Iranian Journal of Allergy, Asthma and Immunology 2015. 14(4):346-360.

Role of Innate Lymphoid Cells in Lung Disease
SayedMehran Marashian, Esmaeil Mortaz, HamidReza Jamaati, Mostafa Alavi-Moghaddam, Arda Kiani, Atefeh Abedini, Johan Garssen, Ian M.Adcock, AliAkbar Velayati


Innate lymphoid cells (ILCs) are identified as novel population of hematopoietic cells which protect the body by coordinating the innate immune response against a wide range of threats including infections, tissue damages and homeostatic disturbances. ILCs, particularly ILC2 cells, are found throughout the body including the brain. ILCs are morphologically similar to lymphocytes, express and release high levels of T-helper (Th)1, Th2 and Th17 cytokines but do not express classical cell-surface markers that are associated with other immune cell lineages.Three types of ILCs (ILC1, 2&3) have been reported depending upon the cytokines produced. ILC1 cells encompass natural killer (NK) cells and interferon (IFN)-g releasing cells; ILC2 cells release the Th2 cytokines, IL-5, IL-9 and IL-13 in response to IL-25 and IL-33; and ILC3 cells which release IL-17 and IL-22. ILC2 cells have been implicated in mucosal reactions occurring in animal models of allergic asthma and virus-induced lung disorders resulting in the regulation of airway remodeling and tissue homeostasis.There is evidence for increased ILC2 cell numbers in allergic responses in man but little is known about the role of ILCs in chronic obstructive pulmonary disease (COPD). Further understanding of the characteristics of ILCs such as their origin, location and phenotypes and function would help to clarify the role of these cells in the pathogenesis of various lung diseases.In this review we will focus on the role of ILC2 cells and consider their origin, function, location and possible role in the pathogenesis of the chronic inflammatory disorders such as asthma and COPD.


Cytokines; IL-17; IL-22; ILCs; Respiratory tract

Full Text:



1.      Monticelli   LA,   Sonnenberg   GF,   Artis   D.   Innate lymphoid cells: critical regulators of allergic inflammation and tissue repair in the lung. Curr Opin Immunol 2012; 24(3):284–9.

2.      Spits H, Cupedo T. Innate lymphoid cells: emerging insights indevelopment, lineage relationships, and function. Annu Rev Immunol 2012; 30:647-75-.

3.      Spits H, Di Santo JP. The expanding family of innate lymphoid  cells: regulators and  effectors of immunity and  tissue  remodeling.  Nat  Immunol  2011;  12(1):21-7.

4.    Saenz SA, Noti M, Artis D. Innate immune cell populations function as initiators and effectors in Th2 cytokine responses. Trends Immunol 2010; 31(11):407-13.

5.      Spits   H   and   Cupedo   T.   Innate   lymphoid   cells: emerging  insights  in  development,  lineage relationships, and function. Annu Rev Immunol 2012;30:647–75.

6.      Vivier E, Spits H, Cupedo T. Interleukin-22-producing innate immune  cells:  new players  in  mucosal immunity and tissue repair. Nat Rev Immunol 2009;9(4):229–34.

7.      Cella M, Fuchs A, Vermi W, Facchetti F, Otero  K, Lennerz JK, et al. A human natural killer cell subset provides an innate source of IL-22 for mucosal immunity. Nature 2008; 457(7230):722–5.

8.      Crellin  NK,  Trifari  S,  Kaplan  CD,  Satoh-Takayama N, Di Santo JP, Spits H. Regulation of cytokine secretion in human CD127+ LTi-like innate lymphoid cells   by   Toll-like   receptor   2.   Immunity   2010;33(5):752–64.

9.      Takatori H, Kanno Y, Watford WT, TatoCM,Weiss G, Weiss G, Ivanov II, et al. Lymphoid tissue inducer-like cells are an innate source of IL-17 and IL-22. J Exp Med 2009; 206(1):35–41.

10.    Guo   L,   Junttila   IS,   Paul   WE.   Cytokine-induced cytokine production by conventional and innate lymphoid cells. Trends Immunol 2012; 33(12):598-606.

11.    Kelly KA, Scollay R. Seeding of neonatal lymph nodes by T cells and identification of a novel population of CD3−CD4+ cells. Eur J Immunol 1992; 22(2):329–34.

12.    Mebius  RE,  Rennert  P,  Weissman  IL.  Developing lymph nodes collect CD4+CD3−LTβ+ cells that can differentiate to APC, NK cells, and follicular cells but not T or B cells. Immunity 1997; 7(4):493–504.

