphisms on Metformin-Induced Reductions in Adiposity and Metformin Pharmacokinetics in Obese Children With Insulin Resistance. J Clin Pharmacol. 2017;57(2):219-29.
- 47. Rotroff DM, Yee SW, Zhou K, et al. Genetic Variants in CPA6 and PRPF31 Are Associated With Variation in Response to Metformin in Individuals With Type 2 Diabetes. Diabetes. 2018;67(7):1428-1440.
- 48. Pearson ER, Starkey BJ, Powell RJ, Gribble FM, Clark PM, Hattersley AT. Genetic cause of hyperglycaemia and response to treatment in diabetes. Lancet. 2003;362(9392):1275-81. doi:10.1016/S0140-6736(03) 14571-0
- 49. Pedersen AK, Gormsen LC, Nielsen S, N J, Bjerre M. Metformin Improves the Prerequisites for FGF21 Signaling in Patients With Type 2 Diabetes. J Clin Endocrinol Metab. 2024;109(2):e552-61.
- 50. Konopka AR, Laurin JL, Schoenberg HM, Reid JJ, Castor WM, Wolff CA. Metformin inhibits mitochondrial adaptations to aerobic exercise training in older adults. Aging Cell. 2019;18(1):e12880-92.
- 51. Ciaraldi TP, Kong AP, Chu NV, et al. Regulation of glucose transport and insulin signaling by troglitazone or metformin in adipose tissue of type 2 diabetic subjects. Diabetes. 2002;51(1):30-6.
- 52. Yen FS, Wei JC, Shih YH, Hsu CC, CM. H. Metformin use and the risk of bacterial pneumonia in patients with type 2 diabetes. Sci Rep. 2022;12(1):3270-9.
- 53. Zmijewski JW, Lorne E, Zhao X, et al. Mitochondrial Respiratory Complex I Regulates Neutrophil Activation and Severity of Lung Injury. Am J Respir Crit Care Med. 2008;178(2):168-79.

- 54. Ma Z, Patel N, Vemparala P, Krishnamurthy M. Metformin is associated with favorable outcomes in patients with COVID-19 and type 2 diabetes mellitus. Sci Rep. 2022;12(1):5553-60.
- 55. Clegg LE, Jing Y, Penland RC, et al. Cardiovascular and renal safety of metformin in patients with diabetes and moderate or severe chronic kidney disease: Observations from the EXSCEL and SAVOR-TIMI 53 cardiovascular outcomes trials. Diabetes, Obes Metab. 2021;23(5):1101-10. doi:10.1111/dom.14313
- 56. Hsu WH, Hsiao PJ, Lin PC, Chen SC, Lee MY, Shin SJ. Effect of metformin on kidney function in patients with type 2 diabetes mellitus and moderate chronic kidney disease. Oncotarget. 2018;9(4):5416-5423. doi:10.18632/ oncotarget.23387
- 57. Kwon S, Kim YC, Park JY, et al. The Long-term Effects of Metformin on Patients With Type 2 Diabetic Kidney Disease. Diabetes Care. 2020;43(5):948-55.
- 58. Biradar V, Moran JL, Peake SL, Peter JV. Metforminassociated lactic acidosis (MALA): clinical profile and outcomes in patients admitted to the intensive care unit. Crit Care Resusc. 2010;12(3):191-5.
- 59. Scarpello JH, Hodgson E, Howlett HC. Effect of metformin on bile salt circulation and intestinal motility in type 2 diabetes mellitus. Diabet Med. 1998;15(8): 651-6. doi:10.1002/(SICI)1096-9136(199808) 15:8<651: AID-DIA628 3.0.CO;2-A
- 60. Nabrdalik K, Hendel M, Irlik K, et al. Gastrointestinal adverse events of metformin treatment in patients with type 2 diabetes mellitus: A systematic review, meta-analysis and meta- regression of randomized controlled trial. Front Endocrinol (Lausanne). 2022;13(975912):1-17.
- 61. Kim J, Ahn CW, Fang S, Lee HS, Park JS. Association between metformin dose and vitamin B12 deficiency in patients with type 2 diabetes. Medicine (Baltimore). 2019;98(46):e17918-26.
- 62. Mazokopakis EE, Starakis IK. Recommendations for diagnosis and management of metformin-induced vitamin B12 (Cbl) deficienc. Diabetes Res Clin Pract. 2012;97(3):359-67.
- 63. Mastroianni A, Ciniselli CM, Panella R, Macciotta A, Cavalleri A, Venturelli E. Monitoring vitamin B12 in women treated with metformin for primary prevention of breast cancer and age-related chronic diseases. Nutrients. 2019;11(5):1020-31. doi:10.3390/nu11051020
- 64. Dunne F, Newman C, Alvarez-Iglesias A, Ferguson J, Smyth A, Browne M. Early metformin in gestational diabetes: a randomized clinical trial. JAMA. 2023;330(16):1547-56.

