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ABSTRACT 

 

Heat shock protein 70.1 (Hsp70.1), also known as Hsp70, is a highly conserved member 

of the heat shock protein family that exists in all living organisms and determines the protein 

fate as molecular chaperones. 

Hsp70 basal expression is undetectable or low in most unstressed normal cells, however, 

its abundant presence in several types of human cancer cells is reported. Several studies 

support upregulated Hsp70 involved in tumor progression and drug resistance through 

modulation of cell death pathways and suppresses anticancer immune responses. However, 

numerous studies have confirmed that Hsp70 can also induce anticancer immune responses 

through the activation of immune cells in particular antigen-presenting cells (APCs). 

Regarding the significant and the promising role of vaccines in cancer immunotherapy, 

identification and characterization of the overexpressed Hsp70 as a potential immune 

stimulatory factor can pave the path for development of highly effective anticancer vaccines. 

In this review, we will discuss the interactions of Hsp70 with components of the immune 

system in cancers as well as possible strategies to harness Hsp70 for eliciting anticancer 

immune responses. 
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INTRODUCTION 

 

All living organisms are exposed frequently to 
different environmental stresses such as chemicals and 
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physical variations which threaten their survival. Heat  
shock proteins (HSPs), also called "molecular 
chaperones", play crucial roles in countering the effects 

of stresses through facilitating the peptide folding, 
translocation to subcellular organelle, and proteolysis 
activation of misfolded proteins. It is well known that 
HSPs not only are induced in thermal shock but also 
are expressed in different physical and chemical 
stressors such as ultraviolet radiation, hypoxia, 

oxidative stress, and heavy metals.1 Based on 
molecular weight, HSPs are classified into several 
families, including Hsp110, Hsp90, Hsp70, Hsp60, and 
small HSPs. There are thirteen members of the human 
Hsp70 family with different properties such as 
subcellular localization, tissue expression, and 

regulation of gene expression. In this family, the 
Hsp70.1, called Hsp70 in this review, is one of the 
most important members which has diverse and 
sometimes opposing functions. The expression pattern 
of Hsp70 depends on age, tissue, and different 
physiological and pathological conditions. While our 

knowledge of the Hsp70 function is limited to its 
chaperone activity, the effects of its function in various 
conditions, such as pregnancy2 and particularly in 
cancers,3 have led it to conclude that it has more 
complex roles than only a chaperone function. 
Surprisingly, many in vitro and in vivo studies 

demonstrated that upregulated cytoplasmic Hsp70 in 
cancer cells suppresses apoptotic pathways,4 
autophagy, and lysosomal cell death (LCD)5-7 leading 
to tumor progression and establishment of 
chemo/radio-resistance.8 Furthermore, the plasma 
membrane and cancer cell-secreted isoforms of Hsp70 

can involve in immunosuppression leading to tumor 
progression. However, other pieces of evidence showed 
another side of the coin: Hsp70 can provoke anticancer 
immune responses. Given the contradictory roles of 
Hsp70 in interaction with the immune system, there are 
two different approaches for cancer immunotherapy, 

including targeting Hsp70 by monoclonal antibodies 
and/or CAR-T cells or its exacerbated presence by 
Hsp70-based vaccines. Which of these methods could 
provide a promising approach in cancer 
immunotherapy? In this review, we will discuss the 
interaction of various isoforms of Hsp70 within the 

cells and its interaction with components of the 
immune system as well as possible strategies to harness 
of Hsp70 for eliciting anticancer immune responses.  

 

MATERIALS AND METHODS 

 

We searched PubMed, Elsevier, UniProtKB, IEDB 

database, Human Protein Atlas knowledgebase, 
ExPASy web server,  and Clinicaltrials.gov for articles 
that were published from 2000 to 2019 as well as 
bibliographies of articles to include additional relevant 
studies; using the following combinations of MeSH 
terms with a manual search: Hsp70, tumor biomarker, 

metastasis, angiogenesis, cancer immunotherapy, and 
clinical trials. Citations from all databases were 
imported into a single database (Endnote library, 
version X8, Thomson Reuters, USA) and duplicate 
articles were removed. Full texts of articles were 
carefully read, and data were extracted for data 

extraction in Microsoft Word and Excel sheets (version 
2016, Microsoft Corporation, USA) and to display 
them by Visual Molecular Dynamics software (VMD 
version 1.9.1, the University of Illinois at Urbana-
Champaign). 