13.    Cherrier M, Eberl G. The development of LTi cells.Curr Opin Immunol 2012; 24(2):178–83.

14.    Cupedo  T,  Crellin  NK,  Papazian  N,  Rombouts  EJ, Weijer K, Grogan JL, et al. Human fetal lymphoid tissueinducercells are interleukin 17-producing precursors to RORC+ CD127+ natural killer-like cells. Nat Immunol 2009; 10(1):66–74.

15.    Randall   TD,    Carragher   DM,    Rangel-Moreno    J.Development of secondary lymphoid organs. Annu Rev Immunol 2008; 26:627–50.

16.    van de Pavert SA, Mebius RE. New insights into the development  of  lymphoid  tissues.  Nat  Rev  Immunol 2010; 10(9):664–74.

17.    Eberl G, Marmon S, Sunshine MJ, Rennert PD, Choi Y, Littman DR. An essential function for the nuclear receptor RORγ(t) in the generation of fetal lymphoid tissue inducer cells. Nat Immunol 2004; 5(1):64–73.

18.    Kurebayashi   S,   Ueda   E,   Sakaue   M,   Patel   DD, Medvedev A, Zhang F, et al. Retinoid-related orphan receptor γ(ROR γ) is essential for lymphoid organogenesis and controls apoptosis during thymopoiesis.   Proc   Natl   Acad   Sci   USA   2000;97(18):10132–7.

19.    Sun Z, Unutmaz D, Zou YR, SunshineMJ, Pierani A, Brenner-Morton S, et al. Requirement for RORγinthymocyte survival and lymphoid organ development. Science 2000; 288(5475):2369–73.

20.    Lee JS, Cella M, McDonald KG, Garlanda C, Kennedy GD, Nukaya M, et al. AHR drives the development of gut ILC22 cells and postnatal lymphoid tissues via pathways dependent on and independent of Notch. Nat Immunol 2012; 13(2):144–51.

21.    Hirose  T,  Smith  RJ,  Jetten  AM.  RORγ:  The  third member of ROR/RZR orphan receptor subfamily that is highly expressed in skeletal muscle. Biochem Biophys Res Commun 1994; 205(3):1976–83.

22.    Villey I,  deChasseval  R,  de Villartay JP.  RORγT,  a thymus-specific isoform of the orphan nuclear receptor RORγ/TOR, is up-regulated by signaling through the pre-T cell receptor and binds to the TEA promoter. Eur J Immunol 1999; 29(12):4072–80.

23.    He YW, Beers C, Deftos ML, Ojala EW, Forbush KA, Bevan MJ. Down-regulation of the orphan nuclear receptor   RORγt   is   essential   for   T   lymphocyte maturation. J Immunol 2000; 164(11):5668–74.

24.    Ivanov  II,  McKenzie  BS,  Zhou  L,  Tadokoro  CE, Lepelley A, Lafaille JJ, et al. The orphan nuclear receptor RORγt directs the differentiation program of proinflammatory  IL-17+  T  helper  cells.  Cell  2006;126(6):1121–33.

25.    Yoshida   H,   Honda   K,   Shinkura   R,   Adachi   S, Nishikawa S, Maki K, et al. IL-7 receptor α+ CD3− cells in the embryonic intestine induces the organizing center   of   Peyer’s   patches.    Int   Immunol   1999;11(5):643–55.

26.    van de Pavert SA, Olivier BJ, Goverse G, Vondenhoff MF, Greuter M, Beke P, et al. Chemokine CXCL13 is essential for lymph node initiation and is induced by retinoic acid  and  neuronal stimulation. Nat Immunol 2009; 10(11):1193–9.

27.    Finke D. Fate and function of lymphoid tissue inducer cells. Curr Opin Immunol 2005; 17(2):144–50.

28.    Mjosberg JM, Trifari S, Crellin NK, Peters CP, van Drunen CM, Piet B, et al. Human IL-25-responsive and IL-33-responsive type 2 innate lymphoid cells are defined by expression of CRTH2 and CD161. Nat Immunol 2011; 12(11):1055-62.

29.    Neill DR, Wong SH, Bellosi A, Flynn RJ, Daly M, Langford TK, et al. Nuocytes represent a new innate effector   leukocyte   that   mediates   type-2   immunity. Nature 2010; 464(7293):1367-70.

30.          Moro K, Yamada T, Tanabe M, Takeuchi T, Ikawa T, ,        Kawamoto   H,   et   al.   Innate  production   of  T(H)2                cytokines  by  adipose  tissue-associated  c-Kit+Sca-1+    lymphoid cells. Nature 2010; 463(7280):540–4.