- 65. Tang T, Glanville J, Orsi N, Barth JH, AH. B. The use of metformin for women with PCOS undergoing IVF treatment. Hum Reprod. 2006;21(6):1416-25.
- 66. Jensterle M, Ferjan S, Janez A. The maintenance of long-term weight loss after semaglutide withdrawal in obese women with PCOS treated with metformin: a 2-year observational study. Front Endocrinol (Lausanne). 2024;15(4):1-10. doi:10.3389/fendo.2024.1366940
- 67. Lambova SN. Pleiotropic Effects of Metformin in Osteoarthritis. Life. 2023;13(2):437-49.
- 68. Kim JW, Choe JY, Park SH. Metformin and its therapeutic applications in autoimmune inflammatory rheumatic disease. Korean J Intern Med. 2021;37(1):13-26.
- 69. Abdelgaied MY, Rashad MH, El-Tayebi HM, Solayman MH. The impact of metformin use on the outcomes of relapse-remitting multiple sclerosis patients receiving interferon beta 1a: an exploratory prospective phase II open-label randomized controlled trial. J Neurol. 2024;271(3):1124-32.
- 70. Abdalla MS, Alarfaj SJ, Saif DS, et al. The AMPK modulator metformin as adjunct to methotrexate in patients with rheumatoid arthritis: A proof-of-concept, randomized, double-blind, placebo-controlled trial. Int Immunopharmacol. 2021;95(107575):1-9. doi:https://doi.org/10.1016/j.intimp.2021.107575
- 71. Zhang L, Zhou Y, Jiang S, et al. Effects of metformin therapy on HMGB1 levels in rheumatoid arthritis patients. Eur J Med Res. 2023;28(1):512-20.
- 72. Pan F, Wang Y, Lim YZ, et al. Metformin for Knee Osteoarthritis in Patients With Overweight or ObesityA Randomized Clinical Trial. JAMA. 2025;333(20):1804-1812. doi:10.1001/jama.2025.3471
- 73. Halabitska I, Petakh P, Kamyshnyi O. Metformin as a disease-modifying therapy in osteoarthritis: bridging metabolism and joint health. Front Pharmacol. 2025;16(1567544):1-18. doi:10.3389/fphar.2025.1567544
- 74. Alimoradi N, Ramezani A, Tahami M, Firouzabadi N. Metformin Exhibits Anti-Inflammatory Effects by Regulating microRNA-451/CXCL16 and B Cell Leukemia/Lymphoma 2 in Patients With Osteoarthritis. ACR Open Rheumatol. 2025;7(1):e11755.
- 75. Karim A, Waheed A, F A, Qaisar R. Metformin effects on plasma zonulin levels correlate with enhanced physical performance in osteoarthritis patients with diabetes. Inflammopharmacology. 2024;32(5):3195-203.
- Aiad AA, El-Haggar SM, El-Barbary AM, El-Afify DR. Metformin as adjuvant therapy in obese knee osteoarthritis patients. Inflammopharmacology. 2024;32(4):2349-59.
- 77. Yan S, Dong W, Li Z, et al. Metformin regulates

