Serum Levels of Th2-Type Immunoglobulins are Increased in Weanling Mice Subjected to Acute Wasting Protein-Energy Malnutrition

Tirang R. Neyestani¹, William D. Woodward², and Lyn Hillyer²

¹Laboratory of Nutrition Research, National Institute of Nutrition Research and Food Technology, Shaheed-Beheshti University of Medical Sciences, Tehran, Iran
²Department of Human Biology and Nutritional Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada

ABSTRACT

The bulk of our knowledge on immunosuppression in malnutrition comes from the experiments done on cell-mediated immunity. However, malnutrition-induced modifications of humoral immunity have been less understood. The objective of this study was to determine the effects of acute protein-energy malnutrition on serum levels of immunoglobulins and their subclasses in murine models. Male and female C57BL/6J mice were allocated to one of the four groups: (1) zero-time control (ZC) (19 days of age); (2) ad libitum intake of a complete purified diet (control group [CG]); (3) restricted intake of the complete diet (restricted group [RG]); and ad libitum intake of an isocaloric low-protein diet (low-protein group [LP]). The three groups other than the zero-time control were maintained on their respective regimens for 14 days, i.e. from 19 through 33 days of age. The restricted intake protocol produced weight loss through energy deficiency (marasmic-type malnutrition), whereas the low-protein diet caused wasting through inadequate protein nitrogen and induced a condition mimicking incipient kwashiorkor. Though serum levels of IgG1 and IgE (Th2-type immunoglobulins) in RG and LP mice were significantly higher than those in CG mice, serum levels of IgG2a and IgG3 (Th1-type immunoglobulins) did not show any significant difference between those three groups. Interestingly, serum levels of IgG2b (another Th2-type immunoglobulin) in LP mice were significantly higher than those in CG and RG mice. In ZC mice serum levels of total IgG, IgG1, IgG2b and IgG3 were significantly higher than those in the other three groups. We concluded that during acute malnutrition, Th1/Th2 balance is apparently shifted towards Th2 arm. This deviation seems to be more prominent during acute protein deficiency. The increased serum levels of immunoglobulins in ZC mice were probably due to the intestinal uptake of those proteins from maternal milk.

Keywords: Mice, Protein-energy malnutrition, Serum immunoglobulins

INTRODUCTION

Immunocompetence and nutritional status are two of the most important determinants of mortality and morbidity. They are not independent indices and the
nature of their relation is central to many health problems. This fact is widely appreciated, but the knowledge of the nature of the relation is incomplete and possibly misunderstood, with consequences for international health, particularly for developing but also for developed countries. The bulk of evidence on immuno-suppression in protein-energy malnutrition (PEM) comes from works done on cellular immunity. It has been said that blood immunoglobulin levels are normal and even elevated in PEM but much of the blood antibody is a polyreactive type not characteristic of the mature, high-specificity antibody response. Malnutrition mostly reduces T cell numbers than B cells and hence causes an elevation in T/B ratio. A depression in a thymus-dependent antibody response in an experimental animal model has been reported. Cytokine changes in malnutrition have recently been the focus of concern. The production of such inflammatory cytokines as interleukin (IL)-1, tumor necrosis factor (TNF)-α and IL-6 is depressed in PEM. Some human studies have reported Th-2 type cytokine activation during energy restriction in autoimmune diseases, in which Th-1 cytokines are over-produced. The effect of cytokine changes on B cells and immunoglobulin subclasses and isotypes is not fully known. The aim of this study was to elucidate the effects of severe protein-energy malnutrition on immunoglobulin isotypes and subclasses in murine models.

MATERIALS AND METHODS

Briefly, male and female weanling C57BL/6J mice were randomly allocated to one of the four experimental groups, i.e. energy-restricted, protein-restricted ad libitum, and ad libitum control. The fourth group of mice were killed and analyzed just after weaning to get the baseline data (zero-control). After 2 weeks experimental period, all mice were bled and killed under CO2 anesthesia. Serum immunoglobulins were determined using double-sandwich enzyme-linked immunosorbent assay and carcasses were analyzed using chemical methods.