31.          Chang  YJ,  Kim  HY,  Albacker  LA,  Baumgarth  N,               McKenzie AN, Smith DE, et al. Innate lymphoid cells                mediate    influenza-induced    airway    hyper-reactivity independently  of  adaptive  immunity.  Nat  Immunol                2011; 12(7):631-8.

32.          Price  AE,  Liang  HE,  Sullivan  BM,  Reinhardt  RL,               Eisley CJ, Erle DJ, et al. Systemically dispersed innate       IL-13-expressing cells in type 2 immunity. Proc Natl               Acad Sci USA 2010; 107(25):11489-94.

33.          Monticelli LA, Sonnenberg GF, Abt MC, Alenghat T,         Ziegler CG, Doering TA, et al. Innate lymphoid cells                promote  lungtissue  homeostasis  after  infection  with influenza virus. Nat Immunol 2011; 12(11):1045-54.

34.          Ikutani M, Yanagibashi T, Ogasawara M, Tsuneyama K,  Yamamoto  S,  Hattori  Y,  et  al.  Identification  of innate   IL-5-producing   cellsand   their   role   in   lung     eosinophil   regulation   and   antitumor   immunity.   J     Immunol 2012; 188(2):703–13.

35.          Bartemes  KR,  Iijima  K,  Kobayashi  T,  Kephart  GM,McKenzie   AN,   Kita   H.   IL-33-responsive   lineage-

CD25+CD44hi lymphoid cells mediate innate type 2          immunity  and  allergic  inflammation  in  the  lungs.  J      Immunol 2012; 188(3):1503–13.

36.          Wong SH, Walker JA, Jolin HE, Drynan LF, Hams E,             Camelo  A,  et  al.  Transcription  factor  RORalpha  is                critical for nuocyte development. Nat Immunol 2012;     13(3):229-36.

37.          Liang HE, Reinhardt RL, Bando JK, Sullivan BM, Ho IC, Locksley RM. Divergent expression patterns of IL-4   and   IL-13   define   unique   functions   in   allergic       immunity. Nat Immunol 2012; 13(1):58–66.

38.          Yang Q, Saenz SA, Zlotoff DA, Artis D, Bhandoola A.         Cutting edge: natural helper cells derive fromlymphoid                progenitors. J Immunol 2011; 187(11):5505–9.

39.          Halim TY, Krauss RH, Sun AC, Takei F. Lung natural            helper  cells  are  a  critical  source  of  Th2  cell-type                cytokines     in     protease     allergen-induced     airway   inflammation. Immunity 2012; 36(3):451-63.

40.          Scanlon ST, McKenzie AN. Type 2 innate lymphoid cells: new players in  asthma and  allergy.  Curr  Opin Immunol 2012; 24(6):707–12.

41.          Mebius  RE,  Miyamoto  T,  Christensen  J,  Domen  J,      Cupedo   T,   Weissman   IL,   et   al.   The   fetal   liver counterpart  of  adult  common  lymphoid  progenitors  gives rise to all lymphoid lineages, CD45+CD4+CD3−        cells,  as  well   as  macrophages.  J  Immunol   2001;            166(11):6593–601.

42.          Cella M, Otero K, Colonna M. Expansion of human           NK-22 cells with IL-7, IL-2, and IL-1β reveals intrinsic                functional plasticity. Proc Natl Acad Sci USA 2010;              107(24):10961–6.

43.          Colonna  M.  Interleukin-22-producing  natural  killer       cells and lymphoid tissue inducer-like cells in mucosal                immunity. Immunity 2009; 31(1):15–23.

44.          Satoh-Takayama N, Lesjean-Pottier S, Vieira P, Sawa      S,  Eberl  G,  Vosshenrich  CA,  et  al.  IL-7  and  IL-15 independently program the differentiation of intestinal                CD3-NKp46+    cell    subsets    from    Id2-dependent                precursors. J Exp Med 2010; 207(2):273–80.

45.          Vonarbourg C, Mortha A, Bui VL, Hernandez PP, Kiss       EA, Hoyler T, et al. Regulated  expression of nuclear receptor RORγt confers distinct functional fates to NK    cell  receptor-expressing  RORγt+  innate  lymphocytes.                Immunity 2010; 33(5):736–51.

46.          Freud AG, Yokohama A, Becknell B, Lee MT, Mao             HC, Ferketich AK, et al. Evidence for discrete stages of human natural killer cell differentiation in vivo. J Exp Med 2006; 203(4):1033–43.

47.          Hughes T, Becknell B, McCloryS, Briercheck E, Freud        AG, Zhang X, et al. Stage 3 immature human natural killer   cells   found   in   secondary   lymphoid   tissue        constitutively   and   selectively   express   the   TH17        cytokine interleukin-22. Blood 2009; 113(17):4008–10.

