Iranian Journal of Allergy, Asthma and Immunology 2017. 16(2):147-158.

The Effect of Lactobacillus actobacillus Peptidoglycan on Bovine β-lactoglobulin-sensitized Mice via TLR2/NF-κB Pathway
Ai-Li Li, Yi-qiao Sun, Peng Du, Xiang-Chen Meng, Ling Guo, Shuang Li, Chao Zhang


Our previous study reported that Lactobacillus acidophilus(L.acidophilus)  key laboratory of dairy science  (KLDS) 1.0738 had an effective impact on inhibiting β-lactoglobulin (β-lg) allergy. This study further investigated the anti-allergic activity of peptidoglycan (PGN) isolated from KLDS 1.0738. This study aimed to assess whether toll-like receptor 2 (TLR2)/NF-kappaB (NF-κB) signaling activated by PGN was responsible for reducing allergic inflammation. We first examined the role of PGN on cytokine production and TLR2 signaling expression of macrophages. Then the immunoregulatory capacity of PGN was further evaluated by adopting the β-lg-sensitized mice model. The levels of sera IgE, regulatory T cells (Treg) and T-helper (Th)17-related cytokine were detected by ELISA. TLR2 signaling mRNA and protein expression in colon tissues were measured by quantitative RT-PCR and western blot, respectively. Our data showed that administration of  L. acidophilus PGN inhibited IgE production and improved the Treg/Th17 balance toward a Treg response in a mouse model of β-lg allergy. In addition, treating different doses L. acidophilus PGN to sensitized mice significantly increased TLR2 levels, along with enhancing NF-κB expression, especially in medium and high concentration (p<0.05). Further analysis revealed that the mRNA expression of TLR2 and NF-κB were positively correlated with the Foxp3 mRNA expression (p<0.05), but were negatively correlated with the RORγt mRNA expression in L. acidophilus PGN-treated group compared to allergy group (p<0.05). This study suggests PGN was similar to probiotics in preventing β-lg allergy through regulating Treg/Th17 imbalance, and activation of TLR2/NF-κB signaling may be involved in this process.


β-lactoglobulin allergy; Peptidoglycan; Regulatory; TLR2/NF-κB signaling; Th17 cells; T-lymphocytes

Full Text:



1.   Caffarelli C, Baldi F, Bendandi B, Calzone L, Marani M, Pasquinelli P. Cow's milk protein allergy in children: a practical guide. Ital J Pediatr 2010; 36:5.

2.   Rodriguez B,  Prioult  G, Hacini-Rachinel  F,  Moine  D, Bruttin A, Ngom-Bru C, Labellie C, Nicolis I, Berger B, Mercenier A, Butel MJ, Waligora-Dupriet AJ. Infant gut microbiota  is  protective  against  cow's  milk  allergy  in mice despite immature ileal T-cell response. FEMS Microbiol Ecol 2012; 79(1):192-202.

3.   Berni  Canani  R,  Nocerino  R,  Terrin  G,  Coruzzo  A, Cosenza L, Leone L, et al. Effect of Lactobacillus GG on tolerance acquisition in infants with cow's milk allergy: a randomized   trial.   J   Allergy   Clin   Immunol   2012;129(2):580-2.

4.   Pellaton  C,  Nutten  S,  Thierry  AC,  Boudousquié  C, Barbier N, Blanchard C, et al. Intragastric and intranasal administration of Lactobacillus paracasei NCC2461 modulates allergic airway inflammation in mice. Int J Inflam 2012; 2012:686739.

5.   Oliveira-Nascimento L, Massari P, Wetzler LM. The role of TLR2 in infection and immunity. Front Immunol 2012;3:79.

6.   Zhong Y, Huang J, Tang W, Chen B, Cai W. Effects of probiotics, probiotic DNA and the CpG oligodeoxynucleotides on ovalbumin-sensitized Brown- Norway rats via TLR9/NF-κB pathway. FEMS Immunol Med Microbiol 2012; 66(1):71-82.

7.   Sengupta R, Altermann E, Anderson RC, McNabb WC, Moughan   PJ,   Roy   NC.   The   role   of   cell   surface architecture of lactobacilli in host-microbe interactions in the   gastrointestinal   tract.   Mediators   Inflamm   2013;2013:237921.

8.   Wu L, Feng BS, He SH, Zheng PY, Croitoru K, Yang PC.Bacterial peptidoglycan breaks down intestinal tolerance via mast cell activation: the role of TLR2 and NOD2. Immunol Cell Biol 2009; 85(7):538-45.

9.   Sun  J,  Shi  YH,  Le  GW,  Ma  XY.  Distinct  immune response induced by peptidoglycan derived from Lactobacillus    sp.    World    J    Gastroenterol    2005;11(40):6330-7.

