ORIGINAL ARTICLE

Iran J Allergy Asthma Immunol
April 2026; 25(2):222-233.
DOI: 10.18502/ijaai.v25i2.20801

Role of METTL3 Protein in Asthma: Insights from Transcriptomic Profiling
and Molecular Docking Analysis

Kaichong Jiang!, Qiao Li%, Ling Duan?, Xieying Zhu?, and Shuang Wu?

! Shaanxi Institute for Pediatric Diseases, The Affiliated Children Hospital of Xi'an Jiaotong University,
Xi’an, Shaanxi, China
2 Clinical Laboratory, The Affiliated Children Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
3 Department of Clinical Laboratory, The Affiliated Hospital of Yunnan University (The Second People's Hospital
of Yunnan Province), Kunming, China

Received: 5 May 2025; Received in revised form: 17 August 2025; Accepted: 4 September 2025

ABSTRACT

Asthma is a chronic inflammatory disease characterized byimmune dysregulation. This study
aimed to perform unbiased analysis of transcriptomic data to identify differentially expressed m6A-
related genes in asthma, with a focus on exploring their potential as biomarkers and therapeutic
targets.

Gene Expression Omnibus (GEO) (GSE134544) dataset was analyzed to identify differentially
expressed moOA-related genes. Functional enrichment analysis was performed clusterProfiler,
immune infiltration profiling was conducted with CIBERSORT, and a competing endogenous RNA
(ceRNA, including mictoRNA [miR] and IncRNA) network was constructed. Drug enrichment
analysis was carried out using DSigDB, and molecular docking was utilized to assess the interaction
between dabigatran and the METTL3 protein.

From 192 differentially expressed genes, four mO6A-related genes (METTL3, HNRNPC,
IGFBP2, and RBMX) were identified as the intersecting genes between the m6A-related gene set
and differentially expressed genes (DEGs) from the GSE134544 dataset. Gene Ontology (GO)
analysis revealed significant enrichment in biological processes related to RNA metabolic processes
and post-transcriptional regulation, while Kyoto Encyclopedia of Genes and Genomes (KEGG)
analysis identified important pathways such as spliceosome and p53 signaling pathways. METTL3
and HNRNPC were central in the ceRINA network, interacting with miRs such as hsa-miR-93-3p
and IncRNAs like LINCO01529. Drug enrichment analysis identified dabigatran as a potential
METTLS3 inhibitor, with molecular docking confirming a stable binding affinity (5.9 kcal/mol).

This study emphasizes the critical role of mG6A-related genes, particularly METTL3 and
HNRNPC, as macromolecules in asthma pathophysiology, and provides insights into their potential
as biomarkers and therapeutic targets for asthma treatment.
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METTL3 Regulates Asthma via m6A

INTRODUCTION

Asthma is a chronic respiratory disease with a
significant global impact, affecting approximately 339
million individuals and contributing to considerable
morbidity and mortality.!? It is characterized by airway
hyperresponsiveness, inflammation, and episodic
symptoms such as wheezing and breathlessness.? The
disease exhibits substantial heterogeneity, and its
development is influenced by complex gene-
interactions, including genetic
predisposition and exposure to allergens, pollutants, and
respiratory infections.*> Despite advancements in the
understanding of its pathophysiology, asthma remains
underdiagnosed and inadequately managed, particularly
in regions with limited access to healthcare.""® This
highlights the necessity for advanced diagnostic and
therapeutic strategies to address diverse phenotypes of
asthma.

N6-methyladenosine (m6A), the most abundant
internal RNA modification in eukaryotes, plays a critical
role in post-transcriptional regulation of gene
expression, including mRNA stability, splicing, and
translation.”® Recent studies have increasingly linked
mo6A modifications to the pathogenesis of inflammatory
diseases, including asthma, by modulating the key
pathways involved in immune responses and airway
89 Transcriptome-wide analyses using
methylated RNA immunoprecipitation sequencing
(MeRIP-seq) have revealed significant alterations in the
mo6A-modified genes in asthma. For example,
differentially m6A-modified genes, including B-cell
CLL/lymphoma 11A (BCL11A4) gene, megakaryocyte-
associated tyrosine kinase (MATK) gene, and CD300a
molecule (CD300A4) gene, have been identified as
potential contributors to asthma susceptibility and
severity.!®!!  Furthermore, m6A-regulating enzymes
such as methyltransferase-like 3 (METTL3) and fat mass
and obesity—associated (F70) have been shown to
influence asthma-related gene expression, highlighting
the mechanistic importance of m6A modifications in
disease progression.!>!* However, despite these
advancements, the specific role of m6A-related genes in
the diverse phenotypes and pathophysiology of asthma
remains underexplored.'%!4

In this study, we systematically investigated m6A-
related genes in asthma using bioinformatic analyses. By
analyzing publicly available transcriptomic datasets, it
aims to identify key m6A-related genes and their roles

environment

inflammation.
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in the molecular mechanisms underlying asthma
pathophysiology. By exploring the expression patterns
and potential functional pathways, this study provides
valuable insights into the biological significance of m6A
modifications in asthma.