 

Genetic and Structural Biochemistry of Hsp70  

Three intron-less HSP70 genes, including HSPA1A, 
HSPA1B, and HSPA1L, are mapped between the 
human lymphotoxin β (LTB) and complement system 
genes embedded in the major histocompatibility 
complex class III (MHC III) region on the human 

chromosome (6p21.310,9 Figure 1-A. Although the 
genes of HSPA1A and HSPA1B represent similar 
sequences (only differ in 8 bp) with different 
mechanisms in the regulation of expression. The 
HSPA1A and HSPA1B genes, are usually considered 
as Hsp70-1, and encode a similar protein with 99% 

identity but have a completely divergent 3' untranslated 
regions (3'-UTR). The Hsp70-1L shares 90% homology 
to HspA1A and HspA1B but is not inducible by heat 
shock.10,11 

The human Hsp70 contains 641 amino acids with 
70,052 Da in molecular weight and is consisted of two 

major conserved functional domains12 including (I) A 
nucleotide-binding domain (NBD) or ATP-binding 
domain (ABD) at N-terminal which binds and 
hydrolyzes ATP. (II) A substrate-binding domain 
(SBD) at C-terminal (Figure 1-B). This domain forms a 
pocket to interact with extended polypeptides as a 

substrate or client protein. Besides, a~10 kDa 
subdomain of SBD acts as a flexible "lid" over the 
substrate-binding pocket. The NBD and SBD are 
connected by a highly conserved leucine-rich motif 
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(LRR) also termed as a flexible linker. 
 

Expression Pattern of Hsp70 in Various Conditions  

Under normal conditions, Hsp70 is expressed and 
accumulated during the mid-G1 and early S phase of 
the cell cycle in a cell type and cell cycle manner.14,15 
In silico analysis of expressed sequence tag (EST) data 
suggest that Hsp70s have a different expression pattern 
at 44 normal human tissues.16. HspA1A and HspA1B 

have high expression in the spleen and the esophagus, 
respectively. The expression profiles for Hsp70 
(HspA1A and HspA1B) in major organs and tissues in 
the human body have prepared by The Human Protein 
Atlas (HPA) knowledgebase (www.proteinatlas.org/); 
using the integration of different omics technologies 

including transcriptomics and proteomics.17 The 
expression levels of both HspA1A and HspA1B are 
measured by EST analysis and HPA are not similar and 
may be contradictory. Nevertheless, the results of both 
methods show that these two proteins do not have 
identical expression patterns in various normal tissues 

(Table 1). These data reveal that HspA1A and HspA1B 
differ only in two amino acid residues, they could be 
expressed and become active in tissue-specific 

manners. Furthermore, the EST analysis indicated that 
Hsp70 is preferentially expressed at specific stage 
development16 so that both HspA1A and HspA1B are 

expressed at their highest levels in juvenile tissues 
(Figure 2), therefore these two members of Hsp70s 
play an important role in mammalian development. 
This interpretation is greatly supported by the outcomes 
of male mammalian models18-20 as well as interesting 
findings obtained from various conditions of 

nondisease and disease (Table 2).  
 