48.          Hughes   T,   Becknell   B,   Freud   AG,   McClory   S,           Briercheck  E,  Yu  J,  et  al.  Interleukin-1β  selectively expands and sustains interleukin-22+ immature human                natural   killer   cells   in   secondary  lymphoid   tissue.                Immunity 2010; 32(6):803–14.

49.          Crellin NK, TrifariS, Kaplan CD, Cupedo T, Spits H.              Human   NKp44+IL-22+   cells   and   LTi-like   cells                constitute   a   stable   RORC+   lineage   distinct   from     conventional  natural  killer  cells.  J.  Exp.  Med  2010;                207(2):281–90.

50.          Barlow JL, Bellosi A, Hardman CS, Drynan LF, Wong          SH,  Cruickshank  JP,  et  al.  Innate  IL-13-producing                nuocytes arise during allergic lung inflammation and       contribute  to  airways  hyperreactivity.  J  Allergy  Clin                Immunol 2012; 129(1):191-8.

51.          Fort MM, Cheung J, Yen D, Li J, Zurawski SM, Lo S,et al. IL-25 induces IL-4, IL-5, and IL-13 and Th2- associated   pathologies   in   vivo.   Immunity   2001;15(6):985–95.

52.          Walker JA, McKenzie A. Innate lymphoid cells in the        airways. Eur J Immunol 2012; 42(6):1368–74.

53.   Fallon PG, Ballantyne SJ, Mangan NE, Barlow JL, Dasvarma A, Hewett DR, et al. Identification of an interleukin (IL)-25-dependent cell population that provides IL-4, IL-5, and IL-13 at the onset of helminth expulsion. J Exp Med 2006; 203(4):1105–16.

54.   Hurst SD, Muchamuel T, Gorman DM, Gilbert JM, Clifford T, Kwan S, et al. New IL-17 family members promote Th1 or Th2 responses in the lung: in vivo function of the novel cytokine IL-25. J Immunol 2002;169(1):443–53.

55.    Sanos SL, Bui VL, Mortha A, Oberle K, Heners C, Johner C, et al. RORγt and commensal microflora are required for the differentiation of mucosal interleukin 22-producing   NKp46+   cells.   Nat   Immunol   2009;10(1):83–91.

56.          Satoh-Takayama N,  Vosshenrich  CA,  Lesjean-Pottier   S, Sawa S, Lochner M, Rattis F, et al. Microbial flora drives interleukin 22 production in intestinal NKp46+      cells  that  provide  innate  mucosal  immune  defense.  Immunity 2008; 29(6):958–70.

57.          Geremia A, Arancibia-Carcamo CV, FlemingMP, Rust       N,  Singh  B,  Mortensen  NJ,  et  al.  IL-23-responsive innate  lymphoid  cells  are  increased  in  inflammatory  bowel disease. J Exp Med 2011; 208(6):1127–33.

58.          Cella M, Otero K, Colonna M. Expansion of human           NK-22 cells with IL-7, IL-2, and IL-1β reveals intrinsic                functional plasticity. Proc Natl Acad Sci U S A 2010;107(24):10961–6.

59.          Reynders A, Yessaad N, Vu Manh TP, Dalod M, Fenis      A,  Aubry  C,  et  al.  Identity,  regulation  and  in  vivo function of gut NKp46+RORγt+ and NKp46+RORγt−         lymphoid cells. EMBO J 2011; 30(14):2934–47.

60.          Luci C, Reynders A, Ivanov II, Cognet C, Chiche L,              Chasson L, et al. Influence of the transcription factor RORγt on the development of NKp46+ cell populations in gut and skin. Nat Immunol 2009; 10(1):75–82.

61.          Di  Meglio  P,  Villanova  F,  Napolitano  L,  Tosi  I,Terranova  Barberio  M,  Mak  RK,  et  al.  The  IL23R A/Gln381 Allele Promotes IL-23 Unresponsiveness in      Human Memory T-Helper 17 Cells and Impairs Th17         Responses  in  Psoriasis  Patients.  J  Invest  Dermatol 2013; 133(10):2381-9.

62.          Kim S, Han S, Withers DR, Gaspal F, Bae J, Baik S, et al. CD117+ CD3− CD56− OX40Lhigh cellsexpress IL-           22 and display an LTi phenotype in human secondary      lymphoid tissues. Eur J Immunol 2011; 41(6):1563–72.

63.          Eberl  G,  Littman  DR.  Thymic  origin  of  intestinal            αβTcells   revealed   by   fatemappingofRORγt+   cells.                Science 2004; 305(5891):248–51.