MATERIALS AND METHODS

Microarray Data Acquisition and Differentially
Expressed Gene Analysis

The microarray gene expression dataset used in this
study was retrieved from the Gene Expression Omnibus
(GEO) database. A list of 26 m6A-related genes was
acquired from the GeneCards database, as detailed in
Supplementary Table 1. Differentially expressed genes
(DEGs) were identified in the GSE134544 dataset using
the limma R package. DEGs were defined as genes
meeting the criteria of p<0.05 and log fold change
(logFC)>1.0. The overlapping genes between DEGs and
moA-related genes were further analyzed to identify hub
genes.

Functional Enrichment Analysis

Functional enrichment analyses were conducted to
explore the biological significance of the DEGs. Gene
Ontology (GO) analysis was performed across three
categories:  Biological Process (BP), Cellular
Component (CC), and Molecular Function (MF). Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway
analysis was also carried out to map DEGs to biological
pathways. Both analyses were implemented using the
cluster Profiler R package, with significance thresholds
set at adjusted p values<0.05. The results were
visualized using the ggplot2 package, highlighting the
enriched GO terms and KEGG pathways.

Immune Infiltration Analysis

Immune cell infiltration was assessed using the
CIBERSORT algorithm, which estimates the relative
proportions of 22 immune cell types within each sample.
The output was normalized so that the sum of all
immune cell fractions for each sample was equal to 1,
ensuring a comprehensive characterization of immune
cell distribution.

Construction of the ceRNA (IncRNA-miR-mRNA)
Network

The competing endogenous RNA (ceRNA)
(IncRNA-miR-mRNA) network was constructed to
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explore potential regulatory interactions of the four
moA-related genes (METTL3, heterogeneous nuclear
ribonucleoprotein C [HNRNPC], insulin-like growth
factor binding protein 2 [IGFBP2], and RNA-binding
motif protein, X-linked [RBMX]). Candidate miR—
mRNA interactions were obtained from miRTarBase
(experimentally validated), TargetScan, and miRDB,
and only interactions experimentally supported or
consistently predicted by>2 databases were retained
(miRDB score>80; TargetScan context+ score<-0.20).
Putative miR—IncRNA interactions were retrieved from
starBase, miRcode, and DIANA-LncBase, and pairs
supported by>1 CLIP-seq dataset in starBase or present
in>2 databases were considered reliable. Identifiers were
standardized HGNC/miRBase/GENCODE
nomenclature, and duplicates were removed. Given the

to

absence of matched miR/IncRNA expression profiles in
GSE134544, no correlation filtering was applied, and
the resulting ceRNA network represents an evidence-
integrated, hypothesis-generating framework. Network
visualization was performed in Cytoscape.

Statistical Analysis

Drug enrichment analysis was performed using the
clusterProfiler package, and molecular docking was
conducted to evaluate binding affinity. All statistical
analyses were performed using R software (version
4.1.3). Graphs and visualizations were created using
ggplot2 package. Statistical significance was defined as
p<0.05 (two-tailed). The detailed workflow of this study
is shown in Figure 1.
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Figure 1. Workflow of the bioinformatics analysis in this study. Overview of the analytical workflow. The study includes

transcriptomic data analysis, identification of differentially expressed genes (DEGs), functional enrichment analysis, immune

infiltration profiling, and competing endogenous RNA (ceRNA) network construction in asthma.