Animals, Feeding Protocols and Blood Sampling

Mice from in-house breeding colonies (Department of Nutritional Sciences, University of Guelph) of C57BL/6J were used. The stock from which these colonies were derived was purchased several years earlier from the Jackson Laboratory (Bar Harbor, ME). The mice were weaned at 18 days of age, acclimated for 1 day to a complete purified diet and, subsequently, allocated to experimental groups. Following acclimation the mice were allocated to one of the four groups: (1) zero-time control (ZC) (19 days of age); (2) ad libitum intake of a complete purified diet (control group (CG)); (3) restricted intake of the complete diet (restricted group [RG]) so that daily weight loss of about 2% of initial body weight was produced; and (4) ad libitum intake of an isocaloric low-protein diet (low-protein group [LP]). The three groups other than the zero-time control were maintained on their respective regimens for 14 days, i.e. from 19 through 33 days of age. Mice were housed individually in plastic cages with stainless steel tops. The animal facility was a windowless room maintained at 25-27°C and at a relative humidity of 60-70%. The room was supplied with fluorescent light daily between 0800 and 2200 h. All animals had unimpeded access to clean tap water at all times. At the end of the experimental period, retro-orbital plexus blood was sampled under CO2 anesthesia and then mice were killed by cervical dislocation. Blood samples were incubated for 30-45 min and then centrifuged at 3500 g at room temperature. Sera were separated and transferred into fresh tubes. Because of low quantity of each single sample recovered, every 2-4 samples in a same group were pooled and considered as one sample. Serum samples and carcasses were kept at – 80°C until the day of examination. The experiments and procedures were approved by the Animal Care Committee of the University of Guelph, and were performed in accordance with the recommendations of the Canadian Council on Animal Care as specified in the Guide to the Care and Use of Experimental Animals.

Diets

The complete purified diet has been described in detail elsewhere. Briefly, it was formulated with spray-dried egg white (80% crude protein; U.S. Biochemical, Cleveland, OH), cornstarch (St. Lawrence Starch, Port Credit, ON, Canada), glucose (cerelose 2001; CPC International, Englewood Cliffs, NJ), cellulose (celufil non-nutritive bulk; U.S. Biochemical), corn oil (Mazola, no additives or preservatives; Best Foods Canada, Etobicoke, ON, Canada) and a vitamin-mineral supplement that provided, most notably, 4 mg biotin/kg diet. A typical proximate analysis for this diet is 92.3% dry matter, 18.8% crude protein, 8.1% ether extract, 2.6% ash, 3.1% crude fiber and 17.0 kJ/g gross energy. The low protein diet was formulated by replacement of all but 5 g of the egg white with an equal weight of cornstarch. By this means, a similar proximate analysis to that of complete diet is maintained with the exception of crude protein, which measures 0.6%. The low protein diet used in the present investigation produces edema when fed to weanling mice for a period exceeding 3 wk. Coprophagy was permitted both in the present investigation and in the aforementioned studies pertaining to the development of edema.
Immunoglobulin Assays

Reagent

Purified normal mouse IgG, IgG1, IgG2a, IgG2b and IgG3 and rabbit anti-mouse IgG IgG1, IgG2a, IgG2b or IgG3 (gamma chain specific) and goat anti-mouse Fab-specific IgG conjugated with horseradish peroxidase (HRP) were obtained from Sigma-Aldrich. Purified normal mouse IgE, anti-mouse IgE capture monoclonal antibody, biotinylated rat anti-mouse IgE and avidin-HRP were all purchased from PharMingen. The substrates O-phenylenediamine (OPD) and tetramethylbenzidine (TMB) were obtained from Sigma-Aldrich and PharMingen, respectively.

Procedures

The serum immunoglobulin levels were determined using enzyme-linked immunosorbent assay (ELISA). Briefly, 96-well micro-plates were coated with properly diluted rabbit anti-mouse IgG, IgG1, IgG2a, IgG2b, IgG3 gamma chain specific IgG or anti-mouse IgE capture monoclonal antibody in a 100 µL volume for 1 hour at 37°C. After washing with phosphate-buffered saline with Tween-20 (PBST), the wells were blocked with 1% solution of bovine serum albumin (BSA) in PBS for 30 min at room temperature. Wells were washed with PBST again and then 100 µL of the pre-diluted serum samples, mouse IgG, IgG1, IgG2a, IgG2b, IgG3 or IgE standards were transferred to the appropriate wells. After one hour incubation at room temperature and washing with PBST, 100 µL of the properly diluted goat anti-mouse Fab-specific IgG/HRP or biotynilated rat anti-mouse IgE and then avidin-HRP were added to the wells. For IgG and its subclasses, OPD and for IgE, TMB was used as a substrate. The plates were read at 490 nm (IgG and its subclasses) or at 450 nm and then corrected at 570 nm (IgE). The serum levels of each immunoglobulin were determined using standard curves.