Hsp70 in Cancer 

A great number of studies indicate that Hsp70 is 
expressed at undetectable or low levels in most 
unstressed normal cells while it is overexpressed in 

different types of cancers.4 Although a few studies have 
determined that single nucleotide polymorphisms 
(SNPs) of the HspA1A gene be associated with several 
cancers, no mutation or amplifications have been 
found. Based on these findings, the expression of 
Hsp70 in many tumors should be regulated at 

transcriptional and translational levels. Elevated level 
of Hsp70 associated with overexpressed Heat shock 
factor 1 (HSF1) as the major transcription 

 

 
Figure 1. The human Hsp70. (A) three HSP70 gene loci including HSPA1A, HSPA1B, and HSPA1L are all located on the 

chromosome 6p21.31 within the major histocompatibility class III (MHC III) region. (B) The NBD (residues 1 to 383) and 

SBD (residue 397 to 507) are functional domains of Hsp70 that coupled together by a flexible linker (residues 384 to 396). (C) 

The Hsp70 provides ten specialized B-cell epitopes with more than 10 amino acid residues in both NBD and SBD (the 

epitopes at NBD shown in blue in and the epitopes at SBD shown in red). These epitopes predict by the IEDB database 

(http://www.iedb.org).13 The secondary structures of Hsp70 (UniProtKB identifier: P0DMV8) visualized using VMD 1.9.1 

bioinformatics software.13 
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Table 1. Expression pattern of Hsp70 (HSPA1A and HSPA1B) in various human normal tissues 

Organ Tissue/Cell type HSPA1A HSPA1B 

HPA EST HPA EST 
B
r
a
in
 

Cerebral cortex L 805 for Brain M 235 for Brain 

Hippocampus L M 

Caudate L H 

Cerebellum L L 

E
n
d
o
c
r
in
e 

ti
ss
u
e
s 

Pituitary gland No data 167 No data 0 

Thyroid gland H 776 M 271 

Parathyroid gland M 0 L 0 

Adrenal gland M 1805 M 411 

B
o
n
e
 m
a
r
r
o
w
  

a
n
d
 i
m
m
u
n
e
 s
y
st
e
m
 

Appendix M No data L No data 

Bone marrow L 61 ND 81 

Lymph node L 10 L 10 

Lymph No data 0 No data 0 

Thymus  No data 1982 No data 399 

Tonsil M 115 M 0 

Spleen M 7292 ND 1416 

M
u
sc
le
 

Heart muscle L 1692 H 347 

Skeletal muscle M 262 for muscle M 52for muscle 

Smooth muscle  M M 

L
u
n
g
 

Lung M 1467 L 153 

Nasopharynx M No data H No data 

Trachea No data 2595 No data 797 

Bronchus H No data H No data 

L
iv
e
 a
n
d
 

g
a
ll
b
la
d
d
e
r
 

Liver M 397 M 62 

Gallbladder H No data M No data 
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Organ Tissue/Cell type HSPA1A HSPA1B 

HPA EST HPA EST 
P
a
n
cr
e
a
s 

Islets of Langerhans L 480 for Pancreas L 155 for Pancreas 

Exocrine glandular 
cells 

M ND 

G
a
st
r
o
in
te
st
in
a
l 
tr
a
c
t 

Salivary gland M 0 M 0 

Oral mucosa M No data M No data 

Esophagus H 2732 H 1839 

Stomach M 641 M 145 

Duodenum M 3914 for small 
intestine 

L 380 for small intestine 

Small intestine M L 

Colon- Endothelial 
and Glandular cells 

M 320 for Colon L 103 for Colon 

Colon- Peripheral 
nerve/ganglion 

L L 

Rectum M No data L No data 

K
id
n
e
y
 a
n
d
 

U
ri
n
a
r
y
 b
la
d
d
er
 Cells in glomeruli L 931 for 

Kidney 
M 214 for 

Kidney 
Cells in tubules M ND 

Urinary bladder H 782 H 1108 

M
a
le
 o
r
g
a
n
s 

Testis M 197 M 44 

Prostate H 1410 H 237 

Epididymis H No data H No data 

Seminal vesicle H No data H No data 
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Organ Tissue/Cell type HSPA1A HSPA1B 