64.    TsujiM, Suzuki K, Kitamura H,MaruyaM, Kinoshita K, et al. Requirement for lymphoid tissueinducer cells in isolated follicle formation and T cell-independent immunoglobulin  A  generation  in  the  gut.  Immunity 2008; 29:261–71.

65.    Kanamori Y, Ishimaru K, Nanno M, Maki K, Ikuta K, Nariuchi H, et al. Identification of novel lymphoid tissues in murine intestinal mucosa where clusters of c- kit+ IL-7R+ Thy1+ lympho-hemopoietic progenitors develop. J Exp Med 1996; 184(4):1449–59.

 66.  Hamada H, Hiroi T, Nishiyama Y, Takahashi H, Masunaga Y, Hachimura S, et al. Identification of multiple     isolated     lymphoid     follicles     on     the antimesenteric  wall  of  themouse  small  intestine.  J Immunol 2002; 168(1):57–64.

67.          Scandella E, Bolinger B, Lattmann E, Miller S, Favre S,      Littman  DR,  et  al.  Restoration  of  lymphoid  organ integrity  through  the  interaction  of  lymphoid  tissue- inducer  cells  with  stroma  of  the  T  cell  zone.  Nat        Immunol 2008; 9(6):667–75.

68.          Buonocore S, Ahern PP, Uhlig HH, Ivanov II, Littman        DR,  Maloy  KJ,  et  al.  Innate  lymphoid  cells  drive interleukin-23-dependent  innate  intestinal  pathology.                Nature 2010; 464(7293):1371–5.

69.          Sawa S, Lochner M, Satoh-Takayama N, Dulauroy S,        Berard   M,   Kleinschek   M,   et   al.   RORγt+   innate lymphoid   cells   regulate   intestinal   homeostasis   by   integrating   negative   signals    from   the   symbiotic       microbiota. Nat Immunol 2011; 12(4):320–6.

70.          Wolk K, Kunz S, Witte E, Friedrich M, Asadullah K,             Sabat R. IL-22 increases the innate immunity of tissues.                Immunity 2004; 21(2):241–54.

71.          Ouyang W, Rutz S, Crellin NK, Valdez PA, Hymowitz         SG. Regulation and functions of the IL-10 family of                cytokines  in  inflammation  and  disease.  Annu  Rev       Immunol 2011; 29:71–109.

72.          Sonnenberg  GF,  Monticelli  LA,  Elloso  MM,  Fouser      LA,  Artis  D.  CD4+  lymphoid  tissue-inducer  cells                promote innate immunity in the gut. Immunity 2010;      34(1):122–34.

73.          Shields JD, Kourtis IC, Tomei AA, Roberts JM, Swartz       MA.  Induction  of  lymphoidlike  stroma  and  immune                escape by tumors that express the chemokine CCL21.    Science 2010; 328(5979):749–52.

74.          Eisenring   M,   vom  Berg   J,   Kristiansen   G,   Saller         E,   Becher   B.   IL-12   initiates   tumor   rejection   via                lymphoid   tissue-inducer   cells   bearing   the   natural    cytotoxicity   receptor   NKp46.   Nat   Immunol   2010;                11(11):1030–8.

75.  Heath   WR,   Carbone   FR.   The   skin-resident   and migratory immune system in steady state and memory: innate lymphocytes, dendritic cells and T cells. Nat Immunol 2013; 14(10):978-85.

76.    Garside P, Ingulli E, Merica RR, Johnson JG, Noelle RJ, Jenkins MK. Visualization of specific Band T lymphocyte  interactions  in  the  lymph  node.  Science 1998; 281(5373):96–9.

77.    Lane PJ, Gaspal FM, Kim MY. Two sides of a cellular coin: CD4+CD3− cells regulate emoryresponses and lymph-node  organization.  Nat  Rev  Immunol  2005;5(8):655–60.

78.    Liu YJ, Zhang J, Lane PJ, Chan EY, MacLennan IC.Sites of specific B cell activation in primaryand secondary responses toTcell-dependent andTcell- independent    antigens.    Eur    J    Immunol    1991;21(2):2951–62.

79.    Kim MY, Anderson G, White A, Jenkinson E, Arlt W, et al. OX40 ligand and CD30 ligand are expressed on adult but not neonatal CD4+CD3− inducer cells: evidence that IL-7 signals regulate CD30 ligand but not OX40     ligand     expression.     J     Immunol     2005;174(11):6686–91.

80.    Kim  MY,  Toellner  KM,  White  A,  McConnell  FM, Gaspal FM, Parnell SM, et al. Neonatal and adult CD4+ CD3− cells share similar gene expression profile, and neonatal cells up-regulateOX40 ligand in response to TL1A (TNFSF15). J Immunol 2006; 177(5):3074–81.