Carcass Analyses

Dry matter content of carcasses was determined by freeze-drying followed by oven-drying under vacuum for 16 h at 90°C. Crude protein and total lipid concentrations were measured, using samples of dried carcasses, as described elsewhere.

Statistical Analyses

Results were subjected to two-tailed Student’s t test or to ANOVA followed, if justified, by Tukey’s Studentized range test or Duncan’s New Multiple Range test. Several data sets were subjected to logarithmic transformation to meet the requirement that a normal distribution be achieved. The predetermined upper limit of probability for significance throughout this investigation was p<0.05. All statistical analyses were done using Windows 2000/SPSS 10 package.

RESULTS

Growth Indices

Weight loss within the malnourished group averaged 27% of initial body weight, whereas the well-nourished control animals gained an average of 140% of their initial weight during the 14-day experimental period. Carcass compositional analysis was conducted only on pooled samples thereby precluding statistical analysis of the data (Table 1). The results were similar

<table>
<thead>
<tr>
<th></th>
<th>Zero-Time Control (n=6)</th>
<th>Age-Matched Control (n=8)</th>
<th>Low-Protein (n=8)</th>
<th>Energy-Restricted (n=7)</th>
<th>Pooled SEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>IBW (g/mouse)1</td>
<td>8.4</td>
<td>8.6</td>
<td>8.7</td>
<td>8.8</td>
<td>0.013</td>
</tr>
<tr>
<td>FBW (g/mouse)</td>
<td>—</td>
<td>19.2a</td>
<td>6.8b</td>
<td>6.6a</td>
<td>0.414</td>
</tr>
<tr>
<td>FI (g/mouse/14d)1</td>
<td>—</td>
<td>65.9a</td>
<td>21.7b</td>
<td>12.6c</td>
<td>0.019</td>
</tr>
</tbody>
</table>

Carcass composition:

- dry matter (% wet wt)1: 31.7a, 30.5b, 27.8b, 27.1b, 0.029
- protein (% wet wt)2: 16.8b, 15.8b, 16.0b, 18.2a, 12.510
- lipid (% wet wt): 9.6a, 10.5b, 4.3b, 1.8c, 0.575

1Means are antilogs of ln-transformed means.
2Means are square roots of square-transformed means.
All statistical comparisons by Duncan’s New Multiple Range test. Numbers in a row not sharing a common superscript are significantly different.
Abbreviatives: FBW: Final Body Weight; FI: Food Intake; IBW: Initial Body Weight; SEM: Standard Error of Mean.
Serum immunoglobulins in malnutrition

Vol. 3, No. 1, March 2004
IRANIAN JOURNAL OF ALLERGY, ASTHMA AND IMMUNOLOGY

Table 2. Serum immunoglobulin levels in the mice studied.