HPA EST HPA EST 

F
e
m
a
le
 o
rg
a
n
s 

Fallopian tube M No data M No data 

Breast- Adipocytes M 647 for 

mammary 

gland 

ND 104 for 

mammary gland Breast- Glandular cells H L 

Breast- Myoepithelial 
cells 

M ND 

Vagina H No data M  

Cervix, uterine- 
Squamous epithelial cells 

H 123 for Cervix 

721 for Uterus 

H 103 for Cervix 

266 for Uterus 
Cervix, uterine- 
Glandular cells 

M H 

Endometrium M M 

Ovary M 74 M 83 

Placenta M 169 L 13 

Umbilical cord 
No data 0 No data 0 

A
d
ip
o
se
 a
n
d
 

so
ft
 t
is
su
e
 

Chondrocytes H 2885 for Adipose No data 591 for Adipose 

Fibroblasts M ND 

Peripheral nerve M ND 

Adipocytes 
M  ND 

S
k
in
 

Fibroblasts M 358 for Skin ND 42 for Skin 

Keratinocytes M H 

Langerhans M H 

Melanocytes M H 

EST: results extracted from expressed sequence tag analysis.16 HPA: results extracted from the Human Protein Atlas knowledge base 

(www.proteinatlas.org/). L: Low, M: Medium, H: High. 

 

 

Table 2. Circulating level of Hsp70 in various conditions22-25 

Conditions Hsp70 level Example 

Normal Increases Different types of exercise, excessive use of cell phones 

 Decreases Human pregnancy and Aging process 

Disease Increases Diabetes mellitus, Carotid intima-media thickness, Pulmonary diseases, Active chronic 

glomerulonephritis, Sepsis, Inflammation, and Cancers 

Decreases Helicobacter pylori infection, Fatty liver diseases, Hepatic steatosis, Arteriosclerosis, Atrial 

fibrillation following coronary artery bypass surgery and Obstructive sleep apnea 
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Figure 2. Expression of HspA1A and HspA1B in a lifetime. The peak of both Hsp70 levels is in the juvenile stage. The results 

extracted from expressed sequence tag analysis.16 Synchronically, when age advances immune responses also will be decline.21 

 

factor for heat shock proteins, in many cancers can 

prove this interpretation.26 Subsequently, increased 
level of Hsp70 has emerged as a candidate biomarker 
for poor prognosis as its expression level was found to 
significantly correlate with clinical staging and overall 
survival rate in various types of human malignancies 
including breast, lung, prostate, liver, esophagus colon 

and cervix cancers.2-6 The upregulation of Hsp70 can 
guarantee cancer cell survival via its chaperone 
function. It has been shown that under stress condition 
(i.e. cancer), Hsp70 levels not only increase in the 
cytoplasm but also it appears at the plasma membrane 
and it is even secreted into the extracellular milieu. 

Since 1995, several studies showed that a large variety 
of human cancer cells such as pancreatic carcinomas, 
glioblastoma, breast, ovarian, head and neck, 
colorectal, non-small cell lung cancer (NSCLC), 
prostate, and acute lymphoblastic leukemia are Hsp70 
plasma membrane positive, however, normal cells are 

negative for Hsp70.8,27-29 A little later, it was proved 
that the density of the membrane Hsp70 can be 
enhanced on tumor cells by various drugs30-32 and 
standard cancer therapeutic methods.3,33,34 Interestingly, 
it was also found that the circulating tumor cells 
(CTCs) that are responsible for metastasis35 also 

represent Hsp70 in their plasma membranes.36 
Surprisingly, Hsp70 releases into the extracellular 
milieu of tumor cells.37,38 Indeed, it lacks a consensual 
signal peptide thus it cannot be export via the classical 
endoplasmic reticulum-Golgi protein transport 
mechanisms.39 The exact mechanism of Hsp70 release 

from cancer cells is not clear, six possible mechanisms 
are suggested including; (I) fusion of endolysosomes 

with the plasma membrane,39 (II) secretion from dying 

cells,40 (III) by secretory-like granules,41 (IV) specific 
interaction with membrane phospholipids,42 (V) refuge 
in tumor-derived exosomes (TDEs) that leave the cells 
through the plasma membrane blebbing,43,44 and (VI) 
formation of pores and stable multi-conductance ion 
channels.45,46 Regardless of the possible mechanism, 

both membrane and extracellular Hsp70s become 
available for the components of the immune system as 
three different forms including free soluble, complexed 
with tumor antigenic peptides and TDEs. Not 
surprisingly, B-cell specialized epitopes in Hsp70 can 
be predicted by the IEDB database 

(http://www.iedb.org)47 (Figure 1) which can involve in 
the immune responses that will be discussed in the 
following section. 