RESULTS

Differential Expression Analysis (DEGs)

In total, 192 genes were differentially expressed
between the disease and control groups. The volcano
plot shows the expression pattern of differentially
expressed genes (p<0.05) among the samples (Figure
2A). Among the upregulated genes were ribonuclease A
family member 3 (RNASE3) gene, killer cell lectin like
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receptor C1 (KLRCI) gene, granzyme B (GZMB) gene,
complement C3a receptor 1 (C34R1) gene, and defensin
alpha 4 (DEFA4) gene, whereas the downregulated
genes included megakaryocyte associated tyrosine
kinase (MATK) gene, carcinoembryonic antigen related
cell adhesion molecule 8 (CEACAMS) gene, trefoil
factor 3 (TFF3) gene, histone cluster 1 H2A family
member E (HISTIH2AE) gene, and pyruvate
dehydrogenase kinase 4 (PDK4) gene. Expression
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analysis of m6A-related genes identified several genes
with significant differential expression (p<0.05) (Figure
2B). Genes such as METTL3, methyltransferase like 14
(METTL14) gene, and Wilms tumor 1 associated protein
(WTAP) gene were significantly upregulated in asthma
patients compared to controls (p<0.05). Similarly,
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Figure 2. Identification of Differentially Expressed Genes in Asthma. (A) Volcano plot showing the distribution of differentially
expressed genes (DEGs) between asthma and normal samples, with significant upregulated (red) and downregulated (blue)

genes. (B) Boxplot showing the normalized log: expression values of representative m6A-related genes in asthma vs control

groups.
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Integration of DEGs and m6A-Related Genes with
Functional Enrichment Analysis

Venn diagram analysis identified four intersecting
genes between DEGs and m6A-related genes,
highlighting their potential shared roles in asthma
pathophysiology (Figure 3A). Chromosomal mapping of
these intersecting genes indicated their distribution
across multiple chromosomes, with prominent
localization on chromosomes 14, X, and 2 (Figure 3B).

GO analysis revealed that the
intersecting genes were significantly enriched in
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granule.” For molecular functions, the key terms
included “mRNA methyltransferase activity,” “miR
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signaling pathway” and “spliceosome” (Figure 3D).
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Figure 3. Integration of m6A-related genes with DEGs and functional enrichment analysis. A. Venn diagram showing the

overlap between differentially expressed genes (DEGs) and m6A-related genes, identifying 4 overlapping genes. B.

Chromosomal location of the overlapping genes. C. GO enrichment analysis showing significant biological processes, molecular

functions, and cellular components. D. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis

showing key pathways, including spliceosome and p53 signaling. Enriched terms involving a single gene are displayed for

completeness but should be interpreted with caution, as they may represent hypothesis-generating rather than robust multi-

gene associations.

Construction of the ceRNA Network

A ceRNA network was constructed to explore the
regulatory interactions among the m6A-related genes
(METTL3, HNRNPC, IGFBP2, and RBMX), miRs, and
IncRNAs (Figure 4). The network identified HNRNPC
as the most interconnected gene, showing extensive
interactions with miRs such as hsa-miR-744-5p, hsa-
miR-505-5p, and hsa-miR-615-3p, which were further
linked to IncRNAs like RP11-394414.2 and RPII-
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5407.17. The network
interactions,  including =~ METTL3-hsa-miR-93-3p,
METTL3-hsa-miR-126-5p, and METTL3-hsa-miR-
302a-3p, highlighting METTL3 as a central node. These
miRs were further associated with several IncRNAs,
such as RP5-892K4.1 and LINC01529, which act as
ceRNAs by regulating METTL3 through miR binding.
In comparison, /GFBP2 and RBMX exhibited fewer
connections; /IGFBP2 was primarily associated with

identified multiple key
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hsa-miR-335-5p and IncRNAs such as SLC841-4S51,
whereas RBMX was linked to hsa-miR-196a-5p and
IncRNAs like AC011284.3. These results reveal the
central roles of HNRNPC and METTL3 in ceRNA
networks and suggest their involvement in modulating
m6A-associated regulatory pathways in asthma.

Immune Landscape Analysis

The immune infiltration landscape in asthma was
analyzed for the 4 m6A regulatory genes: METTL3,
HNRNPC, IGFBP2, and RBMX (Figure 5). Distinct
correlations were observed between gene expression and
various immune cell types. METTL3 expression was
positively correlated with eosinophils, plasmacytoid
dendritic cells, type 17 T helper cells, and immature B
cells, while it was negatively associated with CD56dim
natural killer cells, T follicular helper cells, and type 1 T
helper HNRNPC strong positive
correlations with type 1 T helper cells, activated CD4 T
cells, activated CDS8 T cells, and T follicular helper cells
but was negatively correlated with plasmacytoid
dendritic cells, eosinophils, macrophages, and natural
killer cells. IGFBP2 was positively associated with
immature dendritic cells and plasmacytoid dendritic

cells. showed

cells, while negatively correlated with activated CD4 T
cells and T follicular helper cells. Similarly, RBMX was
positively correlated with T follicular helper cells,
activated CD4 T cells, activated CD8 T cells, and T
follicular helper cells, while negatively associated with
plasmacytoid dendritic cells and eosinophils.