The Effects of Metformin on Diabetes and the Immune System

- chondrocyte senescence and proliferation through microRNA-34a/SIRT1 pathway in osteoarthritis. J Orthop Surg Res. 2023;18(1):198-208.
- 78. Alimoradi N, Tahami M, Firouzabadi N, Haem E, Ramezani A. Metformin attenuates symptoms of osteoarthritis: role of genetic diversity of Bcl2 and CXCL16 in OA. Arthritis Res Ther. 2023;25(1):35-46. doi:10.1186/s13075-023-03025-7
- 79. Ruan G, Yuan S, Lou A, et al. Can metformin relieve tibiofemoral cartilage volume loss and knee symptoms in overweight knee osteoarthritis patients? Study protocol for a randomized, double-blind, and placebo-controlled trial. BMC Musculoskelet Disord. 2022;23(1). doi:10.1186/s12891-022-05434-2
- 80. Lu CH, Chung CH, Lee CH, et al. Combination COX-2 inhibitor and metformin attenuate rate of joint replacement in osteoarthritis with diabetes: A nationwide, retrospective, matched-cohort study in Taiwan. PLoS One. 2018;13(1):e0191242. doi:10.1371/journal.pone.0191242
- 81. Wang B, Glicksberg BS, Nadkarni GN, Vashishth D. Evaluation and management of COVID- 19- related severity in people with type 2 diabetes. BMJ Open Diabetes Res Care. 2021;9(1):e002299.
- 82. Wang J, Cooper JM, Gokhale K, et al. Association of Metformin with Susceptibility to COVID-19 in People with Type 2 Diabetes. J Clin Endocrinol Metab. 2021;106(5):1255-68.
- 83. Hashemi P, Pezeshki S. Repurposing metformin for covid-19 complications in patients with type 2 diabetes and insulin resistance. Immunopharmacol Immunotoxicol. 2021;43(3):265-70. doi:10.1080/08923973.2021.1925294
- 84. Sebastián-Martín A, Sánchez BG, Mora-Rodríguez JM, Bort A DLI. Role of Dipeptidyl Peptidase-4 (DPP4) on COVID-19 Physiopathology. Biomedicines. 2022;10(8):2026-47. doi:10.3390/biomedicines10082026
- 85. Petakh P, Griga V, Mohammed IB, Loshak K, Poliak I, Kamyshnyiy A. Effects of Metformin, Insulin on Hematological Parameters of COVID-19 Patients with Type 2 Diabetes. Med Arch. 2022;76(5):329-32.
- 86. Couselo-Seijas M, Almengló C, M Agra-Bermejo R, et al. Higher ACE2 expression levels in epicardial cells than subcutaneous stromal cells from patients with cardiovascular disease: Diabetes and obesity as possible

- enhancer. Eur J Clin Invest. 2021;51(5):e13463.
- 87. Ghany R, Palacio A, Dawkins E, et al. Metformin is associated with lower hospitalizations, mortality and severe coronavirus infection among elderly medicare minority patients in 8 states in USA. Diabetes Metab Syndr. 2021;15(2):513-8.
- 88. Hardin EM, Keller DR, Kennedy TP, Martins CH. Unanticipated Worsening of Glycemic Control Following a Mild COVID-19 Infection. Cureus. 2022;14(6):e26295.
- 89. Heald AH, Jenkins DA, Williams R, et al. The Risk Factors Potentially Influencing Hospital Admission in People with Diabetes, Following SARS-CoV-2 Infection: A Population-Level Analysis. Diabetes Ther. 2022;13(5):1007-21.
- 90. Ouchi D, C VC, de Dios V, Giner-Soriano M, Morros R. Antidiabetic treatment and COVID-19 Outcomes: A population-based cohort study in primary health care in Catalonia during the first wave of the pandemic. Prim Care Diabetes. 2022;16(6):753-9.
- 91. Vordoni A, Theofilis P, Vlachopanos G, Koukoulaki M, Kalaitzidis RG. Metformin-associated lactic acidosis and acute kidney injury in the era of COVID-19. Front Biosci (Schol Ed). 2021;13(2):202-7.