 

Hsp70 and Immune System 

As previously mentioned, it is estimated that after 

birth both HspA1A and HspA1B levels gradually 
increase after birth and reach the maximum level in 
juvenility and then decrease with age. Interestingly, 
there is a similar pattern for the immune system: from 
childhood, the immune system starts to mature but as 
age advances, the function of both the innate and 

adaptive immune systems decline,21,48 (Figure 2). 
Moreover, the dendritic cells (DCs) are a shred of 
evidence that can demonstrate the alignment between 
Hsp70 and the immune system. Firstly, many 
compelling pieces of evidence have shown that both 
free Hsp70 and Hsp70- tumor antigenic peptide 

complex can bind to their receptors on the DCs such as 
CD14 and Toll-like receptor 2 and 4 (TLR2/4), leading 
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to the maturation and activation of these cells.49-53 
Then, the activated and matured DCs interact with 
CD8+ cytotoxic T lymphocyte (CTL) to initiate an 

adaptive immune response.54,55 Therefore, it is 
concluded that Hsp70 may also play a The upregulation 
role in the activation of the immune system in normal 
conditions. Secondly, a recent study found that the 
expression of antigen presentation genes in DCs is 
reduced in healthy aged compared to young 

individuals.56 Although the interaction between Hsp70 
and immune system components is not completely 
understood under normal conditions, it has been widely 
studied in cancer settings.  

 

Part I: Hsp70, A Partner to Immune System  

Hsp70 is found to activate natural killer (NK) cells 
in cancer. In the presence of IL-2 as a pro-
inflammatory cytokine, the membrane Hsp70 on tumor 
cells can activate CD57+/CD94+ NK cells.57,58 leading 
to the secretion of granzyme B. Moreover, membrane 
Hsp70 enhances uptake of granzyme B by cancer cells 

in a perforin-independent fashion. This function of 
Hsp70 is due to a 14-mer sequence at its SBD, also 
known as TKD peptide (Residues: 450 to 463: 
TKDNNLLGRFELSG, Figure 1) which is appeared to 
the extracellular side of tumor cells.59,60 In addition, the 
Hsp70 positive TDEs can also activate NK cells.61  

Another well-known mechanism for immune-
stimulatory effects of Hsp70 is through activation of 
the antigen-presenting cells (APCs), precisely DCs. 
lines of evidence support extracellular Hsp70 role a 
danger signal for APCs and induce their functional 
maturation. It has been shown that Hsp70 interacts with 

CD14 and TLR2/4 on APCs resulting in the release of 
nitric oxide (NO) as well as proinflammatory cytokines 
such as TNF-α, IFN-γ, and IL-1β.45,62,63 Moreover, 
extracellular Hsp70 induces the release of high 
mobility group protein B 1 (HMGB1) that is a 
proinflammatory cytokine and decisively implicated in 

cancer.64 Lastly, it was determined that the free 
extracellular Hsp70 can also act as a damage-associated 
molecular pattern (DAMP) and induces 
proinflammatory cytokines in the human lung cancer 
cells through RAGE signaling.65 

Some studies also have shown a cross-talk between 

NK and DCs. Based on a scenario, there is a dialog 
between NK cells and DCs for the production of IFN-γ 
by NK cells. In the first curtain, Hsp70 induces the 
expression of MHC class I chain-related gene A 

(MICA) on DCs. In the last curtain, the interaction 
between MICA with its receptor (NKG2D) on NK cells 
leads to the production of IFN-γ by NK cells.66  

In another show, a 20-mer sequence at the SBD  
of Hsp70 (residues: 407 to 426: GGVM 
TALIKRNSTIPTKQTQ) induces upregulation of MHC 
class II and costimulatory molecules such as CD40 and 
CD86, leading to the maturation and cytokine 
production of DCs49,50 which in return interact with 

CTL to initiate an anticancer adaptive immune 
response.  