10. Shida  K,  Kiyoshima-Shibata  J,  Kaji  R,  Nagaoka  M, Nanno M. Peptidoglycan from lactobacilli inhibits interleukin-12 production by macrophages induced by Lactobacillus  casei  through  Toll-like  receptor  2- dependent  and  independent  mechanisms.  Immunology 2009; 128(1 Suppl):e858-69.

11. Kawashima  T,  Hayashi  K,  Kosaka  A,  Kawashima  M, Igarashi  T,  Tsutsui  H,  et  al.  Lactobacillus  plantarum strain YU from fermented foods activates Th1 and protective   immune   responses.   Int   Immunopharmacol 2011; 11(12):2017-24.

12. Zhao Y, Yang J, Gao YD, Guo W. Th17 immunity in patients with allergic asthma. Int Arch Allergy Imm 2010; 151(4):297-307.

13. Palomares O, Yaman G, Azkur AK, Akkoc T, Akdis M, Akdis CA. Role of Treg in immune regulation of allergic diseases. Eur J Immunol 2010; 40(5):1232-40.

14. Loures FV, Pina A, Felonato M, Calich VL. TLR2 is a negative regulator of Th17 cells and tissue pathology in a pulmonary model of fungal infection. J Immunol 2009;183(2):1279-90.

15. Nichols JR, Aldrich AL, Mariani MM, Vidlak D, Esen N, Kielian T. TLR2 deficiency leads to increased Th17 infiltrates  in  experimental  brain  abscesses.  J  Immunol 2009; 182(11):7119-30.

16. Filippi CM, Ehrhardt K, Estes EA, Larsson P, Oldham JE,    von    Herrath    MG.    TLR2 signaling    improves immunoregulation to prevent type 1 diabetes. Eur J Immunol 2011; 41(5):1399-409.

17. Lesiak A, Smolewski P, Sobolewska-Sztychny D, Sysa- Jedrzejowska A, Narbutt J. The role of T-regulatory cells and Toll-like receptors 2 and 4 in atopic dermatitis. Scand J Immunol 2012; 76(4):405-10.

18. Li AL, Meng XC, Duan CC, Huo GC, Zheng QL, Li D. Suppressive effects of oral administration of heat-killed Lactobacillus acidophilus on Th17 immune responses in a bovine  β-lg-sensitized  mice  model.  Biol  Pharm  Bull 2013; 36(2):202-7.

19. Li AL, Meng XC, Huo GC,Duan CC, Huo GC, Zheng QL,  Li  D.  The  Treg/Th17  imbalance  in  bovine  β-lg- sensitized mice. Int Dairy J 2014; 34:257-262.

20. Iwabuchi N, Takahashi N, Xiao JZ, Miyaji K, Iwatsuki K.In   vitro   Th1   cytokine-independent   Th2   suppressive effects   of   bifidobacteria.   Microbiol   Immunol   2007;51(7):649-60.

21. Sekine K, Toida T, Saito M, Kuboyama M, Kawashima T, Hashimoto Y. A new morphologically characterized cell wall preparation (whole peptidoglycan) from Bifidobacterium infantis  with  a  higher  efficacy on  the regression of an established tumor in mice. Cancer Res 1985; 45(3):1300-7.

22. Shida  K,  Kiyoshima-Shibata  J,  Kaji  R,  Nagaoka  M, Nanno M. Peptidoglycan from lactobacilli inhibits interleukin-12 production by macrophages induced by Lactobacilluscasei through Toll-like receptor 2-dependent and independent mechanisms. Immunology 2009; 128(1 Suppl):e858-69.

23. Rosenthal RS, Dziarski R. Isolation of peptidoglycan and soluble   peptidoglycan   fragments.   Methods   Enzymol 1994; 235:253-85.

24. Tian PJ, Li BL, Shan YJ, Zhang JN, Chen JY, Yu M, et al. Extraction of peptidoglycan from L. paracasei subp. Paracasei   X12   and   its   preliminary   mechanisms   of inducing immunogenic cell death in HT-29 cells. Int J Mol Sci 2015; 16(8):20033-49.

25. Shida K, Kiyoshima-Shibata J, Nagaoka M, Watanabe K, Nanno M. Induction of interleukin-12 by Lactobacillus strains having a rigid cell wall resistant to intracellular digestion. J Dairy Sci 2006; 89(9):3306-17.

26. Macho Fernandez E, Valenti V, Rockel C, Hermann C, Pot B, Boneca IG, et al. Anti-inflammatory capacity of selected lactobacilli in experimental colitis is driven by NOD2-mediated recognition of a specific peptidoglycan- derived muropeptide. Gut 2011; 60(8):1050-9.

27. Duan C, Huo G, Yang L, Ren D, Chen J. Comparison of sensitization between     beta-     lactoglobulin     and     its hydrolysates.   Asian   Pac   J   Allergy   Immunol   2012;30(1):32-9.