Drug Enrichment and Molecular Docking Analysis
Drug enrichment analysis was performed using the
DSigDB database to identify potential compounds
targeting key m6A-related genes. A total of 20 drugs
were significantly enriched, with the top candidates
including dabigatran, flutamide, glycocholic acid, and
Spectrum 001666 (Figure 6A). Molecular docking
analysis revealed five potential binding cavities between
dabigatran and METTL3, with binding scores ranging
from —4.5 kcal/mol to —5.9 kcal/mol. The most stable
binding was observed in cavity 1, with a score of —5.9
kcal/mol, involving interactions with residues GLU450,
ARG451, VAL452, ASP453 (chain A), and GLU197,
TYR198, ARG200 (chain B). Additional stable
interactions were identified in cavity 2 (—5.8 kcal/mol)
and cavity 3 (—4.8 kcal/mol), with residues such as
CYS376, ASP395, TRP398, and HIS512 (Figure 6B).
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Figure 4. Construction of the competing endogenous RNA (ceRNA) Network. ceRNA network showing interactions among
messenger RNAs (mRNAs), microRNA (miRs), and long noncoding RNAs (IncRNAs).
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Figure 5. Immune landscape analysis associated with key m6A genes. Immune infiltration profiling based on Cell-type
Identification By Estimating Relative Subsets of RNA Transcripts (CIBERSORT) analysis. Correlation plots demonstrate the
association between immune cell types and the expression levels of methyltransferase-like 3 (METTL3), heterogeneous nuclear
ribonucleoprotein C (HNRNPC), insulin-like growth factor binding protein 2 (/GFBP2), and RNA-binding motif protein, X-
linked (RBMX).
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Figure 6. Drug enrichment and molecular docking of dabigatran with methyltransferase-like 3 (METTL3).

DISCUSSION

In this study, we systematically analyzed the role of
moA-related genes in asthma using bioinformatic
approaches. Four key mo6A-related genes-METTL3,
HNRNPC, IGFBP2, and RBMX-were identified as
significantly differentially expressed in patients with
asthma. Functional enrichment analyses revealed that
these genes are involved in critical biological processes
such as RNA modification, regulation of RNA stability,
and mRNA splicing. Additionally, immune infiltration
analysis highlighted correlations between these genes
and various immune cell populations, suggesting their
role in modulating the immune microenvironment in
asthma. Drug enrichment analysis identified several
compounds potentially targeting these m6A regulators,
with molecular docking revealing strong binding
interactions with METTL3.

The central role of m6A methylation in RNA biology
has been extensively documented, with METTL3
recognized as the primary catalytic subunit responsible
for m6A deposition.!> Our study found that METTL3
was upregulated in asthma, a finding consistent with its
role in stabilizing pro-inflammatory transcripts and
enhancing their translation.!® Structural analyses
revealed that METTL3 works synergistically with
METTLI4 to methylate specific RNA substrates, with
METTLI4 serving as an RNA-binding platform.'”