81.    Kim MY, Gaspal FM, Wiggett HE, McConnell FM, Gulbranson-Judge A, Raykundalia C, et al. CD4+CD3− accessory cells costimulate primedCD4Tcells throughOX40andCD30at sites whereTcells collaborate with B cells. Immunity 2003; 18(5):643–54.

82.    Gaspal FM, Kim MY, McConnell FM, Raykundalia C, Bekiaris V, Lane PJ. Mice deficient in OX40 and CD30 signals lack memory antibody responses because of deficient  CD4   T  cell  memory.   J  Immunol   2005;174(7):3891–6.

83.    Withers DR, Jaensson  E,  Gaspal F, McConnell  FM, Eksteen B, Anderson G, et al. The survival of memory CD4+ T cells within the gut lamina propria requires OX40    and    CD30    signals.    J    Immunol    2009;183(8):5079–84.

84.    Nussbaum JC, Van Dyken SJ, von Moltke J, Cheng LE, Mohapatra A, Molofsky AB, et al. Type 2 innate lymphoid cells control eosinophil homeostasis. Nature 2013; 502(7470):245-8.

85.    Koyasu S, Moro K, Tanabe M, Takeuchi T. Natural helper  cells:  a  new  player  in  the  innate  immuneresponse   against   helminthinfection.   Adv   Immunol 2010; 108:21-44.

86.    Monticelli LA, Sonnenberg GF, Abt MC, Alenghat T, Ziegler CG, Doering TA, et al. Innate lymphoid cells promote lungtissue homeostasis after infection with influenza virus. Nat Immunol 2011; 12(11):1045-54.

87.    Kim HY, Chang YJ, Subramanian S, Lee HH, Albacker LA, Matangkasombut P, et al. Innate lymphoid cells responding to IL-33 mediate airway hyperreactivity independently of adaptive immunity. J Allergy Clin Immunol 2012; 129(1):216-27.

88.    Yasuda K, Muto T, Kawagoe T, Matsumoto M, Sasaki Y, Matsushita K, et al. Contribution of IL-33-activated type II innate lymphoid cells to pulmonary eosinophilia in intestinal nematodeinfected mice. Proc Natl Acad Sci U S A 2012; 109(9):3451–6.

89.    Adachi S, Yoshida H, Honda K, Maki K, Saijo K, Ikuta K,  et  al.  Essential  role  of  IL  7  receptor  α  in  the formation of Peyer’s patch anlage. Int Immunol 1998;10(1):1–6.

90.    Fukushi  M,  Ito  T,  Oka  T,  Kitazawa  T,  Miyoshi- Akiyama T, Kirikae T, et al. Serial histopathological examination   of   the   lungs   of   mice   infected   with Influenza  A  virus  PR8  strain.  PLoS   ONE   2011;6(6):e21207.

91.    Doherty T, Broide D. Cytokines and growth factors in airway  remodeling  in  asthma.  Curr  Opin  Immunol2007; 19(6):676-80.

92.  Broide   DH.   Immunologic   and   inflammatory mechanisms that drive asthma progression to remodeling. J Allergy ClinImmunol 2008; 121(3):560-70.

93.    Crosby LM, Waters CM. Epithelial repair mechanisms in thelung. Am J Physiol Lung Cell Mol Physiol 2010;298(6):L715-31.

94.    Licona-Limon P, Kim LK, Palm NW, Flavell RA. TH2, allergy   and   group   2   innate   lymphoid   cells.   Nat Immunol 2013; 14(6):536-42.

95.   Rock JR, Hogan BL. Epithelial progenitor cells in lungdevelopment, maintenance, repair, and disease. Annu Rev Cell Dev Biol 2011; 27:493-512.

96.    Kim HY, DeKruyff RH, Umetsu DT. The many paths to asthma: phenotype shaped  by innate and  adaptive immunity. Nat Immunol 2010; 11(7):577–84.

97.    Voehringer   D,   Reese   TA,   Huang   X,   Shinkai   K, Locksley RM. Type 2 immunity is controlled by IL-4/IL-13  expression  in  hematopoietic  non-eosinophil cells of the innate immune system. J Exp Med 2006;203(6):1435–46.

98.   Walter DM, McIntire JJ, Berry G, McKenzie AN, Donaldson DD, DeKruyff RH, et al. Critical role for IL-13  in  the  development  of  allergen-induced  airway hyperreactivity. J Immunol 2001; 167(8):4668–75.

99.    Cohn  L,  Tepper  JS,  Bottomly  K.  IL-4-independent induction of airway hyperresponsiveness by Th2, but not Th1, cells. J Immunol 1998; 161(8):3813–6.