Interestingly, there are various receptors for the 
extracellular Hsp70- tumor antigenic peptide complex 
on the APCs and even on endothelial/epithelial cells 
such as TLR2/4, CD40, FEEL-1 and LOX-1.51-53 

Occupation of these surface receptors by the Hsp70- 
tumor antigenic peptide complex leads to a receptor-
mediated endocytosis and antigen cross-presentation 
onto MHC class I molecule67,68 which in turn can induce  
anticancer CTL responses.69,70 Therefore, Hsp70 
mediates the coupling of innate to adaptive immunity 

by activation of DCs.  

 

Part II: Hsp70, a Traitor to Immune System   

"Treason is greatest where trust is greatest". John 

Dryden (1631- 1700) 

Despite the well-understood effects of Hsp70 in the 

induction of cell-mediated immune responses against 
cancer, a limited number of studies show that Hsp70 
can also induce tolerance in some types of human 
malignancies. Generally, cancer-produced Hsp70 
isoforms act through autocrine signaling on the tumor 
cells and through paracrine signaling on immune and 

endothelial/epithelial cells which can result in tumor 
progression and induction of cancer tolerance. The 
results from both human and mice models 
demonstrated that refuged Hsp70 inside and membrane 
of TDEs contributes to the immunosuppressive activity 
of myeloid-derived suppressor cells (MDSCs).71 In 

addition, an in vitro model also indicated that enhanced 
immunosuppressive activity of Treg by the free 
extracellular Hsp70 leads to increasing in TGF-β and 
IL-10 as suppressor cytokines but decreasing in TNF-α 
and IFN-γ as proinflammatory cytokines.72 
Furthermore, several studies are recently confirmed 

that Hsp70 is involved in angiogenesis and metastasis 
procedures.73-75 However, an in vitro study on various 
human cancer cell lines is showed that Hsp70 plays a 
contradictory role in metastasis in which silencing of 
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Hsp70 gene expression enhances the migration ability 
of the cells.76  

 

Hsp70 in Cancer Immunotherapy 

As Hsp70 has a dual role in cancer immunity, it has 
been used in both activation and suppression of 
immunotherapy. The stimulation and suppression 
strategies based on Hsp70 are illustrated in Figure 3. In 
the stimulating strategy, tumor-derived or exogenous 

Hsp70 is used as a vaccine to evoke anticancer immune 
responses. Based on a wide range of studies, Hsp70 
vaccine vehicles can be prepared from different 
approaches (Table 3). Up to now, all developed Hsp70-
based anti-cancer vaccines were found to effectively 
induce anticancer immune responses and suppress 

tumor growth in different animal cancer models. 
However, none of the developed Hsp70-based 
anticancer vaccines have been approved for clinical 
practices. Among the reported Hsp70 vaccines, only 
two vaccines have been found to be promising in 
cancer: (i) Hsp70PC with Imatinib in patients with 

chronic; myeloid leukemia (in the phase I clinical trial) 
and in patients with high-risk breast cancer (at the 
phase II clinical trial)77 and (ii) stimulated autologous 
NK cells by TKD peptide in patients with metastasized 

non-small cell lung cancer (at the phase II clinical).78  
In suppression strategies, the membrane/extracellular 
Hsp70 can be a target for anticancer drugs to inhibit the 

immune suppressive function of Hsp70. Targeting of 
tumor markers such as Hsp70 by monoclonal 
antibodies or their fragments has been suggested to be 
an effective approach to cancer targeted therapies. For 
this, the cmHsp70.1 antibody was established by 
immunization of BALB/c mice through TKD peptide. 