Vol. 25, No. 2, April 2026

Additionally, METTL3's interaction with translation
initiation factors such as elF3h facilitates mRNA
looping, which is crucial for the efficient translation of
inflammation-related proteins.'® These results suggest
that METTL3 may amplify inflammatory responses in
asthma through enhanced translation of key cytokines
and chemokines. HNRNPC, another gene identified in
our study, acts as an m6A “reader” that recognizes m6A-
modified RNAs, altering RNA-protein interactions
through a structural switch.!® In the context of asthma,
HNRNPC may regulate alternative splicing and the
stability of immune-related transcripts, consistent with
its known roles in other inflammatory diseases."®
Similarly, /GFBP2 has been found to correlate with
dendritic and plasmacytoid cells, supporting its
involvement in immune regulation. RBMX,
traditionally linked to RNA splicing, shows strong
associations with T follicular helper cells and activated
T cells, highlighting its potential role in adaptive
immunity within the asthma microenvironment.?!
METTL3's ability to regulate helper T (Tu) cell
differentiation via m6A methylation of SOX5 provides a
mechanistic insight into how m6A modification can
influence Ty2-associated inflammation. By controlling
SOXS5 expression, METTL3 indirectly impacts Tu2
cytokine production, such as /L-4 and /L-13, thereby
playing a pivotal role in the development of asthma. This
mechanism highlights the importance of METTL3 in the
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fine-tuning of the immune response in T2 asthma.??
Additionally, immune infiltration analysis highlighted
correlations between these genes and various immune
cell populations. Notably, METTL3 expression was
positively correlated with eosinophils and Tul7 cells,
both of which are key drivers of airway inflammation in
asthma. Previous studies have shown that METTL3
promotes Tu2 and Tyl7 differentiation through mo6A-
dependent stabilization of lineage-defining transcription
factors and cytokine transcripts, such as SOX5, IL-174,
and /L-13. Eosinophilic inflammation, a hallmark of
allergic asthma, may thus be exacerbated by METTL3-
mediated regulation of [L-5 and JL-13. These
mechanistic links support the hypothesis that METTL3
not only serves as a general regulator of RNA
metabolism but also plays a direct role in shaping
immune cell composition within the asthmatic
microenvironment. These findings align with recent
studies linking METTL3 to eosinophilic and Tyl7-
driven asthma endotypes, underscoring its role as a
potential  therapeutic  target. Importantly, the
dysregulation of METTL3 and HNRNPC may hold direct
clinical relevance. In pediatric asthma, where immune
system maturation coincides with airway remodeling,
aberrant METTL3 activity could amplify Ty2 cytokine
responses and thereby serve as both a biomarker for
early diagnosis and a candidate therapeutic target.
Similarly, in severe or corticosteroid-resistant asthma,
persistent airway inflammation may be sustained
through ~HNRNPC-mediated  splicing of  pro-
inflammatory cytokine transcripts, highlighting its
potential role in identifying high-risk phenotypes and
guiding novel treatment strategies. Together, these
observations suggest that integrating m6A regulators
such as METTL3 and HNRNPC into clinical
stratification frameworks may improve risk prediction,
enable precision medicine, and facilitate the
development of epigenetic therapies tailored to severe
and pediatric asthma.

The enrichment of GO terms such as “RNA
modification” and “cytoplasmic stress granule”
underscores the role of these genes in cellular responses
to inflammation and stress. Such processes are critical in
asthma, in which airway epithelial cells experience
repeated oxidative and inflammatory insults.
Additionally, the cellular component enrichment in
“spliceosomal complex” and “nuclear membrane” aligns
with findings on HNRNPC, which facilitates alternative
splicing through its m6A reader functions.!® Functional
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pathway enrichment highlighted the involvement of
mo6A-related genes in key signaling cascades, such as the
p53 pathway, which regulates apoptosis and immune
responses.”!* Previous studies have shown that m6A
modifications are crucial for balancing cellular stress
responses, with SUMOylation of METTL3 further
modulating its activity.'? Additionally, drug enrichment
and molecular docking analyses identified several
compounds that target METTL3, suggesting its potential
as a therapeutic target.?3 Recent preclinical studies have
demonstrated the feasibility of pharmacologically
inhibiting METTL3: STM2457, a selective small-
molecule inhibitor, significantly suppressed tumor
growth and extended survival in acute myeloid leukemia
models.?* Although no METTL3-targeting agents have
yet entered clinical evaluation for airway diseases,
functional studies in relevant models highlight
METTL3’s potential therapeutic relevance in asthma:
myeloid-specific knockout of METTL3 exacerbates
Tu2-driven allergic airway inflammation,® while
METTL3 deficiency reduces airway smooth muscle
proliferation and airway remodeling in asthma models.?
These observations together support METTL3 as a
promising target but underscore the need for further
translational research to assess its druggability in human
airway discase.