<table>
<thead>
<tr>
<th>Immunoglobulin</th>
<th>p value</th>
<th>Zero-Time Control (n=6)</th>
<th>Age-Matched Control (n=8)</th>
<th>Low-Protein (n=8)</th>
<th>Energy-Restricted (n=7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total IgG (µg/mL)</td>
<td><0.0001</td>
<td>569.3 ± 45.6a</td>
<td>217.9 ± 31.3c</td>
<td>394.8 ± 42.8b</td>
<td>289.4 ± 23.0bc</td>
</tr>
<tr>
<td>IgG1 (µg/mL)</td>
<td><0.0001</td>
<td>115.8 ± 10.5a</td>
<td>46.6 ± 6.8b</td>
<td>82.0 ± 10.1c</td>
<td>89.4 ± 7.3c</td>
</tr>
<tr>
<td>IgG2a (µg/mL)</td>
<td>0.1919</td>
<td>1.7 ± 0.07</td>
<td>1.6 ± 0.1</td>
<td>2.0 ± 0.2</td>
<td>1.6 ± 0.1</td>
</tr>
<tr>
<td>IgG2b (µg/mL)</td>
<td><0.0001</td>
<td>290.5 ± 24.3a</td>
<td>120.8 ± 17.1b</td>
<td>216.0 ± 25.4c</td>
<td>131.0 ± 18.3b</td>
</tr>
<tr>
<td>IgG3 (µg/mL)</td>
<td><0.0001</td>
<td>49.8 ± 12.4a</td>
<td>14.6 ± 2.5b</td>
<td>14.1 ± 0.7b</td>
<td>9.8 ± 1.0b</td>
</tr>
<tr>
<td>IgE (ng/mL)</td>
<td><0.0001</td>
<td>3.9 ± 1.7a</td>
<td>6.7 ± 1.0a</td>
<td>28.8 ± 2.5b</td>
<td>29.1 ± 3.6b</td>
</tr>
</tbody>
</table>

Numbers in a row not sharing a common superscript are significantly different.

Quantification of serum immunoglobulin levels

Though serum levels of total IgG were higher in two known metabolically-depressed animal models compared to the control group, only the difference between LP group and control group was significant (Table 2). This finding is in contrast with some reports of diminished serum immunoglobulin levels in protein-energy restriction, notably kwashiorkor, which might be corrected by appropriate nutritional care. In one animal study, energy restriction caused a significant decrease in the serum concentration of total IgG as well as of IgA, C3, and the number of circulating natural killer (NK) cells. On the other hand, there are some reports of the normal and even increased serum levels of IgG in energy-protein restriction.

DISCUSSION

It has been shown that calorie restriction might suppress Th1 and Th2 cytokines- induced immunoglobulin production in young and old C57BL/6 cultured submandibular glands. Generally speaking, reductions in energy availability can impair humoral immunity. However, the humoral immunity may respond to malnutrition in various ways depending on the type of malnutrition induced (such as acute vs. chronic, protein malnutrition vs. energy restriction). As table 2 and figure 1 show, serum levels of Th2-type immunoglobulins (IgG1, IgG2b and IgE) are significantly increased in severely malnourished animals compared to the control group and this increment for IgE is in the order of magnitude. As for IgG2b, though the LP and RG mice showed higher serum levels than CG, the difference was just for LP significant. In this study, we used the ratio of the sum of the Th2- to Th1-type immunoglobulins (IgG1+IgG2b/
In treatment. With Th1 predominance, dietary manipulation may help therefore probable that in some autoimmune disorders as rheumatoid arthritis. It is ease alleviation through energy restriction in such autoimmune disorders, such as systemic lupus erythematosus (SLE), hence the immune response in the experimental condition. Depression of thymus-dependent immunity in wasting protein-energy malnutrition does not depend on an altered ratio of helper (CD4+) to suppressor (CD8+) T cells or on a disproportionately large atrophy of the T cell relative to the B cell pool. Am J Clin Nutr 1991; 53(5):1329-35.

The increased ratio of Th2-/Th1-type immunoglobulins, if it reflects an overall shift of Th1/Th2 balance towards Th2, may have some important implications. In animal studies on immunobiology, response to vaccination, immunity to antigens and so on, the weight gain of animals must be highly taken into consideration as some treatments may affect energy intake and the immune response in the experimental group(s). On the other hand, in some auto-immune disorders, such as systemic lupus erythematosus (SLE), there is some evidence of imbalance towards Th1 predominance (28-30) and there are some reports of disease alleviation through energy restriction in such autoimmune disorders as rheumatoid arthritis. It is therefore probable that in some autoimmune disorders with Th1 predominance, dietary manipulation may help in treatment.

To the best of our knowledge, this is the first report of the effects of acute protein-energy restriction on the serum concentrations of total IgG subclasses. We concluded that during acute uncomplicated malnutrition, Th1/Th2 balance is apparently shifted towards Th2 arm. This deviation seems to be more prominent during acute protein deficiency. This finding may have some important experimental as well as clinical implications.

ACKNOWLEDGEMENT

This work was supported by funds awarded to WDW by the Natural Sciences and Engineering Research Council of Canada.

REFERENCES