28. Macho Fernandez E, Pot B, Grangette C. Beneficial effect of probiotics in IBD: are peptidogycan and NOD2 the molecular key effectors? Gut Microbes 2011; 2(5):280-6.

29. Sengupta R, Altermann E, Anderson RC, McNabb WC, Moughan   PJ,   Roy   NC.   The   role   of   cell   surface architecture of lactobacilli in host-microbe interactions in the   gastrointestinal   tract.   Mediators   Inflamm   2013;2013:237921.

30. Sukhithasri V, Nisha N, Biswas L, Anil Kumar V, Biswas R. Innate immune recognition of microbial cell wall components and microbial strategies to evade such recognitions. Microbiol Res 2013; 168(7):396-406.

31. Zeuthen LH, Fink LN, Frokiaer H. Toll-like receptor 2 and nucleotide-binding oligomerization domain-2 play divergent   roles   in   the   recognition   of   gutderived lactobacilli and bifidobacteria in dendritic cells. Immunology 2008; 124(4):489-502.

32. Rakoff-Nahoum S, Paglino J, Eslami-Varzaneh F, Edberg S, Medzhitov R. Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis. Cell 2004; 118(2):229-41.

33. Wang Q, Dziarski R, Kirschning CJ, Muzio M, Gupta D.Micrococci and peptidoglycan activate TLR2-->MyD88--

>IRAK-->TRAF-->NIK-->IKK-->NF-kappaB    signal transduction   pathway   that   induces   transcription   of interleukin-8. Infect Immun 2001; 69(4):2270-6.

34. Sukkar MB, Xie S, Khorasani NM, Kon OM, Stanbridge R, Issa R, Chung KF. Toll-like receptor 2, 3, and 4 expression and function in human airway smooth muscle. J Allergy Clin Immunol 2006; 118(3): 641-8.

35. Dong  Z,  Yang  Z,  Wang  C.  Expression  of  TLR2  and TLR4 messenger RNA in the epithelial cells of the nasal airway. Am J Rhinol 2005; 19(3):236-9.

36. Castoldi A, Braga TT, Correa-Costa M, Aguiar CF, Bassi ÊJ, Correa-Silva R, et al. TLR2, TLR4 and the MYD88 signaling pathway are crucial for neutrophil migration in acute kidney injury induced by sepsis. PLoS One 2012;7(5):e37584.

37. Leendertse   M,   Willems   RJ,   Giebelen   IA,   van   den Pangaart PS, Wiersinga WJ, et al. TLR2-dependent MyD,88  signaling  contributes  to  early host  defense  in murine  Enterococcus  faecium  peritonitis.  J  Immunol 2008; 180(7):4865-74.

38. 38 Finamore A, Roselli M, Imbinto A, Seeboth J, Oswald IP, Mengheri E. Lactobacillus amylovorus inhibits the TLR4  inflammatory  signaling  triggered  by enterotoxigenic Escherichia coli via modulation of the negative regulators and involvement of TLR2 in intestinal Caco-2   cells   and   pig   explants.   PLoS   One   2014;9(4):e94891.

39. Castillo NA, Perdigón G, de Moreno de Leblanc A. Oral administration of a probiotic Lactobacillus modulates cytokine production and TLR expression improving the immune response against Salmonella enterica serovar Typhimurium infection in mice. BMC Microbiol 2011;11:177.

40. Takeuchi O, Hoshino K, Akira S. Cutting edge: TLR2- deficient  and  MyD88-deficient  mice  are  highly susceptible   to   Staphylococcus   aureus   Infection.   J Immunol 2000; 165(10):5392-6

41. Kenny EF, Talbot S, Gong M, Golenbock DT, Bryant CE, O'Neill LA. MyD88 adaptor-like is not essential for TLR2 signaling and inhibits signaling by TLR3. J Immunol 2009; 183(6):3642-51.

42. Schabussova  I,  Hufnagl  K,  Tang  ML,  Hoflehner  E, Wagner A, Loupal G, et al. Perinatal maternal administration of Lactobacillus paracasei NCC 2461 prevents allergic inflammation in a mouse model of birch pollen allergy. PLoS One 2011; 7:e40271.

43. Rizzo  A,  Losacco  A,  Carratelli  CR,  Domenico  MD, Bevilacqua N. Lactobacillus plantarum reduces Streptococcus pyogenes virulence by modulating the IL-17, IL-23 and Toll-like receptor 2/4 expressions in human epithelial cells. Int Immunopharmacol 2013; 17(2):453-61.


  • There are currently no refbacks.

Creative Commons Attribution-NonCommercial 3.0

This work is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License which allows users to read, copy, distribute and make derivative works for non-commercial purposes from the material, as long as the author of the original work is cited properly.