This mouse antibody has a high affinity for membrane 
Hsp70 expressed in various tumor cells. It also is 
revealed that cmHsp70.1 is able to induce antibody-
dependent cellular cytotoxicity (ADCC) of the 
membrane Hsp70 positive tumor cells in mice.79 
Additionally, imaging of the membrane Hsp70 positive 

CT26 mouse tumor cells by the cmHsp70.1-conjugated 
gold nanoparticles showed that this antibody can be 
used as a promising diagnostic and therapeutic tool.80 
Furthermore, it is revealed that the cmHsp70.1 can be 
used for the isolation and quantification of CTCs from 
peripheral blood of different tumor patients.36 Recently, 

a novel anti-Hsp70 truncated single-chain fragment 
variable (scFv) has been isolated by Phage display 
technology (PDT),81 known as G6A scFv. Although in 
silico analysis, surface plasmon resonance (SPR) and  

 

 
 

Figure 3. Hsp70 in cancer immunotherapy. The Hsp70 isoforms released from tumor cells have a dual function: On the one 

side, Hsp70 suppresses anticancer immune responses. On another side, Hsp70 stimulates anticancer immune responses. 

Based on the Hsp70 function, therapeutic approaches can be categorized as stimulation and suppression strategy, 

respectively. Both strategies are two sides of the one coin: in stimulation strategy, Hsp70-based vaccines stimulate the 

immune system but in suppression strategy, Hsp70 targeted by certain compounds to enhance immune system activities.  
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Table 3. Hsp70 based anticancer vaccines 

Vaccine Model of study Immune response Reference 

Induction of Hsp70 on cancer cell surfaces 

and releasing into the extracellular milieu 

by physical and chemical stimuli 

in vitro Enhanced NK cell activity (1) 

in vitro Activation of Mast cells (2) 

in vitro DCs activation and maturation and T cell activation (3) 

Secretory Hsp70 from engineered tumor 

cells 

in vitro and in vivo CTL response (4) 

Tumor-derived Hsp70 (Hsp70PC)- 

Imatinib mesylate complex 

Clinical Activation of NK cell and T cells (5) 

Hsp70.PC-F obtained from the fusion of 

DC and tumor cells 

in vivo Increased CD8+ and memory T cells (6) 

SC injection of Hsp70-melanoma peptide 

complex with IV delivery of the plasmid 

pPD-1A encoding sPD-1 

in vivo Increased tumor-infiltrating lymphocytes (7) 

 

Hsp70- HPV16 E7 fusion protein in vivo Enhanced CTL response (8) 

Repeated IV delivery of autologous Hsp70 

isolated from murine Dalton’s lymphoma 

and sarcoma (S-180) 

in vivo Enhanced CTL response (9) 

Hsp70- AFP fusion protein in vivo Increased CD8+ T cell responses (10) 

IT delivery of pure soluble rhHsp70 in vivo Enhanced CTL response and production of IFN-γ (11) 

Local injection of pure recombinant 

human Hsp70 (rhHsp70) by ALZET 

osmotic pump 

in vivo Increase both innate and adaptive immune responses (12) 

Hsp70- anti-mesothelin scFv fusion 

protein 

in vivo DC maturation and CTL response (13) 

The IV infusion of ex vivo stimulated 

autologous NK cells by TKD peptide 

Clinical Enhanced NK cell activity and T cell activation (14) 

Human DKK1 and human Hsp70 fusion 

DNA 

in vivo Increased CD4+ and CD8+ T cells, and decreased Treg 

cells in the spleen 

(15) 

IV: Intravenous, SC: Subcutaneous, IT: Intratumoral, scFv: single-chain antibody variable fragment, AFP: alpha-fetoprotein. 