The ceRNA network analysis revealed that mo6A-
related genes (METTL3, HNRNPC, IGFBP2, and
RBMX) interact with specific miRs and IncRNAs to
regulate immune responses and inflammation in asthma.
Among these, miR-126, which regulates Tu2 cell
differentiation and allergic airway inflammation, targets
METTL3. METTL3 likely stabilizes inflammatory
transcripts through m6A methylation, thereby increasing
Tu2 response. The IncRNA NEATI, acting as a sponge
for miR-126, may further enhance METTL3’s role in
airway remodeling.?” Similarly, miR-21 promotes Ty2
polarization and inhibits apoptosis-related gene
expression. It interacts with HNRNPC, an m6A reader
that regulates RNA splicing and stability.?® This
interaction likely affects the splicing of cytokine
transcripts such as /L-4 and IL-13, which are crucial in
asthma. Additionally, the IncRNA MALATI, by
sponging miR-21, indirectly enhances HNRNPC’s role
in regulating immune cell activation.?’ Furthermore,
miR-335-5p, implicated in cell maturation and antigen
presentation, is associated with /GFBP2, a gene that
stabilizes inflammatory mediators critical for immune
cell infiltration.’® The IncRNA SLC841-A4S1 functions
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as a sponge for miR-335-5p, indirectly regulating
IGFBP2 expression and contributing to immune
dysregulation in asthma.’! Meanwhile, miR-196a-5p,
known to maintain the Tyl/Tu2 balance, interacts with
RBMX, emphasizing its role in regulating the alternative
splicing of immune-related transcripts essential for
immune homeostasis.’> This regulatory network is
further modulated by the IncRNA RP11-394414.2,
acting as a ceRNA for miR-196a-5p and indirectly
influencing RBMX function and the splicing of pro-
inflammatory genes.’> Regulatory axes such as miR-
126-NEATI-METTL3 and miR-21-MALATI-HNRNPC
highlight potential therapeutic targets for modulating
m6A-dependent pathways, while miRs like miR-335-5p
and miR-196a-5p offer insights into asthma
heterogeneity and immune dysregulation.® While our
study primarily focused on METTL3 due to its central
role in m6A-mediated regulation and asthma
pathogenesis, we acknowledge that other m6A
regulators, such as F7O and ALKBHS5, were also
differentially expressed in the asthma samples.
However, these genes were not explored further in this
study due to several reasons. First, METTL3 has been
extensively documented as a key player in the
inflammatory response and RNA regulation in asthma,
making it the focus of our investigation. Additionally,
while FTO and ALKBHS are important m6A regulators,
their roles in asthma are still not fully defined, and the
data available did not provide sufficient evidence to
establish a direct link to the disease process.

Based on the results of this study, m6A-related
genes, including METTL3, HNRNPC, IGFBP2, and
RBMX, have emerged as promising biomarkers and
therapeutic targets for asthma treatment. These genes are
intricately involved in post-transcriptional regulation,
including RNA stability, splicing, and immune response
modulation, which are critical for the pathophysiology
of asthma. The integration of ceRNA network analysis,
immune infiltration profiling, and drug enrichment
studies highlights their multifaceted roles and provides
novel insights into the m6A-driven mechanisms in
airway inflammation. These findings offer potential
pathways for developing precise diagnostic tools and
targeted therapies for asthma, particularly through the
modulation of m6A-related signaling pathways.

This study was based on whole-blood transcriptomic
data from asthma patients, without specification of
inflammatory endotypes (eosinophilic, neutrophilic, or
mixed-type). Accordingly, the results should be
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interpreted with caution, as the regulatory effects of
METTL3 may differ among asthma phenotypes. Further
studies using datasets with rigorous endotype
classification are warranted to confirm and expand upon
our observations. In addition, the dataset analyzed did
not provide demographic information such as age, sex,
or detailed clinical subtype, precluding subgroup
analyses. Given that m6A expression and asthma
phenotypes may vary by demographic factors, this
represents an important limitation. Future studies,
including prospective institutional cohorts currently
being planned in our center, will allow validation of
these findings in well-characterized patient populations
and facilitate exploration of age- and sex-specific
effects. The reliance on a single dataset limits the
generalizability of our conclusions, and functional
validation experiments (such as qRT-PCR, Western
blot, and gene knockdown/overexpression) are planned
for future studies to confirm the role of these genes in
asthma. Another limitation of this study is the reliance
on a single GEO dataset (GSE134544). Future studies
will incorporate additional datasets for further validation
to strengthen the findings. In this study, docking analysis
was limited to binding affinities and identification of
interacting residues between dabigatran and METTL3.
Additional structural parameters, such as RMSD values,
hydrogen bonding interactions, and comparative
docking with known inhibitors, were not included
and represent a limitation. Future work will incorporate
these metrics to provide a more comprehensive
evaluation of binding stability and specificity. Despite
these constraints, this study lays a robust foundation
for future investigations. The integration of mo6A
pathway modulation with therapeutic strategies offers a
promising avenue for advancing asthma management,
paving the way for translational applications in this
field.

This study emphasizes the critical role of m6A-
related genes, particularly METTL3 and HNRNPC, as
biological macromolecules in asthma pathophysiology,
and provides insights into their potential as biomarkers
and therapeutic targets for asthma treatment.
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