100.  Oshikawa   K,   Kuroiwa   K,   Tago   K,   Iwahana   H,Yanagisawa K, Ohno S, et al. Elevated soluble ST2 protein levels in sera of patients with asthma with an acute exacerbation. Am J Respir Crit Care Med 2001;164(2):277-81.

101.  Sakashita M, Yoshimoto T, Hirota T, Harada M, Okubo K, Osawa Y, et al. Association of serum interleukin-33 level and the interleukin-33 genetic variant with Japanese  cedar  pollinosis.  Clin  Exp  Allergy  2008;38(12):1875-81.

102.  Kamekura R, Kojima T, Takano K, Go M, Sawada N, Himi  T.  The  role  of  IL-33  and  its  receptor  ST2  in human nasal epithelium with allergic rhinitis. Clin Exp Allergy 2012; 42(2):218-28.

103.  Prefontaine D, Lajoie-Kadoch S, Foley S, Audusseau S, Olivenstein R, Halayko AJ, et al. Increased expression of IL-33 in severe asthma: evidence of expression by airway   smooth   muscle   cells.   J   Immunol   2009;183(8):5094-103.

104.  Barnig C, Cernadas M, Dutile S, Liu X, Perrella MA, Kazani S, et al. Lipoxin A4  Regulates Natural Killer Cell and Type 2 Innate Lymphoid Cell Activation in Asthma.   Sci   Transl   Med   2013;   5(174):174ra26. DOI: 10.1126/scitranslmed.3004812105.  Fallon PG, Emson CL, Smith P, McKenzie AN. IL-13 overexpression predisposes to anaphylaxis following antigen sensitization. J Immunol 2001; 166(4):2712-6.

106.  Zhu Z, Homer RJ, Wang Z, Chen Q, Geba GP, Wang J, et al.  Pulmonary expression  of interleukin-13  causes inflammation, mucus hypersecretion, subepithelial fibrosis, physiologic abnormalities, and eotaxin production. J Clin Invest 1999; 103(6):779–88.

107.  Jaradat M, Stapleton C, Tilley SL, Dixon D, Erikson CJ, McCaskill JG, et al. Modulatory role for retinoid- related orphan receptor alpha in allergen-induced lung inflammation.  Am  J  Respir  Crit  Care  Med  2006;174(12):1299–309.

108.  Wilhelm C, Hirota K, Stieglitz B, Van Snick J, Tolaini M, Lahl K, et al. An IL-9 fate reporter demonstrates the induction of an innate IL-9 response in lung inflammation. Nat Immunol 2011; 12(11):1071-7.

109.  Kondo   Y,   Yoshimoto   T,   Yasuda   K,   Futatsugi-Yumikura S, Morimoto M, Hayashi N, et al. Administration of IL-33 induces airway hyperresponsiveness and goblet cell hyperplasia in the lungs in the absence of adaptive immune system. Int Immunol 2008; 20(6):791–800.

110.  Schmitz J, Owyang A, Oldham E, Song Y, Murphy E, McClanahan TK, et al. IL-33, an interleukin-1-like cytokine  that  signals  via  the  IL-1  receptor-related protein ST2 and induces T helper type 2-associated cytokines. Immunity 2005; 23(5):479–90.

111.  Hammad    H,    Chieppa    M,    Perros    F,    Willart MA, Germain RN, Lambrecht BN. House dust mite allergen induces asthma via Toll-like receptor 4 triggering  of  airway  structural  cells.  Nat  Med  2009;15(4):410–6.

112.  Pushparaj PN, Tay HK, H’Ng SC, Pitman N, Xu D, McKenzie   A,   et   al.   The   cytokine   interleukin-33 mediates anaphylactic shock. Proc Natl Acad Sci U S A2009; 106(24):9773–8.

113.  Wang YH, Angkasekwinai P, Lu N, Voo KS, Arima K, Hanabuchi S, et al. IL-25 augments type 2 immune responses by enhancing the expansion and functions of TSLP-DC-activated  Th2  memory  cells.  J  Exp  Med2007; 204(8):1837-47.

114. Corrigan CJ, Wang W, Meng Q, Fang C, Eid G, Caballero  MR,  et al.  Allergen-induced  expression  of IL-25 and IL-25 receptor in atopic asthmatic airways and latephase cutaneous responses. J Allergy Clin Immunol 2011; 128(1):116-24.

115. Allen JE, Maizels RM. Diversity and dialogue in immunity   to   helminths.   Nat   Rev   Immunol   2011;11(6):375-88.