 

 

cell staining indicated that purified G6A scFv has good 

quality for binding,82 more studies should be conducted 
to address its diagnostic and therapeutic functions at in 

vivo models. Noteworthy, a scFv has several 
advantages resulted from its minimized size in 
comparison to the full antibodies such as better 
penetration into the tumor, high blood clearance and 

also reduced immunogenicity.83 Moreover, an anti-
tumor marker scFv can be used to design chimeric 
antigen receptor T cells, also known as CAR T-cells, 
that are a promising cancer therapeutic approach.84 
Accordingly, it is claimed that an anti-Hsp70 specific 
CAR T-cell designed particularly for the treatment of 

particular leukemia.85 Of note, there are also many 
chemical derivatives that inhibit Hsp70. Nevertheless, 

none of these Hsp70 inhibitory molecules have found 

their way to the clinic due to non-specificity and low 
bioavailability.86 

 

CONCLUSION 

 

It has been known for more than a decade that 

Hsp70 not only plays a key role in the development of 
human organs, but also it has important functions in 
various human diseases such as cancer. Nowadays, 
Hsp70 is suggested to be a potential biomarker of some 
disorders especially cancer.99 However, the role of 
Hsp70 in cancers is dual and mysterious. On one hand, 

Hsp70 can protect tumor cells via suppression of 
apoptosis and induction of cancer tolerance, leading to 
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tumor progression and invasion. On the other hand, 
Hsp70 especially the membrane-bound and 
extracellular one can induce apoptosis and provoke 

potent antitumor immune responses thereby suppress 
tumor growth. This contradiction in the role of Hsp70 
in cancer has led to the development of Hsp70-based 
cancer targeted therapy with two different approaches, 
including blocking Hsp70 by monoclonal antibodies 
and the use of Hsp70 protein as an immune potentiator 

in Hsp70-based vaccines. While neither one of these 
approaches has been translated to a clinical approach 
yet, they are believed to be promising therapeutic 
strategies for cancer targeted therapy. 

Although the dual function of Hsp70 has not been 
addressed to date, the answer may lie in the amino acid 

residues in domains of Hsp70 or its context-dependent 
mode of function. In detailed, proteins hold structural 
domains that allow their interactions with specific 
sequences on other proteins, protein-protein interaction 
(PPI).100 These interactions play key roles in cancer 
signaling.101 However, the exact structure of the Hsp70 

has been determined by methods such as 
crystallography, but the role of its domains and 
subdomains in the PPI network are still unclear. In a 
simple interpretation, the paradox in functions of the 
Hsp70 may be due to the difference in the interactions 
of Hsp70 with the other proteins in different contexts, 

which may have different and sometimes conflicting 
results. For example, a piece of evidence showed that 
the metastatic ability of various human cancer cells 
enhanced by downregulation of Hsp70.76 Thus, the 
context-dependent PPIs of Hsp70 as a putative 
therapeutic target for the development of novel 

therapeutic approaches must be determined in different 
type of cancers, otherwise it is not possible to predict 
exactly how Hsp70 acts. 

On the other hand, an important reason behind the 
poor therapeutic efficacy of Hsp-70 based vaccines can 
be tumor immunosuppressive microenvironment which 

is believed to suppress the anticancer immune 
responses elicited by cancer vaccines.102 For example, 
the results from the studies on A431 squamous 
carcinoma cells and hepatocarcinoma cells are found 
that the extracellular Hsp70 promotes tumor 
progression through interaction with TLR2/4.103,104 

whereas it had previously been shown that Hsp70 can 
lead to activation and maturation of DCs via binding to 
TLR2/4.49-53 Therefore, manipulation of tumor milieu 
has been suggested as an important strategy for 

enhancing the therapeutic efficacy of anticancer 
vaccines.105 Of note, the effectiveness of 
immunotherapy is highly dependent on the cancer type, 

grade, and other criteria.106 Therefore, to develop an 
effective Hsp70 immunotherapy strategy, the PPIs of 
Hsp70 and contexts of different cancers must be 
considered. In other words, stimulation and suppression 
strategies might warily elect to depend on the type of 
cancer which also means personal medicine. 
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