116.  Anthony RM, Rutitzky LI, Urban JF Jr, Stadecker MJ, Gause WC. Protective immune mechanisms in helminth infection. Nat Rev Immunol 2007; 7(12):975-87.

117.  Corren J, Lemanske RF, Hanania NA, Korenblat PE, Parsey MV, Arron JR, et al. Lebrikizumab Treatment in Adults    with    Asthma.    N    Engl    J    Med    2011;365(12):1088-98.

118.  Taube C, Tertilt C, Gyülveszi G, Dehzad N, Kreymborg K, Schneeweiss K, et al. IL-22 is produced by innate lymphoid  cells  and  limits  inflammation  in  allergic airway disease. PLoS One 2011; 6(7):e21799.

119.  Zenewicz LA, Flavell RA. Recent advances in IL-22 biology. Int Immunol 2011; 23(3):159–63.

120.  Schnyder-Candrian S, Togbe D, Couillin I, Mercier I, Brombacher F, Quesniaux V, et al. Interleukin-17 is a negative regulator of established allergic asthma. J Exp Med 2006; 203(12):2715–25.

121.  Schnyder    B,    Lima    C,    Schnyder-Candrian     S.Interleukin-22 is a negative regulator of the allergic response. Cytokine 2010; 50(2):220–7.

122.  Givi   ME,   Redegeld   FA,   Folkerts   G,   Mortaz   E.Dendritic cells in pathogenesis of COPD. Curr PharmDes 2012; 18(16):2329-35.

123.  Mortaz  E,  Folkerts  G,  Redegeld  F.  Mast  cells  and COPD. Pulm Pharmacol Ther 2011; 24(4):367-72.

124.  Yoshida  T,   Tuder  RM.   Pathobiology  of  cigarette smoke-induced chronic obstructive pulmonary disease. Physiol Rev 2007; 87(3):1047-82.

125.  Besnard  AG1,  Sabat  R,  Dumoutier  L,  Renauld  JC,Willart M, Lambrecht B, et al. Dual role of IL-22 in allergic  airway  inflammation  and  its  cross-talk  with IL-17A.    Am    J    Respir    Crit    Care    Med    2011;183(9):1153–63.

126. Stockley,  RA  (Jun  2011)  Chronic  Obstructive Pulmonary Disease. In: eLS. John Wiley & Sons Ltd, Chichester.

127.  Liesker JJ, Wijkstra PJ, Ten Hacken NH, Koëter GH, Postma DS, Kerstjens HA. A systematic review of the effects of bronchodilators on exercise capacity in patients with COPD. Chest 2002; 121(2):597-608.

128.  Hweshenson MB. Rhinovirus-induced exacerbations of asthma and COPD. Scientifica 2013; 2013:405876.

129.  Wu CA, Puddington L, Whiteley HE, Yiamouyiannis CA, Schramm CM, Mohammadu F, et al. Murine cytomegalovirus infection alters TH1/TH2 cytokine expression,  decreases  airway  eosinophilia,  and enhances mucus productionin allergic airway disease. J Immunol 2001; 167(5):2798-807.

130.  Almansa R, Sanchez-Garcia M, Herrero A, Calzada S, Roig V, Barbado J, et al. Host response cytokine signatures in viral and nonviral acute exacerbations of chronic  obstructive  pulmonary  disease.  J  Interferon Cytokine Res 2011; 31(5):409-13.

131.  Cayrol C, Girard JP. The IL-1-like cytokine IL-33 is inactivated after maturation by caspase-1. Proc Natl Acad Sci U S A 2009; 106(22):9021-6.

132.  Lefrançais E, Roga S, Gautier V, Gonzalez-de-Peredo A, Monsarrat B, Girard JP, et al. IL-33 is processed into mature bioactive forms by neutrophil elastase and cathepsin  G.  Proc  Natl  Acad  Sci  U  S  A  2012;109(5):1673-8.

133.  Piccioni PD, Kramps JA, Rudolphus A, Bulgheroni A, Luisetti M. Proteinase/proteinase inhibitor imbalance in sputum   sol   phases   from   patients   with   chronic obstructive pulmonary disease. Suggestions for a key role    played    by    antileukoprotease.    Chest    1992;102(5):1470-6.

134.  Wickenden  JA,  Clarke  MCH,  Rossi  AG,  Rahman  I, Faux SP, Donaldson K, et al. Cigarette smoke prevents apoptosis through inhibition of caspase activation and induces necrosis. Am J Respiratory Cell and Molecular Biol 2003; 29(5):562-70.


  • There are currently no refbacks.

Creative Commons Attribution-NonCommercial 3.0

This work is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License which allows users to read, copy, distribute and make derivative works for non-commercial purposes from the material, as long as the author of the original work is cited properly.